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Abstract. In this paper, we propose a method that estimates appro-
priate violin fingering according to the performer’s skill level based on a
conditional random field (CRF). A violin is an instrument that can pro-
duce the same pitch for different fingering patterns, and these patterns
depend on skill level. We previously proposed a statistical method for
violin fingering estimation, but that method required a certain amount
of training data in the form of fingering annotation corresponding to each
note in the music score. This was a major issue of our previous method,
because it takes time and effort to produce the annotations. To solve this
problem, we proposed a method to automatically generate training data
for a fingering model using existing violin textbooks. Our experimental
results confirmed the effectiveness of the proposed method.

1 Introduction

With a violin, the same pitch can be produced by several fingering patterns, and
players decide which fingering to use. In general, the optimum fingering differs
according to a player’s skill level. For low-skill players, fingering that is easily
played is optimum, whereas for high-skill players, fingering that allows the best
performance expression is optimum. From this point of view, it is important to
consider the skill level of the player in the field of automatic fingering estimation
techniques.

Some studies have focused on fingering estimation for a plucked or bowed
string instrument [1–5] or for the piano [6–8]. The methods proposed in these
studies estimate the easiest fingering and can not recommend suitable fingering
for various skill levels; however, one promising approach is a method to describe
the relationship between fingering and music score by using a stochastic model
such as [5,7]. We have been working on the research of violin fingering estimation
based on such a stochastic model approach. Our goal is to estimate the natural
violin fingering according to the player’s skill level for any musical compositions.
It is considered to be a human-centered design in assistive technology for musical
instrument training. In this paper, we propose the technique for violin fingering
estimation according to the performer’s skill level based on a conditional random
field (CRF).
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Fig. 1. Examples of violin fingering for different skill level

2 Methodology

2.1 Violin Fingering and Our Previous Study

Figure 1 shows examples of violin fingering for beginners and intermediates play-
ers. The violin player decides whether playing needs to be easy or whether perfor-
mance expression is appropriate. We also realize that this priority is influenced
by the note length. If the note is short, ease of play becomes a higher prior-
ity because playing a succession of short notes is more difficult. When the note
is long, expression has a higher priority because playing longer notes is easier.
Expression also has a higher priority when the skill level is high.

From this point of view, we previously proposed a fingering estimation
method based on a hidden Markov model (HMM) [9]. In our previous study,
we regarded fingering as the hidden state and the notes in the musical com-
position as the observation. We defined the priority of performance expression
based on note length and skill level, and this priority was used to determine the
output probability. Because note length also influences ease of transition from
one fingering pattern to another, we defined the degree of change between fin-
gering patterns based on note length, and this degree of change was related to
transition probability.

Model parameters were estimated from textbook fingering patterns; however,
that method requires fully annotated fingering for training HMM, making it
difficult to prepare the training data. In general, partial fingering patterns are
described in violin textbooks. We had to create a large amount of complementary
fingering data manually in order to train fingering estimation models, which
required a lot of time and the skill and knowledge of violin playing.

2.2 Outline of Our Method

Figure 2 shows an overview of our complementary training method using partial
fingering data. The initial model is trained by using the completed fingering
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Fig. 2. Overview of our complementary training method using CRF

data that has been fully complemented manually in the same way as in our
previous study. Parameters of complementary feature function are estimated
from complete fingering data. Then, partial fingering data is complemented by
using the CRF, and the model is updated using the complemented fingering
data. In this study, we adopted well-known stochastic gradient descent (SGD)
method to train CRF. This cycle is repeated under the convergence condition.

2.3 Basic Idea of Fingering Model Using CRF

In this paper, we propose a framework for training the fingering estimation
model using a partial fingering data from violin textbooks. To accomplish that,
we model violin fingering using the concept underlying the CRF as shown in
Fig. 3. This model is an extended version of our HMM-based fingering model.
State sequences s is the left-hand state sequence, and output o is the note and
rest sequence in the score. We assume that the state changes for every note
and that the state sequence is a Markovian process. To simplify the problem,
the model has the following restrictions: the score is monophonic, and only the
factors pitch, note length, and rest length are considered by this model.

Each note information of o can be represented as set of pitch information p,
expressiveness e and changeableness c. Expressiveness e depends on the parame-
ter wl representing the skill level.

The four elements are represented by the following variables: finger number
FN, string SP, hand position HP and finger interval FI.

sn = {xFN
n , xSP

n , xHP
n , xFI

n } (1)

The objective function for the fingering estimation is defined as Eq. (2) by
using potential function Φ(o, s).

ŝ = arg max
s

P (s|o) = arg max
s

exp(Φ(o, s))
z(o)

(2)

Here, z(o) is a normalization term.
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Fig. 3. Outline of our fingering model

2.4 Potential Representation

CRF potential function Φ is represented as a linear combination of feature func-
tions as follows:

Φ(o, s) =
∑

n

∑

i,j

wi,jfi,j(on−1, on, sn−1, sn) (3)

In this study, feature functions of CRF are represented by a probability density
function because the degree of expressiveness e and changeableness c are contin-
uous values. Both e and c have been introduced to accommodate skill levels in
our previous study (please refer to [9] for more details). There are four features:
state feature, transition feature, expression feature, and pitch feature. Due to the
number of states being too large, each feature is defined individually for each
element except for the pitch feature.

2.5 State Feature

This feature represents the appropriateness of the hands of the state. To simplify
the model, we assumed that feature is independent of each element. The state
feature function is defined as Eq. (4) as the logarithm of the probability of
occurrence of each element.

f1,j(sn) = log P (xj
n) (4)

It can be considered as j ∈ {FN,HP,FI}, because this feature does not depend
on the violin string.

2.6 Transition Feature

This feature represents the appropriateness of the transition of the state, and
its feature function is defined as the logarithm of the Laplace distribution or
the exponential distribution, where the variance of distribution depends on the
degree of changeableness c. It is noted that this feature also depends on the
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finger numbers before the transition. The details of transition the probability
are described in [9], and a simplified example is represented by Eq. (5).

f2,j(on−1, sn−1, sn) = log fLap(xj
n;xj

n−1, kjcn) (5)

Here, fLap(x;μ, σ2) is the Laplace distribution with mean μ and variance σ2. It
can be considered as j ∈ {SP,HP,FI}, because the transition of finger numbers
does not depend on the appropriateness of fingering.

2.7 Expressiveness Feature

This feature represents the appropriateness of the expression. The frequency of
expression can be approximated by log-normal distribution. The feature func-
tion is represented as Eq. (6). It can be considered as j ∈ {FN,SP}, because
expressiveness depends on both finger number and string.

f3,j(on, sn) = log fLN(en;μj,xj
n
, σ2

j,xj
n
) (6)

2.8 Pitch Feature

The relationship between state and pitch is represented as Eq. (7). The state
corresponds to the pitch to set the probability to zero, otherwise set the proba-
bility to ∞.

f4(sn, on) =
{

0 state sn correspond to pitch pn
−∞ state sn does not correspond to pitch pn

(7)

3 Automatic Fingering Completion

In general, fingering is not described for every note in commercial fingering text-
books. One reason is that an easily guessed part is often omitted. In addition,
fingering information is represented by finger number only, with string informa-
tion provided only as required. To use such partial fingering data as training
data, it is necessary to create a full fingering data by completion.

3.1 Outline of Completion Method

In this study, we introduce a new method for a semi-automatic completion
method by using a fingering estimation framework based on CRF. At first,
we focus on the difference between described and non-described fingering in
the textbook. As for non-described parts, only a small change in the state of the
hand would be expected; on the other hand, a large change in the state of the
hand is expected at locations where the fingering is described.
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These relationships can be represented by changing the weights of the feature
by the described or non-described fingering in the textbook. Finally, a potential
function for the automatic complement is represented as Eq. (8).

Φcmp(o, s) =
∑

n

∑

i,j

αi,j(n)wi,jfi,j(on−1, on, sn−1, sn) (8)

Here, αi,j(n) is the function that changes the weight by the described or non-
described fingering:

αi,j(n) =
{

α0
i,j fingering is not described at nth note

α1
i,j fingering is described at nth note (9)

Here, α0
i,j means fingering was not described at the nth note, while α1

i,j means
fingering was described at the nth note.

An optimal complemented fingering can be searched from the state sequence
through the textbook fingering by using the potential function. Complement
state sequence can be represented as Eq. (10) for the set of state sequences Stext

that satisfy the textbook fingering.

ŝcmp = arg max
s∈Stext

exp(Φcmp(o, s))
z(o)

(10)

4 Training Method Using Textbooks

Figure 4 shows an outline of our training method. Our goal is to train the fin-
gering estimation model from textbooks. In order to obtain automatic comple-
mented fingering data from textbooks, an initial fingering estimation model is
required. In this study, we use an initial data set with a small amount of man-
ually complemented fingering data. Estimation of auto-complemented fingering
data and updating of model parameters is repeated. The termination condi-
tion for this process is the case where a concordance rate of (t1 − 1)th and t1

th

complemented fingering is equal to or more than α%.

4.1 Parameter Estimation for θ

The parameter set of the feature function consists of an occurrence probability
of each element of 57 dimensions in total. These parameters are estimated in the
same manner as [9].

4.2 Parameter Estimation for ω

It is not necessary to consider the weight, since the pitch feature can not be
defined only as zero or one. We have to estimate an 8-dimensional feature weight
in total.
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Fig. 4. Outline of the training method

In general, the weight parameter of the CRF is estimated by using the limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method in cases of batch
training. On the other hand, a stochastic gradient descent (SDG) method is
used in cases of online training. In the batch training, parameters are updated
by using all training data. An advantage of the batch method is the stability
of convergence, but the computational time is a problem. In the online method,
training is performed using the training data sequentially. An advantage of the
online method is that the calculation time is small, but the problem is instability
of convergence. In this study, one data set corresponds to the whole music score,
which contains several hundreds notes.

The gradient vector of SGD is defined as Eq. (11), and the weight update
equation is defined as Eq. (12).

g(o(d), s(d)) = f(o(d), s(d)) −
∑

s

f(o(d), s)P (s|o(d)) (11)

wt2+1 ← wt2 + ηt2g(o(dt2 ), s(dt2 )) (12)

Here, t2, d and ηt2 represent the number of updates of the weight, index of train-
ing data and training coefficients, respectively. In the online training, the update
process is performed in units of one music score. d is defined as the remainder
obtained by dividing the t2 and D. P (s|o(d)) can be calculated efficiently using
a forward-backward algorithm.

In the SGD method, the training result is often strongly affected by the
data that is used in the most recent update cycle. For this reason, training
coefficient ηt2 is defined to be reduced by the weight parameter update cycle t2.
Determination condition of convergence L2-norm, which is a change in ratio of
weight, is used. A summary of these ideas can be written as Eq. (13).

Δt2 =
√∑

i,j

(
n

(
wt2

i,j

) − n
(
wt2−1

i,j

))2
(13)
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Here, n(·) is a function to normalize such that the sum of the weight is equal
to one. Δt2 is divided by the number of occurrences N (d) because it is strongly
affected by the high frequency of occurrence data. Because it is considered to
be dependent on the data (music), we use the average of the last D times. It is
considered to have converged if the average is less than the threshold value b.
The update performed at least D times.

t2∑

i=t2−D+1

Δi

N (di)
< b (14)

4.3 Complement Parameter α

Dimensionality of the complementary parameters is twice the number of dimen-
sions of feature weights. Our complementary parameters are represented by the
ratio of the weight of fingering the described part and the non-described part.

Complementary parameters are defined as Eq. (15). Here, wall, w0, and w1 are
weight parameters corresponding to training from all notes, fingering described
notes and fingering non-described notes, respectively.

αk
i,j = n

(
wk

i,j

)
/n

(
wall

i,j

)
k = 0, 1 (15)

5 Experiment and Results

5.1 Settings

We performed a fingering estimation experiment to confirm the differences
between our complementary training method using partial data and our previ-
ous training method using complete data. We used sixteen musical pieces (total
4,594 notes) from some textbooks for intermediate violin students. We also used
one musical pieces (total 101 notes) for the initial model. Sixteen musical pieces
were used to generate the complemented fingering data that was used for train-
ing the CRF model. The intermediate test data set comprised fourteen musical
pieces (total 2,265 notes) that did not overlap with the training data.

By the preliminary experiments, some parameters of the training were set as
follows: a = 99.5%, b = 3.0×10−5, ηt2 = 10−3 × 0.7et2/D, wl = 1.0.

5.2 Results

Figure 5 shows the average concordance rate obtained from the experiment. The
horizontal axis represents the amount of data used for training the initial model.
The proposed method obtained equivalent performance to the previous method
that was trained using the complete data set. In addition, the proposed method
was superior to the previous method even when the training data of the initial
model was small. The results show that it is possible to greatly reduce the
manually complemented fingering data. In particular, cost of preparing training
data has been reduced to about 1/45 by using proposed method.
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6 Conclusion

In this paper, we proposed a CRF-based violin fingering estimation model and
complementary training method by extending our HMM-based violin fingering
estimation method according to skill level. Our complementary training method,
using partial fingering data, showed the same performance as the previous train-
ing method using the complete fingering data. In other word, high-precision
fingering estimation model can be obtained from small amount of manually com-
plemented data. Our study also makes simplifies and reduce the time cost in the
training data creation task.

There are still some issues, however, about the naturalness of the estimated
fingering, especially in the performance expression, which depends on slur, vol-
ume, and other factors. In our future work, we will consider such another infor-
mation obtained from the music score other than note information.
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