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Abstract. The HCI has understandably become user-centric, but if we are to
consider human operator and computer device as even components of a
human-computer system and seek to maximize its overall efficacy with Al
methods, we would need to optimize information flows between the two. In the
paper, we would like to call to the discussion on defining and measuring the
information complexity of modern two-dimensional graphic user interfaces. By
analogy with Kolmogorov complexity (algorithmic entropy) for computability
resources, the interface information complexity could allow estimating the
amount of human processor resources required for dealing with interaction task.
The analysis of the current results allows concluding that interface “processing”
time by humans is indeed affected by the interface message “length” parameter,
and, presumably, by vocabulary size. We hope the results could aid in laying
ground for broader Al methods application for HCI in the coming era of
ubiquitous Big Interaction.

Keywords: Model human processor - Interface design automation - Information
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1 Introduction

Just as the recent emergence of Big Data field became the result of ongoing exponential
growth of available and generated data, soon we may face the phenomenon of Big
Interaction. The multiplicity and extensiveness of data sources, the diversity of user
needs and tasks, as well as of interface devices and contexts of use, may leave us in a
situation when hand-making of all the necessary human-computer interfaces by dedi-
cated designers becomes impossible or economically unfeasible. A possible solution is
employment of Artificial Intelligence (Al) methods, which may be able to ensure “good
enough” interaction.

Indeed, there were already approaches and even products proposed that are able to
automatically generate user interfaces for relatively simple tasks or for special contexts
of use. For example, the usage of PUC system dedicated to the creation of standardized
interfaces for various home appliances was reported to improve the interaction quality
rates 2-4 times [1, p. 185]. In it, the language specially developed for describing
interface models was simplified based on peculiarities of the task at hand — as such, it
didn’t allow specification of users tasks, because home appliances by and large don’t
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imply complex multi-operational interaction. The interface code generation was based,
in particular, on heuristic rules providing standardization of the interfaces’ visual
appearances and on ontological system for describing semantic equivalence of concepts
used in various appliances descriptions.

Another example is SUPPLE system, used for creating alternative interfaces for
users whose needs weren’t considered in mainstream interface of a product or device,
and for which the average increase in effectiveness of 62 % was reported [2, p. 45]. The
authors noted that the system was most suitable for creating standard interfaces based on
dialogue windows, because there is well-established taxonomy for them, which
describes the possible interaction elements. The interface generation was considered as a
discrete optimization problem, while input data were functional description of interface,
the model of the platform’s capabilities and limitations, the interface usage model, and
criterion function incorporating parameterized quality indexes. This function would
mostly cover “physical” parameters in interaction, such as movement time between
interface elements, or their size. It should be noted that it was also able to consider the
usage of interface by a specific user category, e.g. people with motor disabilities.

The above products could be said to belong with the so-called model-oriented
approach, when abstract user interface is specified (PUC or SUPPLE), or somehow
derived — from existing programming code (such as in Mickey or HUMANOID), from
database model (GENIUS) or from high-level user tasks. The actual interface code
generation is then based on knowledge-base rules or on optimization of certain inter-
face parameters or expected quality indexes [2, pp. 3, 4]. Yet another representative
here is RAS TACP’s system that allows to denote design resolutions and to perform
automated interface quality validation [3]. The system was also based on ontological
approach that implies specification of concepts related to user interfaces, such as user
tasks, use cases, information presentation, etc. When the interface model was auto-
matically transformed into code, the interaction quality was insured via usability
metrics also existing in the ontology, together with specialized language for specifi-
cation their calculation algorithms.

All in all, the review of Al methods applicability in the HCI field could be sum-
marized as the following directions, listed in the order of increasing intellectuality:

e Recommendation of design resolutions or providing relevant guidelines/patterns for
user interface being created by human designer. Indeed, the so-called tools for
working with guidelines are quite widespread, although the relevance issue remains
problematic, which hinders their practical use (see reviews and reflections in [4, 5]).

e Validation of available user interface code and identification of errors or disad-
vantages [3]. Currently, automated validation tools mostly cover syntactical aspect
only, and can hardly understand semantics. Some approaches for deeper analysis
are proposed, in particular ones based on domain ontologies, but the involved prior
effort generally outweighs the automation benefits, similarly to interface code
generation mentioned below.

e Interpretation of available user interface code and the adjustment of ensuing
interaction to match user needs, characteristics of interface devices, etc. E.g. modern
web-browsers in a relatively non-intelligent way can vary webpage presentation due
to many factors, mitigate code errors, etc.
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e Designing user interface and generating its code based on provided specification
[1, 2]. However, detailed specification of user interface using a formal language or
as an interaction model becomes too extensive as the complexity of interaction
increases, and the effort required to spell it out quite soon exceeds the one needed
for making an actual user interface.

e Creating specification for the user interface based on “understanding” of full
interaction context and the functions of the involved software, predicting user needs,
etc. [6]. It seems a promising and possibly feasible approach for the Big Interaction
era, although the results are likely going to remain somehow close to interface
wireframes and be aesthetically inferior compared to “hand-made” solutions.

It should be noted, however, that the widespread optimization-based automated
interface code generation has a fundamental problem in the Big Interaction era. Most
often neither a designer nor a supporting system would have confidence in how exactly
the interface is going to show. Obviously, optimizing distances between interface
elements and their sizes (like in SUPPLE) has little sense for a web interface code
processed and shaped by a web browser, not even considering varying screen sizes.
Thus, we believe, the optimization could be founded on different principles, such as the
measurements of information volumes transferred between human and computer. In
our paper we call to the discussion on defining and measuring the information com-
plexity of modern two-dimensional graphic user interfaces (GUI), which may be
loosely based on Kolmogorov complexity (algorithmic entropy) and Halstead’s soft-
ware metrics. Possibly, information complexity can dictate optimal user interface
structure and content, and lay ground for broader Al methods application in HCI.

2 Methods

There is no lack of study of “interface devices” present in a human body — for example,
human’s visual system throughput is estimated at 50-70 bit/s for passive perception of
images (e.g. watching television), while for reading that implies comprehension the
value drops to at least 30—40 bit/s. For the output tasks, speech allows up to about
50 bit/s, writing with a pen — 10 bit/s, while computer mouse and keyboard are at 3—
5 bit/s and up to 25 bit/s respectively [7]. Currently, the applications of these data are
quite limited, because there seems to be no accepted way to measure the amounts of
information transferred between human and computer via user interfaces, except for
simplest cases. The most straightforward way to quantify information contained in a
user interface would be application of Hick-Hyman’s Law, known to HCI researchers
for already quite a long time.

2.1 Hick-Hyman’s Law in HCI

As selection tasks that are prevalent in many modern interfaces may be represented as
combination of choice and movement stages, the application of the infamous Fitts’ and
Hick’s laws for modeling would seem a natural approach. We’d like to remind that
W.E. Hick, applying Shannon’s Information theory to psychological problems,
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observed that reaction time (RT) when choosing from N equiprobable alternatives is
proportional to the logarithm of their number:

RT ~k xlog,(N + 1), ()

where k is the rate of gain of information. Later, R. Hyman reasonably noted that RT
is in fact linearly related to information quantity, i.e. the entropy of the set of
stimulus (Hr):

RT = ay + by * Hr, (2)

where ay and by are empirically defined constants. The slope in thus formulated
Hick-Hyman law (2), by, in simplest cases is believed to be equal to 150 ms, then the
corresponding Hick’s rate of gain of information (by;!) is equal to 6.7 bits/s [8].
Unlike the Fitts’ law that adequately models movement sub-stages, Hick’s law
generally falls short to describe cognitive performance, as the amount of information that
needs to be processed (HT) is far more complex than log2(N+1) for any real tasks
[9, p. 341]. With the experimental investigation described below we sought to improve the
information measure and propose alternatives to the Hick-Hyman’s law [10], so far by
incorporating in the model visual search time, as a measure of information complexity.

2.2 The Experimental Investigation

Subjects. Twenty eight subjects took part in the experiment. Fifteen participants (4
male, 11 female) were elder people and their age ranged from 56 to 74 (M = 63.4,
SD = 5.26), recent graduates of 36-h computer literacy courses held by People’s
Faculty of Novosibirsk State Technical University (NSTU). Thirteen subjects (5 male,
8 female) were recruited among NSTU students and general staff. They ranged in age
from 17 to 30 M = 23.9, SD = 4.38). All subjects had normal or corrected to normal
vision. Eight (53.3 %) elder subjects reported having no experience in using computers
or mouse before the computer literacy courses.

Experiment Design and Procedure. The experiment consisted of two parts: in the first
(control) one the subjects were assigned typical movement tasks modeled with Fitts’
law, while in the second one the participants were asked to perform selection tasks. The
general experiment design was carried out in accordance with recommendations for
Fitts’ law experiments, provided in [11]. It was within-subjects, with two groups of
participants — elder people and younger computer users. Before the experiment, data
regarding the participants’ age and gender were gathered. All subjects participated in
the experiment voluntarily, and prior to the experimentation informed consents were
obtained. Each subject then did a test run of trials with random combinations of A
(distance to target), W (targets size), and N (number of targets in the second experi-
ment), until fully understanding the assignment, to negate the effect of practice.

In the first experiment, the two main independent variables were size of a square
target (W: 8, 16, 32, 64, 128) and distance to it (A: 64, 128, 256, 512, 1024). There
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were 7 different ID values (not all combinations were used), ranging from 1.58 to 7.01.
The number of outcomes for each combination of A and W was lower than generally
recommended (15 for each of ID values), because of the exploratory nature of the study
and the intent not to tire the seniors.

The subjects were presented with two squares, a starting position and a target,
dissimilar in shape and color. They were positioned randomly in relation to each other
on a computer screen to negate the effect of movement direction. The subjects were
asked to click the starting position with a mouse pointer and then, “as fast and as
accurately as possible”, move the pointer to the target and click it. Coordinates of both
clicks were recorded; also if the second click was outside the target, error was recorded,
and participant was taken to a next trial. The dependent variables were performance
time (MT, between the two clicks) and error (E,).

In the second experiment, the target would become visible on the screen only after
participant’s click on the starting position. False alternatives (of dissimilar shape and
color, all of them identical, so overall vocabulary size n = 2) would appear together with
the target. The number of alternatives was additional independent variable with 3 levels
(N: 2, 4, 8), which were so far deliberately chosen not to exceed Miller’s number of
7 £ 2. Also, there were A and W resulting in 6 different values of ID, ranging from 1.58
to 6.02, with 17 outcomes for each level of N. Again, the dependent variables were
performance time (ST, between the two clicks) and error (E,, clicks outside the target).

To measure and record the values of independent and dependent variables, an
online application was developed with PHP and MySQL and used in IE web browser,
with performance time measured with JavaScript to eliminate any server-side delay.
The sessions with the two groups of participants, elder and younger, took place with
21-days interval in a same room on same computer equipment, with monitor screen
resolution of 1024*768 pixels (thus constant Sy of 1000#600 pixels).

Hypotheses. To confirm our reasoning, we identified several hypotheses to be checked
in the subsequent experimental investigation:

H1. There is performance difference (time, accuracy) between movement and
selection tasks.

H2. Hick’s law is not adequate to model selection time.

H3. Visual search time is appropriate addition to movement time in modelling
selection tasks.

H4. The proposed model is robust enough to plausibly model performance for
different user groups.

H5. Movement and selection throughputs correlate per subjects and are affected by
identical factors.

3 Results

First Part (Movement Tasks). The 15 outcomes for each of 7 ID values in the first
part of the experiment resulted in 105 data for each participant, producing a total of
2940 data, of which 2888 (98.2 %) were considered valid. Invalid were the outcomes
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Table 1. Mean MT and E, per Fitts” ID

D 1.58 [2.32 [3.17 [4.09 [5.04 [6.02 [7.01 |Mean (SD)
MT, ms 468 |617 |777 890 | 1039 1247 | 1425 922
(251)| (303) | (379) | (374) | (395) | (483) | (507) | (503)
E.,% 34 |56 |46 |48 |56 |68 |11.0 6.0

when subjects made an obviously erroneous click far from target or when the registered
time was higher than 3000 ms. Table 1 shows mean values for movement time
(MT) and error level (E,) per Fitts’ ID as well as overall ones.

MANOVA was used to test the effect of subjects’ characteristics such as subject group
(elder or younger), gender and experience (for this factor, the analysis was done for
elder participants only) on MT and E,. The effect of the experimental conditions in the
first experiment was analyzed independently for the two subject groups. Predictably,
distance (A) had significant effect on MT for both elder and younger participants. At
the same time, the effect of distance was not significant for the number of errors
committed by neither seniors (Fg 1500 = .9; p > .5), nor their younger counterparts
(Fe.1336 = 1.2; p = .29). Size of target (W), besides significantly affecting MT for both
subject groups, also had significant effect on error level for both elder (F4 150, = 5.5;
p < .001) and younger participants (Fs ;336 = 2.7; p = .03). Post-hoc analysis indicated
that only W = 8 px was significantly different in terms of committed errors, for both
groups, and led to 10.2 % and 12.3 % errors for elder and younger subjects respec-
tively. The interaction between distance to target and its size was not significant for
either of the subject groups.

Second Part (Selection Tasks). The number of outcomes for each participant in the
second part of the experiment was 51, producing a total of 1428 data, of which 1408
(98.6 %) were considered valid. Table 2 shows means for selection time (ST) and error
level (E,) per ID and number of targets (N) as well as overall ones.

Table 2. Mean ST (ms) and E, (%) per N and Fitts’ ID

ID N [158 232 [3.17 [4.09 [504 |6.02 |Mean (SD)
2 842 965 | 1016 | 1064 | 1238 | 1467 |1034
(318) | (423) | (409) | (283) | (405) | (530) | (414)
3.6 %72 %64 % 84% 73%|7.1% |66 %
4 814 953 | 1016 | 1121 | 1259 | 1660 |1051
(338) | (432) | (426) | (379) | (399) | (558) | (459)
48 % 28 % 37 % 95%|7.1%|143 % |57 %
8 797 1977 1020 1170 | 1328 |1526 | 1061
(315) | (480) | (392) | (424) | (478) | (439) | 61)
48 % 64 % 9.1% 84%|7.1%|240 % 8.1%
Mean (SD) | 818 |965 |1018 |1118 | 1275 |1552 | 1049
(323) | (444) | (408) | (368) | (428) | (514) | (444)
44 % 55% 64 % 88 % |72 %|14.8 % | 6.8 %
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As in the first part of the experiment, a multivariate analysis of variance was used to
test the effect of subject group and gender on ST and E,. The results suggest highly
significant effect of subject group on time (F; 1404 = 365.8; p < .001), with estimated
marginal means of 1238 ms for elder subjects vs. 814 ms for younger ones. The effect
of subject group on error was not significant (Fy 404 = 1.8; p = .18), in contrast to the
first part of the experiment. The gender factor remained significant for both ST
(F1.1404 = 5.3; p = .022) and number of committed errors (F; 404 = 5.0; p = .026). As
before, male participants on average were somehow faster, with 1001 ms vs. 1051 ms
for female ones. The mean number of errors was 4.6 % and 7.8 % respectively. No
significant interaction between the independent variables was observed.

Visual Search Time. To further examine the effect of N on ST (which did not clearly
manifest in Table 2), we ran MANOVA test with ST and E, as dependent variables and
N, W and A as factors. We found no significant effect for N on neither ST
(Fz.1357 = .27; p = .76), nor E; (F5 1357 = 1.03; p = .36). The effect of W was highly
significant for both ST (F3 1357 = 131.36; p < .001) and E, (F5 357 = 6.05; p < .001).
Movement amplitude A significantly affected ST (F5 1357 =23.51; p <.001), but not E,
(F4,1357 = 2.04; p = .09).

We attempted preliminary regression models for ST with log,(N) and Fitts’
effective index of difficulty as factors, and N was not significant in the regression
(p = .308), so we decided to exclude the number of objects from the visual search time
model. Thus, we proposed the index of visual search difficulty (IDys) in the following
form:

IDys = log,(S0/S) = log,(So/W?), (3)
where S is equal to W? in case of our square targets. The justification is twofold:

1. The Sy/S represents the “length” of graphic interface as a message, i.e. the maxi-
mum number of elements of square S that it can contain. It seems reasonable to
assume that users “process” not just the displayed objects, but the whole interface,
including whitespace. Then S¢/S should take the place of N in Hick’s law (1).

2. Parallels may be also drawn with motor behaviour described by Fitts’ ID: then
“search amplitude” Sy corresponds to A and “search termination area” S — to W.

Hypotheses Check Results. Based on the analysis described in more detail in [10], we
can make the following conclusions regarding the previously stated hypotheses.

H1. Confirmed. Selection tasks took more time to complete and the accuracy was
lower than for movement tasks. We’d like to note that the increase in
performance time was nearly constant for the two subject groups, 187 ms for
elder vs. 236 ms for younger participants, but the growth in error level for senior
subjects was far more dramatic, at +75.0 %, which may be explained by poorer
multi-tasking abilities of people in older age.
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H2. Confirmed. The number of alternatives (N) didn’t have significant effect on ST,
and log,(N+1) was not significant in the regression.

H3. Partially confirmed. IDys (3) was significant in regression for ST, but the
resulting R? were lower than for movement tasks (see in [10]).

H4. Confirmed. ST regressions with IDyg factor were significant for both elder and
younger subjects, and regression coefficients suggest that visual search task is
relatively harder for seniors than movement task. This corresponds well to sharp
increase (+75 %) in error level for elder participants in selection tasks.

H5. Confirmed. Movement and selection throughputs are relatively highly correlated
per subjects, and the effects of age and experience Fitts’ throughput (TP) and
TPS (see its formulation in [10]) are similar.

4 Conclusions

In our paper we raised the problem of quantifying information flows in human-
computer systems, via introducing information complexity measure for user interfaces.
The straightforward information entropy approach (2) has proved to be problematic in
real circumstances, so we proposed to use visual search difficulty (3) to reflect the
graphic user interface complexity. Search area size (Sy), sought element size (S) and the
number of alternatives (N) were elected as primary factors for VST, while also
employing vocabulary size parameter is the goal of our next experimentation. In the
result of experimentation with 28 subjects of different age groups (described in more
detail in [10]), visual search difficulty was suggested as the logarithm of the ratio
between Sy and S, with N not being significant.

Thus obtained mean value for proposed selection task throughput (TPS), 12.6 bit/s,
seems to be consistent with established human visual processing capacity that ranges
from 5 to 70 bit/s. It is known that tasks requiring deeper processing have lower
capacity: perception of TV picture is at 50-70 bit/s, simple text reading — 40-50 bits/s,
while text proof-reading — 18 bit/s [7, p. 62], so TPS was to be expected in the lower
part of the range. However, the model is subject for further development, and we
expect that the information complexity measure should be IDyg multiplied by the
vocabulary size — how many kinds of different objects, i.e. interface elements, are
employed on the screen. Further development of our research implies closer analysis of
the classic Kolmogorov’s algorithmic entropy and Halstead’s software “difficulty”
measures.

We believe that IDyg or the enhanced information complexity measure could be
used in optimization when auto-generating user interfaces, as they are independent of
absolute size measurement, which is of particular importance in adaptable web inter-
faces or multitudinous mobile interfaces. As we noted before, greater degree of Al
methods utilization for creating user interfaces may be deemed necessary to cope with
the Big Interaction, caused by ever-increasing diversity of users, their tasks, interface
devices and contexts of use.
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