
Swift Gestures: Seamless Bend Gestures Using
Graphics Framework Capabilities

Samudrala Nagaraju(&)

Web and Services Team, Samsung R&D Institute Bangalore, Bangalore, India
raju.sn@samsung.com

Abstract. With the advent of bendable devices, Lahey et al. [1], explored bend
gestures for mobile phone applications. Considering millions of applications
present on app stores [2], it would be a challenge to modify source code to
handle bend gestures. We propose a novel approach to assign bend gestures
using graphics framework capabilities, which does not require application
source code changes. Because of the ease in use of the proposed approach, bend
gestures get acceptance from research community and industry.

Keywords: Bendable devices � Rendering engine � Graphics event processing �
Bend gestures � Tangible interaction � Usability study � Rendering tree

1 Introduction

Various types of gestures like air gestures, shake gestures and write gestures are
developed for hands-free input or partial-hands-free input to ease device interaction
[3, 4]. With the advent of bendable devices, bend gestures [1] are being researched for
technical feasibility and usability factors. Modern device platforms support down-
loadable applications for installation on the device. In this paper, we focus on practical
issues in assigning bend gestures to applications in a uniform way by introducing logic
in graphics framework without changing application code.

1.1 Definition of Terms

Definitions used in this paper are detailed based on [5]. Device platform – A software
stack which includes operating system and middleware. Graphics Framework – Wid-
gets and layouts are the primary elements for creating user interfaces using a graphics
framework. Graphics Layout - A layout defines the visual structure for an activity or
application widget. Widget - A graphical control element for interaction in a graphical
user interface (GUI), such as a button or a scroll bar. View - A View is an object that
draws something on the screen that the user can interact with. Graphics Event - Events
are objects sent to an app to inform it of user actions e.g. multi-touch. Render Tree -
This is generated from application UI and is responsible for the layout and subsequent
rendering. Application Packaging - containers for application binaries, based on build
settings e.g. apk file for each app. User - A smartphone or tablet user.

© Springer International Publishing Switzerland 2015
M. Kurosu (Ed.): Human-Computer Interaction, Part II, HCII 2015, LNCS 9170, pp. 118–129, 2015.
DOI: 10.1007/978-3-319-20916-6_12



1.2 Types of Applications

An application is classified based on the application shipment type along with the
device and development ownership. Pre-embed applications are present in limited
number and are shipped along with the device. Downloadable applications are
developed by 3rd party companies and are hosted on app stores [2].

1.3 Graphics Frameworks for Application Development

State of the art device platforms provide at least 3 types of graphics capabilities for
application development. (1) Native graphics framework (iOS UIKit, Android native
widgets and layouts, etc.). (2) Web framework (HTML, CSS, JavaScript) and
(3) Advanced graphics framework (OpenGL ES) [5]. Application developers make use
of one or more of above mentioned graphics capabilities for application development.
In this paper, we work with native graphics framework in Android platform.

1.4 Bendable Device

Bendable device research and development is in full swing from both academic and
commercial fronts. Announcements from device manufacturers about the launch of
these devices in market created lot of buzz around [6]. Numerous challenges are
waiting with hardware, software, electro mechanical, battery and usability domains [7].
In parallel, this calls for taking the existing research needs to be accommodated into
commercial setup to get acceptance in main stream development. This is one of the
main goals of this paper for bendable device gestures.

2 Background

Background of this paper is focused in explaining the ongoing research in bendable
devices and device frameworks essential for the topics discussed in further sections.
Along with these topics, this section also focuses on how research teams are proto-
typing the bendable device concepts.

2.1 Bendable Devices and Gestures

Research is ongoing in multiple areas that are essential in developing the base tech-
nologies for bendable devices [8], e.g. user interactions, bend gestures and physical
materials. These technologies are essential to make a significant shift in approaching
and solving the problem space of bendable device products. Among the whole set of
topics available for research, bendable gesture is a topic actively researched by both
academic and industry because of the unique problem space not available earlier when
flexibility in device physical characteristics is not thought of. In bendable gesture
space, researchers are focusing on gesture interactions, gestures classification and

Swift Gestures: Seamless Bend Gestures 119



usability factors [9] for detailed study. Role of bend sensors in identifying the bend
gesture parameters is also studied [10].

2.2 Bendable Device Prototypes

Researchers substantiated bendable device concepts with various types of prototypes
which are classified as follows based on the material used for prototype development.
(1) Low fidelity are developed using materials like paper and cloth [11]. (2) Near
high fidelity emulations are developed using projected displays and software emula-
tions [12]. (3) High fidelity are developed using device hardware. The scope of pro-
totype emulation for Point (2) encompasses one or all of following. (1) Emulation of
the proposed concept implementation. E.g. gestures classification. (2) Emulation of the
device hardware. e.g. bendable mobile phone and bendable watch. (3) Emulation of
the device sensors. E.g. bend sensors. In this paper, a software implementation of the
proposed approach on android graphics framework using mobile phone hardware is
used for implementation of “Swift Gestures”. Emulation of bend sensors is achieved
using a software based implementation on mobile phone hardware.

2.3 Device Platform

Some researchers extend the device capabilities by adding logic in one or more
frameworks of device [13] without changing the API. But, some implementations
require change in the API structure based on the extent to which control is exposed to
3rd party developers. In this paper, we use the earlier methodology which does not
require changes in device platform API on Android.

3 Problem Statement

Focused research is ongoing with bendable device interactions and gesture assignment
[10–12]. Even though this research is interesting and productive, bend gesture
assignment procedures mentioned in these papers talk about changing application code
for handling bend gestures. Second problem is the dependence of bend gestures on
device bend physical parameters.

3.1 Source Code Changes

With introduction of bend gestures, application developers face unique problem
adapting the legacy downloadable applications to handle these gestures, as it may not
be feasible to change the application source code. Figure 1 (a) is Android sample
application used to explain the source code changes required to handle bend gestures.
Figure 1 (b) shows corresponding source code to Fig. 1(a) to display a dialog ‘Dialog
Title’ on clicking a button titled ‘Click Me’. Figure 1(c) shows source code changes
required on top of Fig. 1(b) to handle bend gesture for the same action performed on

120 S. Nagaraju



the button ‘Click Me’. A source code change needs compile, package (APK generation
in case of Android) and upload stages to upload a new version of the downloadable
application to app store, which is not feasible for all apps on app store.

3.2 Device Bend Physical Parameters

Bend gestures depend on the physical properties of a device to the extent it is flexible
and provide response to application. The role of physical parameters like stiffness,
deformable range and feedback is studied [14]. Device size and aspect ratio also play
an important role. In this paper, we focus to assign and use a bend gesture to an
application in a uniform way with addition of additional logic to graphics frameworks
of device platform. This is achieved by mapping the bend gestures to actions already
registered by the application.

4 Proposed Approach

4.1 User Experience (UX) Flow

User experience flow for bend gesture assign and bend gesture invoke procedures is
explained in detail in this section. Scope of a bend gesture can either be per application
or for the entire device.

4.2 Bend Gesture Assign Procedure

Steps to assign bend gesture are as follows. (1) Select a subset of widgets from
application layout at native graphics framework based on the render tree of application.
(2) Selected widgets from application layout are highlighted as in Fig. 2 (c). Visual
highlighting is done by native graphics framework. (3) User selects a widget from the
highlighted list to assign gesture as in Fig. 2 (d). Let’s call this as target widget. User
does the selection by interacting with highlighted widgets. All interactions at this stage

Fig. 1. (a) Sample application with clickable button and dialog (b) Action registration for click
event (c) Same action registration extended for bend gesture

Swift Gestures: Seamless Bend Gestures 121



are taken care by native graphics framework and no control is given to application.
(4) Visual indication is given to target widget selected as in Fig. 2 (e) by native
graphics framework. (5) User does a physical bend of the device and holds it for a short
span of time as in Fig. 2 (e). At this stage, native graphics framework registers the bend
gesture and assigns to target widget. This step makes bend gesture assignment inde-
pendent of device physical parameters as in Sect. 3.2 (6) Visual indication is changed
for the target widget post gesture assignment, as in Fig. 2 (f).

4.3 Bend Gesture Invoke Procedure

As we scoped the bend gesture to the entire mobile, same gesture cannot be duplicated
at other applications and this check point is taken care by native graphics framework at
bend gesture assign procedure. Post bend gesture assignment, device user needs to
invoke the mapped action by physically bending the device as shown in Fig. 3 (d) from
any application as shown in Figs. 3 (a) (b) (c).

Fig. 2. UX Flow for Gesture Assign (a) Open target application view (b) Drop down notification
bar, select ‘bend gesture’ assignment mode and drop back notification bar (c) Highlight widgets
in target application layout (d) Select target widget for gesture assignment (e) Do actual device
bend and hold (f) Target widget icon changed based on physical bend parameters

Fig. 3. UX Flow for gesture invoke (a)(b)(c) Invoke from any application (d) Physically bend
device and hold (e) Invoke target application and registered action

122 S. Nagaraju



4.4 Realization Using Android Device Platform

As described in the previous sub-sections of this section, device platform takes care of
the following architectural changes for user experience procedures detailed. (1) Identify
the subset of widgets from target application layout. (2) Highlight the subset of widgets
in target application. (3) Accept the user click of target widget. (4) Highlight the target
widget. (5) Capture the physical parameters of device bend. (6) Assignment of device
bend gesture to target widget. (7) Changing the visual indication of target widget.
(8) Handle gesture invoke trigger.

4.5 Modules Affected in Android Device Platform

Figure 4 highlights the modules affected in android device platform for implementing
“Swift gestures”. Key responsibility of each module for bend assign and bend invoke
procedures is listed in Fig. 5. (1) Quick Setting Panel: This panel is a tiled pane on
notification bar to access common settings and can be modified at device platform
(2) View System: View occupies a rectangular area on the screen and is responsible for
drawing and event handling used to create interactive UI components (buttons, text
fields, etc.) (3) Activity Manager: An activity is a focused part of the visible application
that the user can interact. Activity takes care of creating a window for application in
which it can place a user interface. This is also used to interact with other Activities
running in the system. (4) Window Manger: This is a software component that controls
the placement and appearance of windows within a windowing system [5].

4.6 State Transition Flow

Figure 6 shows states introduced at Activity Manger and Window Manger to distin-
guish among normal application interaction, gesture assign procedure and gesture
invoke procedure. Description of each state is as follows (1) NO_BEND: Used for

Fig. 4. Modules affected in device platform

Swift Gestures: Seamless Bend Gestures 123



normal user interaction with device. (2) HIGHLIGHT_WIDGETS: Used for high-
lighting the shortlisted widgets and providing visual indication as in Fig. 2(c)
(3) ASSIGN_BEND: This state is active from selection of target widget till the physical
bend as in Figs. 2 (d) (e) (4) BEND_GESTURE_ASSIGNED: This state is active post
bend assignment procedure as in Fig. 2 (f).

5 Prototype Setup

‘Swift gestures’ explained in this paper is software driven and hardware dependence is
on mobile hardware and the availability of bend sensors with the hardware. We
developed the implementation using two mobile phones. First device is demo proto-
type, which has changes implemented to handle bend gesture assign and invoke pro-
cedures on device platform as shown in Fig. 8. Second mobile is bend emulator, on
which bend emulation application is developed. Bend emulator is developed on
Samsung galaxy S3 on Android ICS platform and is connected to demo prototype over
Wi-Fi. Gestures from [1] are reused for bend emulation as shown in Fig. 7 (b).

Dialer is a preloaded application on the mobile phone and ChatON is a down-
loadable application from app store. We chose these two applications to work with

Fig. 5. Module responsibilities for handling bend assign and invoke procedure

Fig. 6. State transition flow for handling bend assign and invoke procedures

124 S. Nagaraju



Fig. 7. BEND EMULATOR APPLICATION (a) Input peer ip address and port no on bend
emulator application (b) Select bend gesture from the gesture list on bend emulator application
(c) Send bend gesture application to peer demo prototype device.

Fig. 8. Call sequence on demo prototype device (a) Bend gesture assign procedure – involves
peer connection bend gesture receive, selection of quick settings panel and handling at device
platform (b) Bend gesture invoke procedure.

Swift Gestures: Seamless Bend Gestures 125



‘Swift gestures’ as bend assign and invoke procedures need to work with both preload
and downloadable applications. These applications are installed on demo prototype
mobile, a Samsung Galaxy S5 running on Android Kitkat platform. ChatON version
used is v3.5 downloaded from Google play store [2]. Steps to connect both the mobiles
are as follows (1) Launch connection app in both mobile phones (2) Input peer ip
address and port no (3) Establish the connection.

6 Bend Emulation and Prototype Usage

The demo prototype mobile is referred as “Mobile A” and bend emulator is referred to
as “Mobile B” in Fig. 10. Procedure to work with the setup post connection estab-
lishment is as follows. (1) Launch Dialer or ChatON application on demo prototype
device (2) Select a bend gesture from the predefined list (3) Send the selected bend
gesture parameters – bend position, bend angle, direction of bend, bend extent - to
demo prototype mobile. Bend position parameter are – top, bottom, left, right – based
on the position at which device is bent. Bend angle gives the angle at which device is
bent between 0 and 90. Bend direction is either inward or outward. Bend extent is the

Fig. 9. GESTURE ASSIGN (a) Open Target Screen (b) Drop down notification bar and select
bend register (c) Highlight selectable widgets and select target widget (d) Select bend type from
bend emulator and assign gesture on demo prototype. GESTURE INVOKE (e) optionally open
the desired screen (f) Select bend type from ‘Bend gesture emulator’ (g) This triggers the action
registered on the target widget (Delete chat action for ChatON& Last call action for Dialer).

126 S. Nagaraju



distance from edge where bend angle is calculated. Figure 9 gives the screen shots of
bend assign and invoke procedures. Based on the definitions given in Sect. 4, target
widget for ChatON is “Delete Chats” button and “Initiate Call” button for Dialer
application. Figure 8 gives the sequence flow of the implementation.

7 Performance Overhead

As overall rendering time is an important consideration for graphics framework, we
captured rendering time using hierarchical viewer debug tool provided by Android,
which provides total screen render time in terms of Measure, Layout and Draw
parameters [5]. As shown in Fig. 10, rendering time of a screen for is measured for
(a) Original screen when opening target application (b) Highlight widgets in target
application and (c) Select target widget for gesture assignment. The average total
rendering time is (a) 55.144 ms (b) 57.107 ms (c) 56.181 ms. Overhead for (b) is
1.963 ms (c) is 1.037 ms, which are minimal considering gesture procedures are not
used frequently.

8 Usability Study

“Swift gestures” work with legacy applications available in market and so user eval-
uation is required to gain acceptance. We divided the users to two sets in the age group
of 23 and 28 years. First set consist of 7 users aware of developing 3rd party appli-
cations. Second set consist of 5 novice users who use smart phones.

8.1 Usability Evaluation Sessions

Usability evaluation sessions are conducted for both the user sets as follows.
(1) Moderator introduced “Swift gestures” as a presentation to the participants (2) Bend
sensor emulation using mobile application is briefed. (3) Prototype setup using the two

Fig. 10. Hierarchy Viewer for ChatON application (a) Screen without any highlighting
(b) Selected widgets highlight (c) Target widget highlight

Swift Gestures: Seamless Bend Gestures 127



mobiles connected over Wi-Fi is introduced. (4) Users perform the bend gesture assign
and invoke procedures with Dialer and ChatON applications. (5) Capture feedback
from user using feedback forms. (6) Discussion based on feedback.

8.2 Feedback Questionnaire

Feedback involved answering quantitative rating as follows - between 1 and 5, 1 being
highly usable - (1) Ease of using the bend assign task (2) Ease of identifying the widget
for which a bend gesture is assigned (3) Ease of using the bend gesture invoke task.
These are followed by descriptive questions as follows users can provide comments for
these questions. (1) Improvements suggested for bend gesture assign procedure
(2) Improvements suggested for bend gesture invoke procedure.

8.3 Evaluation Results

Average rating for quantitative tasks is 2.2, 3.1 and 2.4. Based on the feedback, bend
assign gesture task is relatively usable when compared to other two tasks. Comments
provided for the descriptive questions are consolidated as follows. (1) Seven participants
felt that there needs a limit to the number of target widgets highlighted as sometimes
screen looks cluttered. (2) Six participants felt that a preview of the widget action e.g.
button click, is helpful. (3) Majority of participants (10 totals) felt a need to list the
assigned bend gestures at a common place for latter reference. (4) Users expressed
satisfaction as preload and download app interaction is uniform. Based on the comments,
recommendations are (1) Widget highlighting can be controlled by graphics framework
or user. (2) Assigned bend gestures are listed at a common place like settings.

9 Conclusion

In this paper, bend gestures are assigned to applications without changing source code
based on graphics framework capabilities. User experience design and implementation
details in device platform are described which give minimal performance overhead and
validated based on a usability study. “Swift gestures” takes care of problems caused by
device stiffness and deformation parameters as device bend parameters are collected
dynamically while assigning.

One limitation of this work is that it doesn’t take into consideration if ‘associated data
with gesture’ is relevant at bend gesture invoke time. Swift gestures’ can be extended to
scroll, swipe, etc. giving due importance to user experience. We thank G Purushothama
Chowdari and C Krishna Bharadwaj for their inputs in implementation and demo.

References

1. Lahey, B., Girouard, A., Burleson, W., Vertegaal, R.: Paper-phone: understanding the use of
bend gestures in mobile devices with flexible electronic paper displays. In: CHI 2011 (2011)

128 S. Nagaraju



2. App Stores: play.google.com, itunes.apple.com. www.samsungapps.com
3. Suarez, J., Murphy, R.R.: Hand gesture recognition with depth images: a review. In: 2012

IEEE RO-MAN (2012)
4. Gesture Play. www.panasonic.com
5. Developer API. https://developer.apple.com, http://developer.android.com
6. www.samsung.com/sec/galaxyround
7. Nagaraju, S.: Novel user interaction styles with flexible/rollable screens. In: CHItaly 2013,

Article No. 20 (2013)
8. Samsung Graphene Structure. http://www.sait.samsung.co.kr/saithome/AboutView.do?

method=get&newSeq=1091
9. Khalilbeigi, M. Lissermann, R., Mühlhäuser, M., Steimle, J.: Xpaaand: interaction

techniques for rollable displays. In: CHI 2011 (2011)
10. Warren, K., Lo, J., Vadgama, V., Girouard, A.: Bending the rules: bend gesture

classification for flexible displays. In: CHI 2013 (2013)
11. Wolf, K., Müller-Tomfelde, C., Cheng, K., Wechsung, I.: PinchPad: performance of

touch-based gestures while grasping devices. In: Proceedings of TEI 2012, pp. 103–110
(2012)

12. Steimle, J., Jordt, A., Maes, P.: Flexpad: highly flexible bending interactions for projected
handheld displays. In: Proceedings of CHI 2013 (2013)

13. Machiry, A., Tahiliani, R., Naik, M.: Dynodroid: an input generation system for Android
apps. In: proceedings ESEC/FSE 2013, pp. 224–234 (2013)

14. Johan, K., Graham, W.: Feeling It: The roles of stiffness, deformation range and feedback in
the control of deformable UI. In: Proceedings of ICMI 2012 (2012)

Swift Gestures: Seamless Bend Gestures 129

http://www.samsungapps.com
http://www.panasonic.com
https://developer.apple.com
http://developer.android.com
http://www.samsung.com/sec/galaxyround
http://www.sait.samsung.co.kr/saithome/AboutView.do?method=get&newSeq=1091
http://www.sait.samsung.co.kr/saithome/AboutView.do?method=get&newSeq=1091

	Swift Gestures: Seamless Bend Gestures Using Graphics Framework Capabilities
	Abstract
	1 Introduction
	1.1 Definition of Terms
	1.2 Types of Applications
	1.3 Graphics Frameworks for Application Development
	1.4 Bendable Device

	2 Background
	2.1 Bendable Devices and Gestures
	2.2 Bendable Device Prototypes
	2.3 Device Platform

	3 Problem Statement
	3.1 Source Code Changes
	3.2 Device Bend Physical Parameters

	4 Proposed Approach
	4.1 User Experience (UX) Flow
	4.2 Bend Gesture Assign Procedure
	4.3 Bend Gesture Invoke Procedure
	4.4 Realization Using Android Device Platform
	4.5 Modules Affected in Android Device Platform
	4.6 State Transition Flow

	5 Prototype Setup
	6 Bend Emulation and Prototype Usage
	7 Performance Overhead
	8 Usability Study
	8.1 Usability Evaluation Sessions
	8.2 Feedback Questionnaire
	8.3 Evaluation Results

	9 Conclusion
	References


