
Synchronized Data Management
and Its Integration into a Graphical User

Interface for Archaeological Related Disciplines

Daniel Kaltenthaler1, Johannes-Y. Lohrer1(B), Peer Kröger1,
Christiaan H. van der Meijden2, and Henriette Obermaier3

1 Institute for Informatics, Ludwig-Maximilians-Universität, Munich, Germany
{kaltenthaler,lohrer,kroeger}@dbs.ifi.lmu.de

2 IT Group, Vetenarian Faculty, Ludwig-Maximilians-Universität, Munich, Germany
v.d.meijden@it.vetmed.uni-muenchen.de

3 Bavarian State Collection for Anthropology and Palaeoanatomy, Munich, Germany
henriette.obermaier@palaeo.vetmed.uni-muenchen.de

Abstract. In this paper, we describe xBook, a generic, open-source
e-Science infrastructure for distributed, relational data management that
is particularly designed for the needs of archaeological related disciplines.
The key feature of xBook is that it can be used as an offline resource at
remote sites during excavations and can be synchronized with a central
server at any time. While some scientists can record data in xBook in
the field where no internet connection is available, colleagues can already
work with and analyse the previously synchronized data via the central
server at any location in the world. Incarnations of the xBook framework
are used in archaeology, and archaeobiology (anthropology and archaeo-
zoology). We will highlight one of them, OssoBook, an e-Science service
that implements a data model for animal remains from archaeological
sites (mainly bones) and has emerged as one of the European standards
for archaeozoology.

1 Introduction

As in many other applications in archaeology a main part of the work comprises
in collecting, sharing and analysing data. Often many researchers from differ-
ent institutions and even varying countries are involved in excavation projects.
Therefore entering data directly into databases is required to easily access data
from different places and work simultaneously on recording as well as analysing
the data. Archaeological data is often gathered in field work, i.e., at remote sites
that do not offer a convenient environment for IT services, it is typically not pos-
sible to enter the data into databases that must be accessed via an internet con-
nection. As a consequence, IT services are hardly used in these projects. Rather,
data is typically recorded on paper and is (if at all) later processed electronically
using proprietary and/or file-based data management tools like Excel, etc. for

c© Springer International Publishing Switzerland 2015
A. Marcus (Ed.): DUXU 2015, Part II, LNCS 9187, pp. 317–329, 2015.
DOI: 10.1007/978-3-319-20898-5 31



318 D. Kaltenthaler et al.

doing simple descriptive statistics. This is significantly inconsistent with the need
to sustainably store data on the cultural heritage claimed by the UNESCO1.

Obviously, researchers from these archaeological domains would significantly
benefit from a profound e-Science infrastructure that supports digital record-
ing, implements sustainable data management and storage as well as offering
powerful analysis tools. The key limitation of such an IT service is the problem
of multiple users that need access to data recording and data analysis even if a
permanent internet connection cannot be established. A synchronization process
is required, implementing a client server architecture as visualized in Fig. 1, to
ensure working offline at remote places, but also storing data globally, where it
can be shared with other users is the solution.

Fig. 1. The local clients are connected to the global server. The synchronization allows
data exchange, so data can be recorded on the local machines, but can be backupped
and shared via the server.

Existing commercial solutions for this problem are typically integrated in
a dedicated database management system and/or cloud service. For licence or
financial reasons as well as due to privacy concerns however, not all institutions
can or want to resort to these systems. Budgets for archaeological excavation
projects are typically optimized in terms of logistics and man-power. Reserving
a considerable part for IT infrastructure is completely unrealistic. In addition,
as long as the data is not yet analysed and the results are not yet published, the
participating researchers are very wary about giving their data into the hands
of commercial cloud services.

In this paper, we propose the framework xBook, a solution for the sketched
problem that follows the architecture depicted in Fig. 1 is directly included into
the application and, thus, can be used independently of the underlying data-
base software. In particular, it can also be used with non-commercial and open
source database management systems; in fact, xBook uses a MySQL database.

1 http://www.unesco.org.

http://www.unesco.org


Synchronized Data Management and Its Integration 319

In addition, xBook implements a sophisticated privacy management. The solu-
tion can both be run as a server and can be installed on remote clients (e.g.
laptop computers). Thus, each institution or consortium running an excavation
can implement their own e-Science service without the need to give the data to a
third, potentially not trusted party. Finally, the xBook framework is independent
with respect to the data model. Thus, each research institution or consortium
is free to implement its specialized data model reflecting different working par-
adigms, different ways of recording data, etc.

2 Problem Formulation

In this chapter, we discuss the requirements of an e-Science infrastructure for
the archaeological sciences in more detail. A synchronized distributed e-Science
infrastructure for data management and data analysis in the archaeological sci-
ences should address the following issues:

– Distinctability of Entries: Two different entries must be distinct from each
other, no matter on which local database they were created.

– Conflict Handling: Different users are able to work on the same data simul-
taneously on different local databases. The synchronization must recognize
that a conflict occurred and provide options to solve it.

– Time-Delayed Execution: It cannot be guaranteed that a user of the data-
base can always execute the synchronization process. This could be techni-
cal reasons like temporary internet disconnects, but also for logistic reasons
that there is no internet connection available. It must be possible to continue
working offline and synchronize the data later as soon as the computer is
reconnected to an internet connection again.

– Interruptible: After a loss of connection or if the user interrupts the exchange
of data, the synchronization process must be able to continue and no data may
be lost or corrupted.

– Modularity: To avoid transfer of unnecessary data a selection of data is
required. The user should be able to select parts of data he wants to synchro-
nize to save time and to reduce data overhead, so data should be separated
in modules (“projects”). Furthermore, the local database of the user should
not save any data sets, for which he has no reading rights.

– Currentness of Look-up Table Data: The look-up table data, that is
saved on the database of the global server, needs to be updated many times.
This concerns regular as well as dynamic updates of this data. Administrators,
with the permission to edit, must be able to insert new entries and edit or
delete existing ones. These changes must be passed as soon as possible to the
users, to ensure they can work with current data.

– Rights Management: Not every user needs to see all the data. The synchro-
nization must check if the user, who has requested any data, has appropriate
rights before sending or committing this data.



320 D. Kaltenthaler et al.

– Easy To Use: The synchronization should be an automatic process that can
be run with few mouse clicks. The user is most likely not a skilled computer
user, but must be able to use the synchronization. Therefore, the synchroniza-
tion process should be carried out without any external data devices.

As discussed above, in addition to these specific requirements, an e-Science
infrastructure for the archaeological sciences should also be cost effective and
ensure the privacy of unpublished data.

In general, the basic idea of synchronization is not a new one. Both sci-
entific and industrial databases often require functions to share data in any
way, especially, if several users should be able to work on the data simultane-
ously. Synchronization techniques exist in the most commonly used database
systems worldwide, including Microsoft SQL Server, Oracle and MySQL: Snap-
shot replication, Transaction replication, Replication with streams, Merge repli-
cation, Master-slave replication system.

While all of these methods are sufficient for many areas of application, to
the best of our knowledge none of them cover all of the requirements stated
above. Only few of the available solutions provide the ability to work offline and
none of them allow synchronization of single datasets, which are two of the most
important requirements for archaeologists. Therefore we created a synchroniza-
tion that fulfils all previously stated requirements, is independent of the database
management system and hence can be used for any database system.

3 The xBook Framework

With the aim of solving the same problems in several, different databases the
idea of the xBook framework has emerged. The core function of xBook is the
synchronization, but it also provides structures for the user management, right
management, the graphical user interface and the data handling as indicated in
Fig. 2. The databases are based on the same basic structure, but each of them can
be individualised. This allows e.g. own input fields for entry mask or individual
extensions. The function in detail:

User Rights Management: For archaeological data, it is not only important
to allow parallel data entry of several persons, it is also necessary to be able to
share data for complex analysis. Because not every user wants to make his data
accessible to the public (especially if it is still unpublished), a flexible solution
for the user rights management is required.

The framework provides default permissions (read, write and project man-
agement), each database can be extended with individual rights. As often is the
case, to work together with the same group of people (e.g. within an institute)
xBook does not only support the assignment of rights to single users, but also
to user groups. These groups can be created by each user.

Graphical User Interface: xBook provides a graphical user interface because
all databases that are based on the framework use the same functions and even



Synchronized Data Management and Its Integration 321

the workflow is similar. This interface reuses common elements, but it also gives
support to alter existing functions and to insert new, individual ones.

Especially the entry masks benefit from the framework a lot, because input
fields, that were already implemented for one database, can be reused in other
databases as well. Currently, xBook provides a wide variety of different input
fields, e.g. text and number fields, dynamic comboboxes, selection fields, etc.
Its advantage is that all databases profit by updates of a single input field.
Customisations or individual, new fields can be integrated at any time. The
similarity and the common elements in the user interfaces are illustrated in the
screen shots depicted in Fig. 2.

Data Handling: The different databases very often use the same algorithms in
the program execution. Especially for the huge amount of input fields, but also
for single features, the underlying logic is repeating. To avoid multiple imple-
mentations in the code, xBook uses a combination of the single data managers
(cf. Sect. 4) and the controller.

The controller connects the graphical user interface with the model and is
responsible for the database-specific queries. It offers basic structures that are
necessary for each database, but also allows customization if necessary.

Plug-in Interface (for data analysis): For the information processing of
archaeological data the possibility of analyses is required. Different scientific
research questions need different analyses, that cannot be predefined in xBook.
So xBook contains a plug-in interface that allows the integration of analyses
that can be added dynamically to the application. In general everyone who is
familiar with coding in Java and working with SQL databases can create plug-
ins for xBook. An API for the plug-in interface is in preparation. As default, a
generic QBE plug-in for retrieval is implemented.

Synchronization: One of the core functions of xBook is the synchronization
that is introduced in detail in Sect. 4.

Fig. 2. The input mask of OssoBook (left) and ArchaeoBook (right). Both of the
applications are based on the xBook framework, that provides a basic graphical user
interface and functions, but allow customisation like e.g. individual input fields.



322 D. Kaltenthaler et al.

4 Synchronization

4.1 Realization in the Database

To achieve the synchronization we are aiming for, some necessary additions in
the database had to be made.

Database ID: One of the most important concepts is the database ID. A
column for this ID is added in each table a user can enter data in. In addition
this column is also marked as a primary key, to allow several distinct entries with
the same ID from various databases. The value of this number for this database
itself is stored both in a separate table and also as a property in the configuration
settings of the operation system. The database ID is generated when the user
connects to the server the first time, or if the value of the ID in the database
is different to the value in the properties. This is to prevent errors, when a user
copies his database to a different computer.

When the user enters a new entry in the database, the database ID is auto-
matically filled in with the above defined value. If the entry is edited the database
ID is not touched. Because we want to enable a modular approach with projects,
all tables also must add the ID and the database ID of the project, otherwise
the entry cannot be assigned to a project.

Status: To achieve both conflict management and identification which entries
have to be updated locally the column “Status” is added to each table. It stores
the time the entry was modified on the server. This value is modified only on
the server via a trigger:

SET NEW.Status = NOW() + 0;

If the entry on the client has a lower (older) status it needs to be updated.
If the entry on the server has a higher (newer) status when committing data

to the server, a conflict occurred, because someone else modified the entry.

Message ID: The next important addition is the column “message id”. It stores
the current status of the entry (locally). The different options are:

– Synchronized (0): Indicates that the entry is synchronized and no uncom-
mitted changes were made. This does not mean that the entry is up-to-date,
it just means the entry has no local changes and can be synchronized.

– Changed (1): Indicates that the entry was changed locally. This prevents
the entry being updated with data from the database, to prevent overriding
changes. In most cases this would also mean that a conflict occurs, but conflict
checking is already done when the entry is committed, so no need to take
action here. After the entry is successfully committed to the server, the status
is set to “synchronized” again.



Synchronized Data Management and Its Integration 323

– Conflicted (-1): Indicates that this entry is conflicted and therefore can not
be committed or updated. A conflict occurs when an entry that is changed
locally has an older (lower) status than the entry on the server. Then the
changes on the local entry were made on an older version of the entry, and if
the entry would be committed, there would be possible loss of data.

4.2 Realization in the Application

Some of the basic requirements are already fulfilled in the database, but as the
data has also to be sent and some features are still missing, several concepts had
to be developed in the application as well.

Database Update: To allow constant updates to the application, including
changes in the database scheme, we added a check for the version of the database.
This number is stored in the “version” table and is compared to the built-in
number in the program. If the numbers don’t match, the server is queried for an
update. This check is done after the connection to the database is established,
but before the user can begin working with the data. If the user has no internet
connection the update can of course not be made, but since he could also not
upgrade the program without an internet connection, this doesn’t seem like a
big issue.

Code Tables: The look-up tables, which contain mappings for values in differ-
ent languages e.g. the name of the animals, that are displayed in the graphical
user interface, are named “code tables” in our synchronization. To be able to
change or add values to the code tables without having to distribute a new pro-
gram version, all values are stored in the database. To receive the newest version
of the data only the database has to be updated. This can therefore be done
during the usage of the application. To find out which values are changed, all
tables have the column “Status”. Just like the entry the value of the status is
the timestamp of the last global change and is updated with triggers on insert
and update:

SET NEW.Status = NOW() + 0;

The last update is set locally, after all changes have been (successfully) made,
and is retrieved from the server before the update progress is started. Then only
a check has to be made, if the local value is lower than the global value, and
only if so, the code tables are out of date and therefore have to be updated.

Manager: To control the communication with the database from the client, we
created manager classes, that have all the knowledge about the columns for the
table they are “responsible” for. The structure of the manager is as follows:

– Table Manager: The base class for all managers. It holds the connection
object, contains the basic methods like insert and update and sends SQL
queries to the database.



324 D. Kaltenthaler et al.

– Abstract Synchronization Manager: This manager holds all the impor-
tant information for the synchronization. It handles the insert and update of
entries from the server, retrieves uncommitted entries and sets data to syn-
chronized or conflicted.
All managers that need to be synchronized must extend this.

– Base Entry Manager: The base entry manager is responsible for getting
the main entry from the input unit (the main table for entries). It also calls
the underlying Extended Entry Managers to retrieve the data for the complete
entry. This class also manages the saving, loading and updating data for itself
and forwards the call to the underlying methods.

– Extended Entry Manager: A manager for entries that extend a base entry,
that is needed for example if an entry can have more than one value of a specific
type. So the list of values would be stored in a different table.

– Base Project Manager: The base project manager is responsible for getting
the main entry for entries that are valid for the whole project (e.g. project
information itself). It also calls the underlying Extended Project Managers to
retrieve the data for the complete entry. This class also manages the saving,
loading and updating data for itself and forwards the call to the underlying
methods.

– Extended Project Manager: This manager is for entries that extend a
base project entry. This manager is needed for example if an entry can have
more than one value of a specific type. So the list of values would be stored
in a different table.

Data Structure: To store the data and retrieve a complete entry we created
some classes to easily load, save and update the data.

– DataColumn: The most basic data type is the DataColumn. In it only one
value is stored together with its column name.

– DataRow: Represents one row in the database. It is an ArrayList of Data-
Column containing all the data for this row.

– DataTable: Contains all DataRows for the current entry in the specific table.
In addition to the DataRow it only knows to which table it belongs.

– DataSet: Represents one entry. Therefore it has all DataTables that define
the entry, and additionally hold the key of the entry and the key of the project
the entry belongs to.

Synchronization Process: The actual progress of the synchronization consists
of three different steps:

(1) Check if the user has the required rights to access the project and therefore
is allowed to synchronize it.

(2) All uncommitted, not conflicted entries in project and entry tables are
retrieved, one by one, from the database and send to the server, this is
done by iterating over all Base project and Base Entry Managers. These



Synchronized Data Management and Its Integration 325

call their belonging sub managers, load all data belonging to the current
entry and send their data to the server. If the entry already exists in the
global database, then the server checks the timestamp of the entry that was
sent with the one of the entry that is already in the database. If the global
timestamp is newer than the local one there is a conflict and the client is
notified of it. (cf. Sect. 4.2)

(3) The project and entry data is transmitted from the server to the client. For
identifying which entry has to be transmitted, the timestamp of the newest
entry of the current table, therefore the last entry that was synchronized,
is transmitted. To prevent loss of data after an incomplete synchronization,
the first query requests entries that have exactly the same timestamp as
the highest timestamp locally. For all later queries always the next data
with a higher timestamp is retrieved. The entry is then only updated if the
corresponding value in the local database either doesn’t already exist or is
not conflicted or changed.

Deletion: Due to the fact that the Synchronization can only identify changes
with the check of the “Status” column, it is not easily possible to delete entries.
Still, there needs to be the option to delete an entry. To solve this problem a
column “Deleted” was added. It is an enumeration that has only two options:
“Y” and “N” - with “N” as default value. Instead of deleting an entry the value
of the “Deleted” column is set to “Y”. Then this change can be synchronized
to the global server. From there it can also be synchronized to other clients.
When the client gets the information that an entry is deleted it can safely delete
the entry locally. On the server however an entry is never deleted, because the
information about the change must always remain available for the clients. The
same logic is applied to code table entries, with the exception that entry tables
are only synced to the clients.

Conflict Management: If an entry was marked as conflicted during the syn-
chronization process, the conflict has to be solved before it can be merged with
the entry in the global database. After the conflict has been merged e.g. by
providing both the global and local entry, and allowing the user to select the
diverse values, the merged entry is saved to the database with the timestamp of
the global entry. This ensures, that if the entry was updated between the solving
of the entry and committing the entry to the global database, this change will
not be overridden, but a new conflict is generated.

5 Synchronization in the Graphical User Interface

As presented in Sect. 4 the synchronization consists of a powerful, but complex
architecture. However the realization in the application must consider that most
of the archaeologists are not used to work almost exclusively with a computer.
That is the reason why it is absolutely necessary to hide the complexity of the



326 D. Kaltenthaler et al.

synchronization behind an intuitive input mask that is easy to use and allows
its usage even if the user is not technically versatile. Here we describe how the
synchronization is integrated into the graphical user interface of xBook:

5.1 Manual Data Synchronization

To exchange project data there are three basic procedures that must be possible
in the synchronization panel.

Global projects for which a user has read and/or write permission must
be downloadable from the server. Therefore the corresponding projects can be
selected in the right project selection in the synchronization panel.

Local projects that have not been synchronized with the server before must
be able to be uploaded to the server. These projects can be selected in the left
project selection.

Existing projects (as well local and global ones) must be updateable. For
this purpose the corresponding projects must be selected, like explained above.
However the application recognize if there was selected a project on the server
project list that is also available on the local project list, and vice versa.

By pressing the “Synchronize” button the procedures are executed. Depended
on the internet speed and the number of projects and datasets (e.g. in OssoBook
exist projects with an six-digit number amount of entries) the synchronization
may take several hours. Thus user feedback is displayed in message boxes and
progress bars (each one for general, project and dataset layer)

When the procedures are running the user can continue working with the
application, the synchronization is running in background. It can also be inter-
rupted by closing the application and continued to a later time.

5.2 Automatic Data Synchronization

The automatic synchronization can be activated in the application settings.
Thereby the project information and data sets are synchronized with the server
automatic in background. However it is necessary to manually define once which
projects shall be downloaded from the server. This is important to avoid that
all projects are downloaded even if the user does not want to save them on the
local database (Fig. 3).

6 Case Study OssoBook - an Archaeozoological Database

OssoBook [8] was original released with dBASE as technical basis in 1990. Since
then the application was continuously updated and extended [4], and different
tools for data analysis were implemented and integrated to OssoBook as plug-
ins [1,5–7]. In 2011 the database as well as the logic and the appearance of the
application was restructured again to modernise the ageing program structure



Synchronized Data Management and Its Integration 327

Fig. 3. The synchronization panel in OssoBook.

and to prepare the software for future work [2,3]. Since then the application,
especially the synchronization, is developing strongly.

OssoBook is currently used by approximately 200 users including scientists,
Ph.D. students and students in institutes of universities, museums and scientific
collections with archaeozoology as field of work, as well as freelance archaeo-
zoologists. The eScience service is available in German, English, French and
Spanish. In the context of the IANUS2 project of the German Archaeological
Institute, Berlin, Germany, OssoBook will serve as a standard for the archaeo-
zoology domain. As introduction of the usage of the software there are annual
workshops in several European countries.

OssoBook offers all the advantages of a database system. Furthermore, first
analysis tools, that can be integrated into OssoBook as plug-ins are also available,
including a module for the analysis of age distribution [1], a module for the clus-
ter analysis of measurements [1], a plug-in for similarity search on multi-instance
objects [5], a plug-in for the execution of sample data mining methods [6], and a
module offering some analysis methods for archaeozoological data [7]. Subject-
specific, the application should primarily allow the collection of the minimum
standards, the input to these fields is mandatory. In addition there are numer-
ousness of further possibilities to enter data. Many of them have user-friendly
features (e.g. a few hundred pictures of all measurements for different animal
classes), that will be extended step by step to fulfil the needs of the users. A
text in the sidebar always explains the visible feature and includes details to the
current selected input field.

2 http://www.ianus-fdz.de/.

http://www.ianus-fdz.de/


328 D. Kaltenthaler et al.

7 Discussion

In this paper we described a list of requirements that should be fulfilled by
e-Science infrastructures for a synchronized distributed data management and
data analysis. We discussed existing solutions for synchronized distributed data
management, in relation to the previously listed requirements. We then describe
the xBook framework that meets the identified requirements. Then we took an in
depth look at the synchronization process of xBook, which is independent of the
data model and could be used potentially in any application domain if needed.
Afterwards, we presented an existing incarnation of the xBook framework, called
OssoBook, which has emerged as a standard for a growing European community
and is already used in many archaeozoological projects.

While the synchronization has many benefits for the user and also someone
that wants to add tables to the synchronization, there are also some limitations
that still need to be addressed in the future, such as reducing the overhead for
initialization, compression, and improved conflict handling.

8 Availability

The xBook framework on the web: http://xbook.vetmed.uni-muenchen.de/

References

1. Kaltenthaler, D., Lohrer, J.: Visual and density based cluster analysis of the
archaeological database OssoBook in consideration of aspects of data integrity.
Consistency and Quality, Diplomarbeit, Ludwig-Maximilians-Universität, Database
Systems Group, Munich (2012)

2. Kaltenthaler, D.: Design and implementation of a graphical user interface for
the archaeozoological database OssoBook. Projektarbeit, Ludwig-Maximilians-
Universität, Database Systems Group, Munich (2011)

3. Lohrer, J.: Design and implementation of a dynamic database for archaeozoological
tasks. Projektarbeit, Ludwig-Maximilians-Universität, Database Systems Group,
Munich (2011)

4. Schiebler, J.: OSSOBOOK, a database system for archaeozoology. In: Anreiter, P.,
Bartosiewicz, L., Jerem, E., Meid, W. (eds.) Man an the Animal World: Studies
in Archaeozoology, Archaeology, Antropology and Palaeolinguistics in Memoriam
Sndor Bökönyi. Budapest, Archaeolongua (1998)

5. Danti, S.: Cluster analysis of features of animal bones and similarity search on
multi instance objects of the archaeozoological data pool. Diplomarbeit, Ludwig-
Maximilians-Universität, Database Systems Group, Munich (2010)

6. Tsukanava, Y.: Development and appliance of data mining methods on the
palaeoanatomic data collection. Diplomarbeit, Ludwig-Maximilians-Universität,
Database Systems Group, Munich (2010)

7. Neumayer, T.: Design and implementation of analysis methods for archaeozoological
data. Bachelorarbeit, Ludwig-Maximilians-Universität, Database Systems Group,
Munich (2012)

http://xbook.vetmed.uni-muenchen.de/


Synchronized Data Management and Its Integration 329

8. Kaltenthaler, D., Lohrer, J., Kröger, P., van der Meijden, C., Granado, E.,
Lamprecht, J., Nücke, F., Obermaier, H., Stopp, B., Baly, I., Callou, C., Gourichon,
L., Pöllath, N., Peters, J., Schibler, J.: OssoBook v5.1.1. Munich, Basel (2014).
(http://xbook.vetmed.uni-muenchen.de/)

http://xbook.vetmed.uni-muenchen.de/

	Synchronized Data Management and Its Integration into a Graphical User Interface for Archaeological Related Disciplines
	1 Introduction
	2 Problem Formulation
	3 The xBook Framework
	4 Synchronization
	4.1 Realization in the Database
	4.2 Realization in the Application

	5 Synchronization in the Graphical User Interface
	5.1 Manual Data Synchronization
	5.2 Automatic Data Synchronization

	6 Case Study OssoBook - an Archaeozoological Database
	7 Discussion
	8 Availability
	References


