
Transitioning from Human to Agent-Based
Role-Players for Simulation-Based Training

Robert G. Abbott(&), Christina Warrender, and Kiran Lakkaraju

Sandia National Laboratories, Albuquerque, NM 87111, USA
rgabbot@sandia.gov

Abstract. In the context of military training simulation, “semi-automated for-
ces” are software agents that serve as role players. The term implies a degree of
shared control – increased automation allows one operator to control a larger
number of agents, but too much automation removes control from the instructor.
The desired amount of control depends on the situation, so there is no single
“best” level of automation. This paper describes the rationale and design for
Trainable Automated Forces (TAF), which is based on training by example in
order to reduce the development time for automated agents. A central issue is
how TAF interprets demonstrated behaviors either as an example to follow
specifically, or as contingencies to be executed as the situation permits. We
describe the behavior recognizers that allow TAF to produce a high-level model
of behaviors. We assess the accuracy of a recognizer for a simple airplane
maneuver, showing that it can accurately recognize the maneuver from just a
few examples.

Keywords: Learning by example � Training by demonstration � Software
agents

1 Introduction

When automating a task that has previously been performed by a person, recordings of
human performance data can provide examples of desired behaviors. Our current
domain is fighter combat, where student pilots fly against “enemy” role-players who
emulate anticipated threat tactics. The tactics can be recorded in an airplane instru-
mented with position tracking equipment, or from a flight simulator. This paper pre-
sents our recent work on Trainable Automated Forces (TAF), which is a system to
simulate tactical behavior based on recorded examples.

In the context of Live/Virtual/Constructive training [1], TAF is designed to create a
Constructive entity from a Live or Virtual (i.e. human in the loop) example. The output
of TAF is a set of inputs for the Next Generation Threat System (NGTS), which is a
constructive entity simulator that focuses on fighter tactics [2] (Fig. 1). NGTS simulates
both the physics and behaviors of entities, but TAF focuses exclusively on the
behaviors. The design of TAF assumes that NGTS is capable of producing the desired

© Springer International Publishing Switzerland 2015
D.D. Schmorrow and C.M. Fidopiastis (Eds.): AC 2015, LNAI 9183, pp. 551–561, 2015.
DOI: 10.1007/978-3-319-20816-9_53



tactics if it is programmed correctly, but programming the tactics can be difficult and
time-consuming. The objectives of TAF are:

1. Minimize the time and cost of creating new behavior models.
2. Create a fully realized, executable NGTS entity from recordings that do not

explicitly capture the goals of the pilot or details non-visible behavior such as
turning on sensors or jammers and making radio calls.

3. Interpret the example behavior literally or generally as desired by the user, inferring
which actions are to be replicated, and which arose by chance and should only be
executed if necessary.

4. Strike a balance between open-ended behaviors that respond realistically to a wide
range of situations and aren’t overly predictable, yet don’t distract from the training
objectives by being erratic.

5. Fall back to a reasonable general-purpose behavior model when there are no rele-
vant examples in the set of scenario recordings.

6. Learn from a small number of training examples; flight recordings are expensive to
obtain.

7. Produce behavior models that are human-readable, allowing the model to be
manually corrected or tailored if necessary.

The key to balancing these goals is leveraging the subject matter expertise that is
built into NGTS, re-combining and parameterizing the provided behaviors. The
alternative would be to build models based completely on flight recordings, ignoring

Fig. 1. The next-generation threat system (NGTS) simulates fighter tactics. On the right is a
portion of the decision logic for the white aircraft on the left. TAF addresses the difficulty of
developing this logic.

552 R.G. Abbott et al.



the existing physics and behavior models in NGTS. However, unless vast amounts of
example behavior data are available, a software agent based solely on observed
behaviors will be limited. The range of agent behaviors will be limited to behaviors that
occurred within the training data, and the agent will take inappropriate actions, because
a large number of examples are required to distinguish casual effects from spurious
correlations. Moreover, some aspects of the behavior cannot be learned by observation
because they are not observable to the system, e.g. the employment of sensors and
emitters by a fighter pilot.

2 Related Work

Programming by demonstration (PBD) is the approach of programming an agent by
replicating the actions of a person, whose actions are recorded in a simulator or
instrumented environment (e.g. an airplane that records its position over time). PBD is
a natural approach to progressively automating a task that was formerly performed by
a person, such as role-playing for training scenarios. PBD was originally used for tasks
such as assembly-line robotics in which the robot would carry out the same sequence
of steps each time. Most of this research has been done in the field of robotics and
targets low-level sensor/motor actions [3]. As more complex tasks were undertaken,
generalizing the behavior to accommodate different situations became increasingly
important. Rather than replicating actions specifically, the agent must infer the goals
implied by the example, and select and refine actions as necessary to accomplish those
goals.

Goals are necessarily domain-specific, so PBM must be adapted to each new
domain with a set of possible goals and means to attain them. Specifying a set of goals
compromises the original intent of PBD to reduce manual programming, but ensures
that the set of goals are consistent with how human experts understand the domain.
This is crucial if humans are to monitor to agent’s actions and sometimes influence
them for reasons external to the system, such as instructors using TAF to train
students.

3 TAF Design and Rationale

This section describes the design of TAF, and how the design supports the objectives
listed in the introduction (Fig. 2).

3.1 TAF Knowledge Base

The TAF Knowledge Base (KB) is the key to mapping desired agent behaviors to
the NGTS inputs that elicit that behavior. It contains numerous examples of

Transitioning from Human to Agent-Based Role-Players 553



scenarios executed in NGTS that include agents using various settings. These
include the behavior rules assigned to the agent, parameters for the behavior rules,
and the scenario in which the agent was embedded. The KB is analogous to the
experience accumulated by a human user of NGTS who experiments with various
settings and observes the results to develop an understanding of what to expect
from the software.

The mapping from NGTS inputs to agent behaviors may change as the NGTS
software is revised, so it is important that TAF be able to re-learn this association in an
efficient manner. We have developed TAF training software that automatically exe-
cutes an NGTS run for each of a set of inputs which may be very large, so TAF can
re-learn each new version of NGTS.

The behavioral repertoire of TAF is constrained by the KB examples – it can only
take actions contained in its knowledge base. A benefit of the KB-limited approach (vs.
generating inputs before or during scenario execution) is that the KB can be audited to
remove unwanted examples. However, the parameter space of NGTS is practically
infinite - far too large to explore exhaustively. Therefore the selection of scenarios for
the KB is very important. To date we have used three sources. NGTS user community
scenarios are developed manually by NGTS users to meet specific end-user needs, so
they are full of realistic situations and behaviors of great use to TAF. On the other
hand, re-combining elements from them will not allow TAF to author scenarios much
different than users already have, so additional sources are needed. We have developed

Fig. 2. TAF. During development, the knowledge base is populated with NGTS scenario
executions that establish the entity behaviors resulting from various NGTS inputs. Then TAF can
generate NGTS entities whose behaviors match those found in a flight recording. The TAF
recognizer is the basis for this matching.

554 R.G. Abbott et al.



a number of hand-edited scenarios that each differ significantly from each other, and
from previously existing scenarios. Scenarios from automated sampling algorithms
allow TAF to explore beyond human-specified entities. These are easy to generate in
large numbers and can potentially allow TAF to output any type of behavior of which
NGTS is capable, including behaviors not envisioned by NGTS developers. The risk is
of generating large numbers of behaviors that are unrealistic, irrelevant, or redundant.
Our approach is to use scenarios from the user community and our own hand-edited
scenarios as the basis for subsequent modification by the sampling algorithm.

Once each scenario is run, it is inserted into the KB. The KB example includes the
paths of all entities and the NGTS inputs used to produce them, such as the version of
the NGTS software used and the behavior rules and settings assigned to the entity.
Then the TAF Recognizer is applied to recognize actions in the example scenario
execution.

3.2 TAF Recognizer

The TAF Recognizer applies semantic labels to traces in the KB, and in flight
recordings. The granularity of the labels determines how much TAF will abstract the
example scenarios when matching them to flight recordings. For example, a trajectory
could be recognized either as a series of specific maneuvers (e.g. “turn left 30°, proceed
ahead for 25 NM, then turn left 15°…”) or at a more abstract, goal-oriented level (“e.g.
Lead Pursuit on target aircraft”). Labels are tested from general to specific, and pro-
cessing of mutually exclusive labels stops with the first match. However, not all labels
are mutually exclusive, and some recognizers use the output of those applied before-
hand. For example, several recognizers look at the position of the aircraft relative to
each group of enemies, where groups are identified by one of the early recognizers.

TAF recognizers are implemented as feature extractors in the RBBML framework [1].
In the RBBML framework, a model is a Java class that defines methods to derive a set of
features to derive and store in the database. For example the Intercept Geometry model
samples the positions of two entities at regular distance intervals and then computes their
turn rates, and the range and aspect angle from each to the other. This model also has
receptors for range categories Near/Medium/Far, which are not used in matching, but are
consulted after a match is found to determine the range at which the entity will maneuver.
A model instance is a model populated with examples that exemplify a particular
behavior, and specifies which model features are relevant to identifying the behavior. For
example the Beam Maneuver model instance contains examples of that maneuver flown
by a human pilot and by an NGTS entity and selects the features target aspect and threat
turn rate. The Intercept Geometry model can be trained with different examples to
recognize different maneuvers.

Recognizing Groups of Entities. Fighters normally work together, often flying in
formation. The basic unit of organization is a group of two or more fighters. A con-
structive simulation of fighter tactics must capture this organizational structure because
the roles of two aircraft (lead and wing) are somewhat different. The roles must be
made explicit for NGTS, since otherwise the lead and wing would not stay in

Transitioning from Human to Agent-Based Role-Players 555



formation. However, flight recordings do not specify the formation hierarchy; it must
be recognized from spatial information.

The TAF algorithm for recognizing groups is based on two aircraft being “usually
near” each other. This is complicated by the fact that aircraft have separate lifetimes
(either may exist while the other does not), and that aircraft in the same group may
occasionally separate for a period of time. For each pair of aircraft, TAF samples the
positions at a regular interval (1 s), and tallies the samples in which the pair of aircraft
are near (the distance is less than a threshold of 5 nautical miles using the Haversine
formula) vs. far (the distance exceeds the threshold, or only one of the two aircraft
currently exist). The two aircraft are considered “usually near” if the ratio of near to far
instances exceeds a threshold (at least 80 % of all samples are near). Next, each aircraft
is placed into a separate group. Two groups are considered near if any aircraft in one
group is “usually near” any aircraft in the other group. The groups, which initially
contain a single aircraft each, are merged with all other near groups, until no group is
near any other (Fig. 3).

The leader of each group is recognized by computing the mean velocity vector of
members of the group at each timestep. The position of each group member is projected
onto the velocity vector, and the member with the highest median projected value is
designated the leader.

A limitation of this approach is that group membership and leadership are static –

each aircraft belongs to only a single group over time. The advantage of this approach
is that it avoids discontinuities in the spatial relations between groups that would occur
from re-assigning an aircraft from one group to another. However the results at a point
in time may appear incorrect because the group assignment is dominated by the rest of
the scenario.

Recognizing Maneuvers. A simple maneuver (e.g. a flying a loop) is a relatively fixed
path through space over time relative to a starting position. In combat, maneuvers are

Fig. 3. Six aircraft are assigned to three groups. Note that the grouping does not correspond
precisely to the groups implied by the manually-designated callsigns, because victory 33 deviates
from victory 31 later in the scenario. Formation-flying is typical in tactical flight, and grouping
them reduces the combinatorial complexity of identifying interactions among aircraft.

556 R.G. Abbott et al.



generally executed relative to other aircraft, and the maneuver is characterized by a
prescribed path through the state space of relative positions and angles. For example, in
a beam maneuver the pilot flies perpendicular to the attacker so as to avoid moving
either towards or away from the attacker. If the attacking aircraft or missile has a
relatively simple Doppler radar, this maneuver may cause the radar difficulty in dis-
tinguishing the aircraft from stationary objects on the ground.

In TAF, maneuvers are sampled from KB examples or flight recordings. For the
beam maneuver (Fig. 4), the aspect transitions from 1 (towards) to 0 (perpendicular)
then back to 1. The turn rate of the aircraft is also matched to ensure that it, and not its
target, is performing the maneuver.

TAF searches for maneuvers by computing the time-varying spatial relations
between each group of fighters. The position of a group is defined as the position of the
lead aircraft in the group. The rate of execution of a maneuver may vary somewhat, so
TAF uses the dynamic time warping algorithm [2] to match spatio-temporal trajectories
that vary only in rate of execution.

Spatio-temporal matching always yields approximate matches, so the quality of
match is also recorded on a scale from 100 (perfect match) to 0 (not considered a
match). The percentage is used to place different recognizers on a comparable scale.

3.3 TAF Search

In TAF the goal of search is to find examples of NGTS inputs that resulted in an entity
exhibiting the desired behaviors, and secondly to rank the results order of match
quality.

Fig. 4. A recognizer for the beam maneuver. Flight recordings (bottom) are searched for an
example of the maneuver (top) on the basis of time-varying spatial features such as range, aspect,
and turn rate.

Transitioning from Human to Agent-Based Role-Players 557



The first step (search) is relatively trivial because the recognizer assigns tags to KB
entries, and search simply retrieves all entries with at least the required tags. Earlier
iterations of TAF [3] compared the path of the flight recording to each KB example
individually, but this was unnecessarily specific (since it is the meaning or label of the
path that is important, not its precise trajectory) and too computationally intensive to
support a large knowledge base. Labeling the KB examples and the flight path indi-
vidually resolves this problem.

The second step is ranking, which is based on the quality of fuzzy labels. For
example, maneuvers never precisely match the ideal. Recognizers may assign a
“percent match” value between 0 and 100. If present, they are used to order the KB
matches.

3.4 Flight Recording

To create an NGTS entity, the user loads a flight recording into TAF and selects the
example entity. When the flight recording is read in, TAF applies the recognizer to it.
A user interface is supplied so the user can correct the recognized behaviors, or change
the labels used in the search so the resulting NGTS entity differs from the example in
some aspects.

The set of TAF behavior labels must be compatible with richness or sparsity of the
source of the flight recording. For example, a manually-controlled entity in NGTS will
result in a highly detailed flight recording without any sensor noise. A virtually-piloted
entity recorded from a network simulation (commonly the HLA protocol [4]) will also
be noise-free, but will generally only have information about the externally-visible
attributes of the aircraft and pilot behavior, with no explicit information about goals.
A flight recording from a live source will have sensor noise and dropouts, but
(depending on the source) may have detailed information about onboard systems.
However, the ‘black box’ from a single aircraft is not sufficiently informative to model
tactics, since tactical flight is generally performed relative to other aircraft, ground
targets, etc.

4 Evaluation of TAF Behavior Recognition

This section describes an assessment we performed on the TAF Behavior Recognizer
for the beam maneuver that was described in the previous section. The behavior
recognizer is a key element of TAF, because it determines the similarity between a
flight recording to be emulated and the repertoire of behaviors in the TAF Knowledge
Base. We collected flight recordings, identified beam maneuvers independently both
manually and with the TAF Recognizer, and then compared the results.

We collected a set of examples of the beam maneuver in the context of a larger
mission that was executed repeatedly. This data set included executions of the
maneuver both by human pilots, and by NGTS entities. In the case of NGTS entities,
we performed recognition on the maneuver using only positional information, disre-
garding whether the maneuver had been triggered by the NGTS Beam Maneuver

558 R.G. Abbott et al.



command. (Modeling NGTS behaviors is of interest because they may be controlled by
a human operator manually issuing commands, and these operators are to be modeled
in addition to actual pilots.) We examined 77 scenario executions, each of which
included 32 airplanes, for a total of 2,464 trajectories.

By examining these trajectories the human rater identified 36 candidate examples of
the beam maneuver. Each candidate maneuver was assigned a quality score between 1
and 100, with 100 being ideal, and 1 deemed only marginally similar to the ideal. Note
that there is no “ground truth” (beyond the human rater) of whether a beam maneuver
was performed – a pilot might try to perform the maneuver and be interrupted, or simply
make a mistake. Textbook definitions of maneuvers [7] may include tolerances for
relevant angles etc. but human raters, and TAF, recognize degrees of success (Fig. 5).

We then ran the TAF recognizer on the same data set. TAF also assigns a quality
score, and identified 41 candidate matches. Matches identified by the human and TAF
were considered to refer to the same event if they were performed by the same aircraft
during time windows that coincided. The probability of matching by chance was low,
since fewer than 1 in 60 trajectories contained a candidate example, and a typical
example covered less than 10 % of the duration of a single trajectory (80 s vs. 900 s).

The human and TAF ratings of maneuvers identified are shown in Fig. 6. The
correlation between human and TAF ratings is 0.63. The correlation is brought down

Fig. 5. Sections of flight paths that, to varying degrees, resemble an ideal beam maneuver in
which the aircraft turns to place an oncoming threat directly to the left or right. TAF assigned a
match quality of 99 % (left), 55 % (middle), and 34 % (right).

Fig. 6. Ratings of 23 candidate instances of the beam maneuver in a set of flight recordings

Transitioning from Human to Agent-Based Role-Players 559



by several possible matches identified by TAF (in the lower-left of the figure). These
matches are not necessarily a problem since they are assigned a low quality by TAF,
and could be automatically suppressed. With a decision boundary of 60 % quality, TAF
obtains 19 true positives, 0 false positives, and 4 false negatives. Of the false negatives
(maneuvers recognized by the human rater but not detected by TAF), some are corner
cases such as a maneuver performed against a threat that was destroyed before the
maneuver was completed. It should be noted that a group of human raters would not
have 100 % agreement, although we do not have data on inter-rater reliability.

5 Conclusion and Next Steps

The current capability of TAF matches flight recordings to pre-existing models of
behavior that (with appropriate parameters) will exhibit the desired behaviors in the
appropriate contexts. In addition, TAF directly adopts a few specific settings (such as
initial aircraft and heading) from the flight recording. Our plan is to expand this
capability to combining novel sequences of actions that directly model observed
behaviors from a flight recording. In the current version of TAF, novel behaviors must
be generated a priori and inserted into the knowledge base. This approach is not
scalable to all conceivable, valid combinations of behaviors. Our efforts are now
directed towards discriminating between planned actions (goals) and actions that arose
due to happenstance (contingencies).

Acknowledgement. Sandia National Laboratories is a multi-program laboratory managed and
operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for
the U.S. Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

References

1. Schnell, T., Postnikov, A., Hamel, N.: Neuroergonomic assessment of simulator fidelity in an
aviation centric live virtual constructive (LVC) application. In: Schmorrow, D.D., Fidopiastis,
C.M. (eds.) FAC 2011. LNCS, vol. 6780, pp. 221–230. Springer, Heidelberg (2011)

2. Hildreth, B., Linse, D.J., Dicola, J.: Pseudo six degree of freedom (DOF) models for higher
fidelity constructive simulations. In: AIAA Modeling and Simulation Technologies Confer-
ence and Exhibit, Hoholulu, Hawaii (2008)

3. Abbott, R.G.: The relational blackboard. In: Behavior Representation in Modeling and
Simulation, Ottawa, Ontario, Canada (2013)

4. Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Zakaria, J.,
Keogh, E.: Searching and mining trillions of time series subsequences under dynamic time
warping. In: Proceedings of the 18th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD 2012), New York, USA (2012)

5. Abbott, R.G., Lakkaraju, K., Warrender, C.: Semi-automated construction of adversarial
agents for trainable automated forces. In: AAMAS, Paris (2014)

6. Kuhl, F., Weatherly, R., Dahmann, J.: Creating Computer Simulation Systems: An Intro-
duction to The High Level Architecture. Prentice Hall, Upper Saddle River (1999)

560 R.G. Abbott et al.



7. Naval Air Training Command, Flight Training Instruction: Air to Air Intercept Procedures
Workbook (CNATRA P-825), Department of the Navy, NAS Corpus Christi, TX, USA
(2010)

8. Sigaud, O., Peters, J.: Abstraction levels for robotic imitation: overview and computational
approaches. In: Sigaud, O., Peters, J. (eds.) From Motor Learning to Interaction Learning in
Robots. SCI, vol. 264, pp. 1–12. Springer, Heidelberg (2010)

Transitioning from Human to Agent-Based Role-Players 561


	Transitioning from Human to Agent-Based Role-Players for Simulation-Based Training
	Abstract
	1 Introduction
	2 Related Work
	3 TAF Design and Rationale
	3.1 TAF Knowledge Base
	3.2 TAF Recognizer
	3.3 TAF Search
	3.4 Flight Recording

	4 Evaluation of TAF Behavior Recognition
	5 Conclusion and Next Steps
	Acknowledgement
	References


