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Abstract. Electroencephalography (EEG) as a physiological assessment tech-
nique holds high promise for on-line monitoring of cognitive states. Examples
include detecting when a user is overly fatigued, if they are paying attention to a
target item, or even detecting sub-conscious object recognition, all of which can
be used for greatly enhanced human-system interaction. However, because EEG
involves measuring extremely small voltage fluctuations (microvolts) against a
potential background that is very large (milivolts), conventional EEG data
acquisition (DAQ) systems utilize very high-resolution components, such as
low-noise amplifiers and 24-bit sigma-delta analog-to-digital converters (ADCs)
on the ideal premise of acquiring a maximal resolution signal to guarantee
information content from the data. Unfortunately this comes at the cost of high
power consumption and requires expensive system components. We hypothe-
size that, for many targeted research applications, this level of resolution may
not be necessary, and that by intelligently allowing a reduction in the signal
fidelity, substantial savings in cost and power consumption can be obtained. To
date though a pragmatic minimum resolution remains unexplored. Here, we
discuss the utility of using a parametric approach of simulating signal degra-
dation analogous to decreasing ADC bit (vertical) resolution and amplifier
fidelity. Results derived from classification of both drowsiness (alpha
oscillation) and oddity (P300) detection show strong overall robustness to
poor-quality signals, such that classifier performance remains unaffected until
resolution is well outside of typical recording specifications. These observations
suggest that researchers and system designers should carefully consider that
resolution trade-offs for power and cost are entirely reasonable for targeted
applications, enabling feasibility of ultra-low power or highly fieldable data
collection systems in the near future.

1 Introduction

Electroencephalography (EEG) is a technique of measuring voltage fluctuations on the
scalp, arising from large pools of electrical currents generated by regional neural activity.
Although EEG is largely viewed as a medical technique used for diagnosis of brain
dysfunction and injury [1], it has also been used as a research tool for several decades,
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especially in conjunction with cognitive and perceptual neuroscience studies aimed at
identifying the neural basis of behavior. Inmore recent years, a wide range of studies have
shown the utility of using EEG to identify or classify different cognitive states (such as
drowsiness and fatigue [2], or anxiety [3]) as well as a the detection and identification of
novel events [4, 5]. Based on these successes, there is increasing promise that EEG can be
a useful tool as a component of human-computer interactive systems [6], many of which
could be embedded within every day, typical-life scenarios.

However, currently most implementations of such algorithms remain constrained to
laboratory or fairly limited short usage cases, leaving a lack of transition into real-world
environments. While there is increasing interest in performing so-called real-world
neuroimaging [7] – that is, monitoring brain activity within its full, natural context of the
real world – current designs for EEG systems are not amendable to usage in a truly
fieldable format, and a number of technical hurdles must be addressed. For example,
because the brain-source voltage fluctuations represented by EEG are extremely small
(microvolts) against a potential background that is heavily contaminated by larger fluc-
tuations (milivolts to volts) created by movement artifacts [8, 9], environmental electrical
noise, and long-term capacitive drift effects [10], the overall signal-to-noise (SNR) is very
poor. As a result, EEG data acquisition (DAQ) systems must be extremely sensitive.

The conventional approach for addressing this problem is to use very
high-resolution components, such as low-noise amplifiers and 24-bit sigma-delta
analog-to-digital converters (ADCs), on the ideal premise of acquiring a maximal
resolution signal in order to guarantee information content from the data. Targeting
ideal, high-resolution signals is particularly pertinent in research settings where the user
may not know exactly what features of the data will be the most critical for a successful
outcome, or in medical cases where very small differences may have critical health
relevance. Unfortunately this demand for high resolution comes at the cost of systems
tending to be being very expensive and power-draining. This is generally a trivial
concern for typical laboratory or patient-care environments where the benefits of
having a high-quality DAQ system outweigh the disadvantages of size, cost, and power
consumption of the system. However, it creates substantial limitations on the ability to
build and use truly fieldable, long-application-time systems designed for use in
every-day settings [7, 11] or use in large scale “crowdsourced” implementations where
cost would play a major factor [12].

In many targeted research and translational neuroscience settings, as well as
brain-computer interaction technologies, the user typically already has a specific use
identified for the acquired data stream, and knows what the relevant signal properties
are ahead of time. In these cases, having perfectly “ideal”, high-resolution DAQ sys-
tems may not be necessary as long as the most critical features for the application can
be extracted, and considerable savings in both power and expense can be garnered. For
example, the power consumption of an ADC increases exponentially with bit resolu-
tion, with each additional bit requiring nearly 10× the power draw [13, 14]. Since the
analog front end is a major portion of the total power consumption of a typical
EEG DAQ system, this equates to a substantial difference between, for example, 24,
16, or even 10-bit resolution. Meanwhile, ultra low-noise amplifiers are costly and
challenging to design in a low-power format, and in many cases the added sensitivity
results in more susceptibility to artifacts.
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This suggests that, at least for targeted applications, there may be room for con-
siderable power and cost savings by sacrificing the resolution of certain components of
the DAQ system. To date, however, this issue has been largely ignored, with no
systematic analyses of the pragmatic minimum technical specifications necessary to
detect or assess particular brain mental states. While a practical minima will vary
between applications, at the very least there is a need to establish paradigms or test
methods for answering this question.

Here, we highlight results from two target mental-state detection applications, with
the goal of providing initial insight into the necessity for such analyses and the rela-
tionship between DAQ signal fidelity and performance for specific applications.
Applications include: (1) detection of alpha spindle oscillations representative of
“drowsiness” during a driving task, and (2) the detection of P300 visual evoked
responses a rapid serial visual presentation (RSVP) paradigm. In each case, we
examine the effect of simulating degraded DAQ performance (decreased vertical res-
olution and increased RMS noise) on the performance of classifiers already shown to
have reasonable success at differentiating the target states [15–18].

2 Methods

We empirically assessed the practical impact of EEG signal record fidelity by evalu-
ating the performance of several classifiers at various stages of signal degradation. Here
we chose to classify two different neural events of interest: alpha spindle oscillations
[15, 16] which have been associated with fatigue and drowsiness in prolonged
experiments, and P300 visual evoked responses elicited during a rapid serial visual
presentation (RSVP) experiment [19, 20], a neural feature associated with the detection
and recognition of novel visual stimuli. For each neural event class (alpha oscillations
and P300 responses) two separate classifiers were used. Details about the data and
classifiers used in each paradigm are described below.

2.1 Datasets

Driving Task – Drowsiness Detection. The datasets used here have been analyzed
previously [15]; a brief description is presented here. Two healthy males, both right
handed, were instructed to drive in a simulated driving environment in a
sound-attenuated room. The subjects were presented with a straight four-lane highway
with minimal scenery (highway, roadside, and horizon) except for an occasional speed
limit sign. Subjects were requested to maintain the posted speed limit (25 mph or 45
mph) while keeping their vehicle in the center of the lane. A perturbation force would
occasionally cause the vehicle to veer left or right in a manner similar to the effects
experienced when a gust of wind crosses a real vehicle [21]. Subjects drove for
approximately 70 min after a 10–15 min practice period. The EEG was recorded using
a 64-channel Biosemi ActiveTwo system, and offline referenced to the average of the
two mastoids.
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RSVP Task – Target Object Recognition. The data used here has been analyzed
previously [17, 22]. Short video clips were used in an rapid serial visual presentation
(RSVP) paradigm. Video clips included two classes of scenes, either those containing
people or vehicles on background scenes, or containing background scenes alone.
Observers were instructed to make a manual button press with their dominant hand
when they detected a person or vehicle (targets), and to abstain from responding when a
background scene (distractor) was presented. Video clips consisted of five consecutive
images of 100 ms in duration each; each video clip was presented for 500 ms without
pause between, such that the first frame was presented immediately after the last frame
of the prior video. If a target appeared in the video clip, it was present on each 100 ms
image. The distracter to target ratio was 90/10. RSVP sequences were presented in two
minute blocks after which time participants were given a break, and participants
completed a total of 25 blocks.

2.2 Classifiers

Drowsiness Detection. Two classifiers were used for detecting alpha spindle
oscillations in EEG. The first method, proposed by Simon and colleagues [16] defines
the Full-Width at Half-Max (FWHM), which is a measure of peak amplitude and
frequency distribution in the alpha band in sliding EEG windows. The method starts by
determining if the largest peak of the power spectrum from 4–50 Hz in the EEG
window lies in the alpha band (8–13 Hz). If the peak lies in the alpha band, the width of
the peak at half maximum is calculated. If this width is less than two times the
bandwidth of a Hamming window, it is identified as an alpha oscillation. The second
method is based on sequentially discounted autoregressive modeling (SDAR) of a
narrowband filtered EEG signal [15]. The goal of the SDAR approach is to detect
statistically irregular time segments in a time-adaptive nature. The statistics of
specificity, precision and recall are used to evaluate the performance of both algorithms
under varied levels of signal fidelity (see below).

P300 Object Recognition. Two classifiers were used for detecting target object rec-
ognition (e.g., P300 visual evoked potentials) during the RSVP task. The first method,
Hierarchical Discriminant Component Analysis (HDCA) [19, 23], is a two stage binary
classification method which is based on an ensemble of logistic regression classifiers.
In the first stage, the EEG data window, relative to image onset, is divided into K
non-overlapping segments. In each segment, a logistic regression classifier is trained to
segregate between two different sets of stimuli. This logistic regression is trained for
each segment independently. The outputs of these regressions are then used as
parameters in another logistic regression to make the final overall classification. The
first stage classification collapses information across channels in a small time window,
while the second classification collapses information across time. We used K = 10
windows for discrimination as this value has been used previously in similar
studies [20].
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The second classification method employed here used a combination of the
xDAWN spatial filtering technique coupled with a Bayesian linear discriminant anal-
ysis (BLDA) classifier. Collectively this technique will be referred to as XDBLDA; a
full description can be found in [24–26]. xDAWN spatial filtering results in a set of
spatial filters that are rank ordered such that the highest rank filters maximize the signal
to signal plus noise ratio in the EEG signals. Our implementation uses the top eight
spatial filters for classifier input, and the input vector is obtained by concatenation of
the eight spatially filtered EEG signals. The BLDA classifier is then used to discrim-
inate targets from non-targets. For both classifiers, the area under the receiver operating
characteristic (AUC) curve was used to evaluate overall classifier performance under
each level of signal fidelity. In order to assess baseline control (chance) AUC values for
each classifier, performance was re-assessed with data event tags randomly intermixed
between target and non-target classes for each dataset and trained using
cross-validation.

2.3 Simulated Degradation of Signal Fidelity

In order to simulate the effects of data acquisition using different bit-rate ADCs, the
previously-acquired data from each subject were iteratively re-quantized using a
rounding quantization scheme for a series of 6 to 24 bit depths covering a range of ± 4
mV (8 mV total). Values outside this range were clipped. This yields a net effect of
decreasing the effective vertical resolution (increased step size) between possible data
points and likewise increasing “blockiness” of continuous waveforms and loss of
discrimination of small-amplitude fluctuations (See the top row of Fig. 1 for examples).
This step was performed at the earliest stage prior to any further processing and
application of each classification algorithm. We created a total of 13 datasets per
subject ranging from a minimum resolution of 62.5 nV to 256 μV in log2 scale.
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Fig. 1. Examples of how the recorded signal is affected by decreasing vertical resolution (top
row) and increased RMS random noise (bottom row). As the vertical resolution decreases (top
row, left to right), signal features of low amplitude are effectively removed, while the overall
signal becomes similar to that of a step function. Also, as the RMS noise increases (bottom row,
left to right), small changes in the overall signal become masked and more difficult to observe.
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To simulate effects of amplifier random noise on data acquisition, a series of noise files
with uniform random distribution were iteratively created and added to the original
data. Noise data were zero-centered with uniform distribution, each with
root-mean-square power (across the entire waveform). Amplitude values tested ranged
from 2 to 62 μV RMS. The bottom row of Fig. 1 shows an example of how this affects
the data. Note that these steps were applied to the raw data prior to any signal
processing required for each classification method.

3 Results

3.1 Decreased Vertical Resolution

First, we examined the importance of the vertical resolution of the acquired signal,
simulated by re-quantizing pre-recorded data to represent a range of different ADC bit
rates. Figure 2 shows results for two types of experimental paradigms, alpha-oscillation
detection during a driving task (Panels 2A–2C) and P300/target object detection during
an RSVP task (Panel 2D). For alpha oscillation detection, we tested the performance of
two existing classifiers, the SDAR method of Lawhern and colleagues [15] (blue lines
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Fig. 2. Classifier performance per vertical resolution for alpha oscillation detection evaluated as
(a) Recall, (b) Precision, and (c) Specificity; and group mean AUC for P300 detection (d). Blue
lines: SDAR performance (2 subjects); Red FWHM (2 subjects); Black: XDBLDA (mean ± SD);
Green: HDCA (mean ± SD) (Color figure online).
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in Fig. 2) and the FWHM-based method of Simon and colleagues [16] (red lines) for
each of two subjects (separate similar colored lines in Fig. 2). Each panel depicts scores
based on recall (Panel 2A), precision (2B) and specificity (2C) per ADC rate.

Similar to previous reports, overall performance for the AR-based method (blue
lines) is stronger than for the spectral method [15], especially for subject 2 (lowest
line). More notably however, this overall trend is fairly consistent through vertical
resolutions as large as 16 µV. Beyond this point, all three statistics become less stable,
especially recall and sensitivity for the spectral classifier, suggesting substantially
higher false positive rates.

Meanwhile a similar trend is seen when examining P300 detection performance
(Fig. 2D) with XDBLDA (black lines) and HDCA (green lines). Here, group mean
values for area under the curve (AUC) are shown for a set of 15 subjects. As has been
reported, overall performance with XDLBDA is very accurate, superseding HDCA;
however both classifiers follow similar patterns with consistent performance through
8 µV of vertical resolution. Notably, even above this point, performance plateaus above
chance, confirmed in our randomized control simulation averaged to 0.70 ± 0.025 AUC
for XDLBDA and 0.51 ± 0.026 AUC for HDCA.

Fig. 3. Classifier performance per increased RMS noise added to the signal for alpha oscillation
detection evaluated as (a) Recall, (b) Precision, and (c) Specificity; and group mean AUC for
P300 detection (d). Blue lines: SDAR performance (2 subjects); Red FWHM (2 subjects); Black:
XDBLDA (mean ± SD); Green: HDCA (mean ± SD) (Color figure online).
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3.2 Increased Random Noise

Figure 3 shows results of adding simulated uniform random noise to each dataset and
classifier similar to the above.

In this case, the trend is for a more gradual decline, with performance not becoming
notably unstable for alpha-oscillation detection (Fig. 2A–C) until around 11–13 µV
RMS noise is added. As before, the AR classification method appears more robust
overall to the signal degradation. A similar pattern is seen with P300 detection in an
RSVP task (Fig. 3C) – both XDBLDA and HDCA show steady declines in perfor-
mance. In this case even though additional noise cases (up to 60 µV) are shown, group
mean AUC rates remain significantly above estimate levels of chance.

4 Discussion

Above, we have a shown a clear impact of acquired EEG signal fidelity on classifier
performance by parametrically decreasing vertical resolution as might occur with
decreasingly lower ADC bit rates, and increasing RMS background noise to the EEG
signal analogous to use of poorer fidelity analog components. While it is not surprising
that both of these negatively impact classification, it is notable that the outcome per-
formance is meaningfully impacted only with a substantial degradation of the signal.
Specifically, classifier performance only significantly degraded when the effective
vertical resolution was at least 8 µV or background RMS added noise exceeded about
10 µV. Although initial baseline performance differed, this trend appears to be inde-
pendent of the type of classifier used. These results suggest that tailored systems can
functionally operate with substantially lower signal fidelity than is considered a typical
requirement, and that it is important to carefully consider what are the truly necessary
minimum performance specifications for the application at hand. While the traditional
approach to system design for experimental settings (where the emphasis is on max-
imizing signal quality) has served those purposes well, the approaches in use for those
applications currently suffer a number of challenges regarding overall usability [27] and
are not tenable for truly mobile applications where power, size, and cost are consid-
erable factors. In contrast, technological design for targeted real-world application must
be prepared to address these challenges in light of potential tradeoff regarding idealistic
signals.

Our vision of “real-world neuroimaging” (RWN) involves conducting neuroim-
aging within realistic, non-contrived situations, where neural responses reflect what is
expected in real-life situations [6, 7, 11]. While some RWN scientific endeavors can be
managed using currently available DAQ approaches without the need for high mobility
or long-term recording, in order to fully realize our goals of measuring and monitoring
brain activity in truly unconstrained circumstances, we must re-think the way DAQ
occurs with EEG. In particular, our vision is to develop and utilize systems which are
completely “user transparent” – that is, require no direct interaction or intervention
from the user. One facet of this is operation solely on locally-harvested power, so as to
have no requirement for recharging or battery replacement [28]. In order to meet such
stringent constraints, we advocate a careful re-examination of the logic by which we
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collect neurophysiogical data, and focus on the specific needs of the system given it’s
intended use. Some initial prototype integrated circuit designs suggest such ultra-low
power operation is feasible [29–31]; however an empirical evaluation of performance
trade-off, such as carried out here, is necessary in order to validate the utility of these
approaches.

While promising, much follow-up work remains. Regarding the examples high-
lighted here, the performance of HCDA and XDBLDA for P300 discrimination are
surprisingly robust to the manipulations of vertical resolution and RMS noise. Even
above 8 µV resolution, the performance plateau for both classifiers remains above
statistical chance. It is likely that the reason for the plateau is that once resolution
exceeds about 25 µV the data becomes functionally binary in nature – no meaningful
brain-related change in amplitude will be observed. Thus a functional floor effect would
be expected. We hypothesize that the remaining accuracy that occurs despite the overall
lack of information in the amplitude domain stems from the power of pooling across
multiple channels (in this case, 64). Future efforts will focus on exploring this addi-
tional feature domain, and pooling multiple signal features into a single multivariate
analysis, so that we can ascertain the relative pragmatic impact of each feature, as well
as the interactions between them from combined analyses. With that approach, we can
develop models which focus on and refine only the most critical system design com-
ponents which affect overall utility of the system. Such a refined approach is critical
due to the complexity of fieldable system design, where numerous factor affect overall
utility for research applications [27, 32, 33]. The cases highlighted here are only some
examples from a wide variety of potential uses for EEG in fieldable application.
Undoubtedly the performance of any classifier is very tightly coupled to the circum-
stances under which it is used and the data to which it is applied. Therefore the data
presented here alone cannot be used to set overall standards for EEG data acquisition
even for targeted applications. Rather, this report is intended to highlight the impor-
tance of this issue by using some specific example cases. The degree to which other
applications are dependent on signal fidelity, and the specific signal features which may
be lost due to decreasing fidelity, is likely to vary widely across domains. For example,
successful discrimination of extremely small amplitude but highly localized signals,
such as an auditory brainstem response, would likely be substantially more dependent
on both vertical resolution and higher-fidelity noise, but with minimal dependence on
spatial pooling. Our suggestion is for future work to focus on large-scale parametric
analyses involving several datasets and classifiers covering a wide range of domains,
with the goal of establishing the most critical DAQ features tied to a particular class of
applications.

In summary, we have shown that successful discrimination of multiple classes of
neural state is entirely feasible using signals acquired with relatively low fidelity
without a direct consequence to accuracy. These results suggest that, for targeted
research applications, acquiring data at the typical high-fidelity resolution is not nec-
essary. This has direct implications for programs utilizing EEG in real-world domains
where data acquisition methods are critical to success. For example the ability to use
lower-resolution components, such as lower bit-rate ADCs and amplifiers, dramatically
increases opportunities for design and use of ultra-low power systems, or low-cost
systems that can be easily distributed and managed on a large scale.
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