
Understanding and Improving Collaborative
Skills Among Individuals with ASD
in a Distributed Virtual Environment

Arpan Sarkar1, Joshua Wade2(&), and Zachary Warren3,4

1 University School of Nashville, Nashville, USA
2 Electrical Engineering and Computer Science, Nashville, USA

joshua.w.wade@vanderbilt.edu
3 Treatment and Research Institute for Autism Spectrum Disorders (TRIAD),

Nashville, USA
4 Pediatrics, Psychiatry and Special Education, Vanderbilt University,

Nashville, TN 37212, USA

Abstract. Individuals with Autism Spectrum Disorders (ASD) evidence core
impairments regarding social interaction and communication. These impair-
ments can inhibit the ability of individuals with ASD from effectively engaging
with peers and collaborating on goal-oriented tasks. Recently collaborative
virtual environment (CVE) in which individuals with ASD can interact with one
another or with a therapist to achieve some common goal has been proposed for
social competence interventions (SCI) for these individuals. In this paper, we
present the design of a distributed CVE for playing the classic video game pong
to be used for SCI. This collaborative game can be played at several different
modes ranging from one player against an artificial agent in one computer to two
players against each other in two different computers. The system functionality
and robustness were validated through a small user study. In the future, this
CVE will be evaluated with children and adolescents with ASD.

Keywords: Collaborative Virtual Environment (CVE) � Autism Spectrum
Disorder (ASD)

1 Introduction

The Centers for Disease Control and Prevention estimates 1 in 68 children in the
United States has an Autism Spectrum Disorders (ASD) [1]. Individuals with ASD
evidence core impairments regarding social interaction and communication [2–6].
These impairments can inhibit the ability of individuals with ASD from effectively
engaging with peers and collaborating on goal-oriented tasks, which in terms can
contribute to further social isolation, distress, and impairment. Various implementa-
tions of social competence interventions (SCI) have emerged that try to address this
problem. Recently, many of these interventions have taken the form of a collaborative
virtual environment (CVE) in which individuals with ASD interact with one another or
with a therapist to achieve some common goal [7–11]. SCIs based on CVE technology
are highly flexible and have some advantages over alternative intervention methods.

© Springer International Publishing Switzerland 2015
M. Antona and C. Stephanidis (Eds.): UAHCI 2015, Part III, LNCS 9177, pp. 669–680, 2015.
DOI: 10.1007/978-3-319-20684-4_64



Users of CVEs may communicate verbally or non-verbally with one another [12] with
no restrictions on the physical distance between individuals and administrators as there
are in clinic-based interventions. Personal interaction in CVEs may feel “safer” than in
the real world for individuals with ASD [11], and CVEs are capable of creating
interactive scenarios that would not otherwise be possible in the real world.

Recent work on SCIs using CVEs have utilized the strengths of CVEs to deliver
targeted interventions to individuals with ASD. Stichter et al. [7] deployed iSocial: a
distributed, 3D virtual learning environment which was designed as a SCI for indi-
viduals with ASD in a distance learning format. ISocial contained collaborative tasks
including one in which students worked together to design and build a restaurant in the
virtual world, requiring students to talk with one another and coordinate their actions in
order to complete tasks. Hourcade et al. [8] designed an array of tablet-based activities
designed to encourage social interaction and face-to-face collaboration among children
with ASD. The activities provided on the tablets included drawing (to create and/or
express how they feel), music authoring (to create different kinds of media),
puzzle-solving (to test communication, collaboration, coordination, and visuo-spatial
reasoning), and a photo-distorting app (to explore emotions on faces). Cheng et al. [10]
developed a CVE aimed at increasing empathy in individuals with ASD by showing
them scenarios intended to elicit empathic responses such as witnessing a person
cutting in line or slipping and falling on the floor.

In this work, we present the design of a distributed CVE based on the game pong to
understand and eventually improve the collaborative skills of individuals with ASD.
The system that we designed records quantitative, objective data from users regarding
measures of performance—both individual and collaborative—as well as conversation
through recorded audio.

In this paper, we discuss the design decisions made in the development of this
system as well as a series of validation tests of the system to ensure its correctness and
efficiency. The remainder of the paper is organized as follows. Section 2 details the
hierarchical, hybrid automata model of computation used in implementing the soft-
ware. Section 3 discusses the preliminary evaluation of the system with volunteers. In
Sect. 4, we provide the results from both the throughput analysis and the validation
study. Section 5 concludes the paper with a discussion of the limitations of the current
system and proposed future work.

2 System Design

2.1 Overview

Pong is a classic video game with a simple interface and is based on the game of ping
pong in which two players use paddles to hit a ball back and forth trying to cause their
opponent to miss the ball. Figure 1 shows an example pong interface. We selected pong
as the basis for a collaborative game because it is simple to understand, easy to
implement, and offers a variety of ways in which collaboration can be introduced into
the game. We chose to implement the element of collaboration through the control of a
single game paddle by more than one user—two users in this case. The subsections that

670 A. Sarkar et al.



follow elaborate on the design of gameplay, overall architecture, models of compu-
tation used to create system components, and our method of converting the models into
software.

2.2 Game Design

Our version of the pong game consists of a collection of matches which we refer to as a
session. A match is defined as an interval of time beginning when the ball is deployed
and ending when one player misses the ball. Sessions can be played in one of several
different types of configurations. The following configurations were implemented:
(1) single human vs. artificially intelligent agent (AI) on a single PC, (2) human team
vs. AI on a single PC, (3) human team vs. AI on separate PCs, (4) human vs. human on
a single PC, and finally (5) human vs. human on separate PCs. Matches in a session are
presented sequentially with a 3 s countdown before the match starts and a period of
feedback following the end of a match. This feedback is presented as both text and
audio and either congratulates the player for scoring, encourages them if they do not
score, or remains neutral in the event of a draw.

The AI was designed with three different difficulty settings: easy, medium and hard.
In the easy setting, the AI follows an oscillating trajectory based on the triangle wave
function with a period of 2 s (1).

p tð Þ ¼ 2 �1ð Þ tþ1
2j j t � t þ 1

2

�
�
�
�

�
�
�
�

� �

ð1Þ

This behavior is considered easy because the AI effectively demonstrates random
movement without any consideration of the ball’s trajectory. In the medium and hard
settings, the AI predicts the destination of the incoming ball and moves towards this goal
with a speed controlled by a scalar k and a linear interpolation function l2, where the
value of k is larger in the hard setting (i.e., faster) and smaller in medium setting (i.e.,
slower). In order to guarantee that the AI fails to reach the goal occasionally, a random
error within a reasonable range was applied to the calculation of the goal position.

Fig. 1. Basic pong interface

Understanding and Improving Collaborative Skills 671



2.3 Architecture

There are several components of this work which comprise the overall application
architecture. Figure 2 gives a representation of the architecture as a block diagram
where each block is a separate component. When the application runs, a server or client
role is specified. The blocks shaded in grey are executed only when the role chosen is
that of the server and are disabled otherwise. The Main Controller is the central
component of the application—regardless of role—and handles synchronization of all
the adjacent components. The Network Module takes on the behavior of either a server
or client and manages all sending and receiving of messages over the network. The
messages passed over the network are objects serialized as JSON strings. Messages
sent from the client to the server contain input from the human player while messages
from the server to the client contain the current state of the CVE. The Session Manager
executes in either server or client role and ensures that the client instances of the CVE
reflect the true state of the server instance. In the System Configuration Module,
information regarding IP addresses and port numbers as well as the session configu-
ration to execute is specified.

The remaining components’ functions should be evident based on their names. The
Data Log Module records several different types of data. Time series data including the
velocity and position of the ball, velocity and position of both paddles, and player input
are recorded with a timestamp at the fastest possible rate. Data related to various
predefined events are also logged such as at the beginning and ending of matches, at the
beginning and ending of feedback, and for collisions of the ball with other objects. In
addition, audio is recorded from two separate microphones for offline analysis of
speech. The Ball Controller simply updates the position of the ball during matches
while the AI Controller updates the position of the AI player. The Player Input manager
obtains player input on the client side and applies changes to the player’s paddle on the
server side.

Fig. 2. Block diagram of the overall architecture (server-exclusive components shaded in grey)

672 A. Sarkar et al.



2.4 Models of Computation (MoC)

The nontrivial components of the system were first modeled using formal models of
computation (MoC) and then converted to software. The latter step is discussed in the
next subsection. The MoCs chosen were finite state machines (FSM) and hybrid
automata (HA). More specifically, the FSMs in this system are composed hierarchically
in what is referred to as a hierarchical state machine (HSM). The syntaxes for FSMs,
HSMs and HA used here are in the style found in Lee and Seshia [13]. Since there are
so many components of this architecture, a full description of each one is not possible,
so we instead focus on the MoCs involved in the AI player’s behavior.

At a certain level of abstraction, the AI has only three distinct states: (1) idle
because the match has not started, (2) idle because the match configuration type is
human vs. human, and (3) playing. This behavior is captured formally in the FSM
shown in Fig. 3. The initial state GameNotStarted indicates that a match has not yet
begun and the AI is idle. The state GameStartedAgentPlaying is arrived at when a
match begins and the match configuration type is not human vs. human. Conversely,
the FSM transitions to GameStartedAgentNotPlaying if a match begins and the match
configuration type is human vs. human. If a match ends while the FSM state is either
GameStartedAgentPlaying or GameStartedAgentNotPlaying, then the FSM transitions
back to the GameNotStarted state and remains there until the next match begins.

Of course, this level of abstraction does not capture all of the complex behavior of
the AI such as how it behaves under different difficulty settings or when the ball’s
trajectory changes and the AI must re-calculate its goal position. For this level of detail,
we designed the HA shown in Fig. 4 which is an expansion of the AI’s FSM state
GameStartedAgentPlaying. Upon entering the HA in Fig. 4, a junction determines
which transition is taken first based on the specified difficulty level d. If d is equal to the
value EASY, then the transition to the discrete mode named Oscillating is taken and
the AI follows the triangle wave trajectory described earlier. While in this mode, the

Fig. 3. FSM defining the general behavior of the AI player

Understanding and Improving Collaborative Skills 673



velocity of the AI is constant [v(t) = 1] and—as with all of the discrete modes in this
particular HA—the rate of change of time is assumed to be constant as well _s tð Þ ¼ 1½ �.

If the value of d had instead been MEDIUM or HARD, then the transition to the
discrete mode Dormant would have been taken where the AI would remain idle [v
(t) = 0] until the ball began to move towards it. When it was detected that the ball was
moving towards the AI player, the transition from Dormant to CalcTrajectory was
taken. Within CalcTrajectory, the AI would predict—with some random error—the
path of the ball based on the ball’s position and velocity via the function l1, and would
then transition to the mode MovingTowardsGoal. While in MovingTowardsGoal, the
AI moved with constant velocity towards the calculated goal position until it was
within some small distance threshold λg of the goal. Once arrived at the goal, the AI
would remain there until either the ball was deflected successfully or the ball’s direction
changed due to hitting a wall.

The hierarchy shown in Fig. 4 is only a small view of the total hierarchy involved in
the system. At the highest level there is the Main Controller’s FSM which includes
states for obtaining the network role from the user as well as starting and stopping
sessions. Below the Main Controller’s FSM is the Session Manager’s FSM whose
states deal with setting up matches, performing the match countdown, executing the
match, and giving feedback. All of the AI behavior is below the Session Manager’s
FSM. Next we describe how we implemented this 4-layer HSM in software.

Fig. 4. Hybrid Automaton (HA) describing movement of AI player. This HA is an expansion of
the more general FSM shown in Fig. 3.

674 A. Sarkar et al.



2.5 Implementation

The authors used their own method of converting formal MoCs into programming
code. A base class called Automaton maintained state variables and provided a state
transition function:

Each formal MoC was then implemented as a derived instance of this Automaton
object. For example, the HA shown in Fig. 4 was defined thusly:

In most cases, each MoC was implemented in a separate file in order to maximize
isolation which simplified the development process. The logic of each MoC was
written in an if-then-else branching structure and was updated at the fastest rate that the
system would allow. All of the code was written in C# using the Unity3D game engine
(www.unity3d.com).

Figure 5 shows a stack of graphs which give the state values of the HSM from the
AI’s motion planning HA up to the Main Controller’s FSM during a sample run of the
system. A selection of discrete events is represented by the vertical lines. Table 1 gives
details about the events as well as the responses of each relevant component of the
system due to the events. The reader can see clearly from the graph that between events
e2 and e3, the AI player is performing the triangle wave oscillating behavior. From
event e7 until the end of the graph, the AI player is using the intelligent method of play
where it moves based on the ball’s trajectory.

3 Procedures

3.1 Network Throughput Analysis

In order to assess the reliability and performance of the system, we analyzed the
network throughput of the system defined here as the number of serviced requests from

Understanding and Improving Collaborative Skills 675

http://www.unity3d.com


the perspective of the client(s) during regular gameplay. In order to provide a smooth
experience to users, the update rate on the client side needed to be sufficiently fast so as
not to show lag—in gaming, this value is often 60 frames per second (FPS), but can be
as low as 30 FPS. We performed this analysis on two different network configurations:
(1) a server and client running on the same PC, and (2) a server and client running on

Fig. 5. AI Behavior HSM state values over time: the Main Controller FSM (M), Session
Manager FSM (S), general agent FSM (AS), and agent position (Ap).

Table 1. Events corresponding to HSM output graph in Fig. 5

Event Description of system changes

e0 M: session begins
S: match countdown begins

e1 S: countdown complete and match begins
(EASY match)

e2 AS: AI becomes active
Ap: AI begins oscillating trajectory

e3 S: match ends and feedback begins
AS: AI becomes inactive
Ap: AI stops moving

e4 S: feedback done and countdown starts
again

e5 S: countdown complete and match begins
(EASY match)

e6 S: countdown complete and match begins
(MEDIUM match)

e7 AS: AI becomes active
Ap: AI begins intelligent trajectory

676 A. Sarkar et al.



one PC while another client ran on a second PC. Note that there is no requirement that
the server must be run on the same PC as any client. Both PCs had 3.7 GHz processors
with at least 20 GB of RAM and NVIDIA Quadro K600 GPUs. Each configuration
type was evaluated 5 times each and the results are presented in Sect. 4.

3.2 Human Validation Study

A small validation study was conducted with 2 pairs of volunteers—3 females (age, M
25.7 y, SD 1.7 y) and 1 male (age, 25)—to verify that the system was robust and
complete. Each of the participants first completed a practice session consisting of 9
matches in which he/she played against the artificial agent to become acclimated to the
system. Predetermined pairs of participants then completed a collaborative session on
the same PC followed by a collaborative session on separate PCs. The goal was,
contrary to the original pong game where each player plays to defeat his/her opponent,
to play collaboratively with one’s partner to defeat the AI player. All three sessions
consisted of 9 matches with 3 easy, 3 medium, and 3 hard match difficulties. For
side-by-side collaborative play, both participants sat at the same computer and shared a
keyboard to control the paddle. One person used the up and down arrow keys of the
keyboard to control the paddle while the other used the “W” and “S” keys. For
collaborative play on 2 separate PCs, participants sat at adjacent desks and could speak
to one another. In both types of collaborative play, 2 separate directional microphone
devices captured the speech of the participants.

4 Results and Discussion

4.1 Network Throughput Analysis Results

Table 2 gives the results of the two analyses of the network throughput. In both cases,
all of the involved clients demonstrated a throughput rate sufficiently high enough to
avoid any noticeable image stuttering or lag. Since Client 1 ran on the same PC as the
server in both evaluations, it had a very high throughput rate greater than 300 Hz while
Client 2, which ran on a separate PC, had a throughput rate just under 60 Hz.

4.2 Human Validation Results

Table 3 gives the results of the user validation study for individual practice and col-
laboration for the two pairs of participants. Participants P0 and P1 performed com-
paratively well both individually and collaboratively. Nothing can be generalized from
this small dataset, but it seems reasonable that player performance would drop from
individual play to collaborative play since the sense of control is lessened. The player
score indicates the number of times that the AI player failed to deflect the ball. Sim-
ilarly, AI score indicates the number of times that the human player or players were
unable to deflect the ball. A draw occurred if, after 1 min of play, no player, neither the
human player(s) nor the AI player, scored.

Understanding and Improving Collaborative Skills 677



4.3 Discussion

The network throughput analysis results provide significant evidence that the system is
fast enough to handle one or two clients and therefore all of our proposed gameplay
configurations. In fact, scaling up the number of clients in the future would likely
contribute to relatively minor declines in system performance. The sample used for the
validation test is obviously too small to draw any performance-related conclusions
from, but it does show that our system is capable of collecting the data needed in order
to assess whether an individual’s performance varies when playing alone or in a team
as well as whether the various configuration types affect performance.

5 Conclusion

We have developed a distributed CVE, based on the video game pong, to understand,
analyze, and eventually address the collaborative and communicative skills of indi-
viduals with ASD. This system records quantitative and objective data regarding both
individual and collaborative performance through analysis of recorded audio and
gameplay.

There were some limitations regarding the experiment. First, we conducted a small
user study with typically developed individuals to validate the system, but they are not
the target group for this research. Second, we only implemented one form of input for
the paddle (i.e., keyboard-based). And third, we used a wired connection for recording
audio. In future work, we intend to address all of these issues. We plan to conduct a
pilot user study on individuals with ASD, in order to determine differences in

Table 2. Network throughput rates in Hz

Trial number Single client Two clients
Client 1* Client 1* Client 2

1 340.14 319.85 59.83
2 327.25 309.86 59.65
3 339.94 318.63 59.84
4 344.12 275.08 59.88
5 341.55 332.48 57.20
Mean 338.60 311.19 59.28
SD 6.56 21.74 1.17
*Executed on the same PC as the server.

Table 3. User performance results

P0 P1 P2 P3 P0, P1 Collaboration P2, P3 Collaboration

Individual practice Same PC Diff. PC Same PC Diff. PC

Player Score 6 6 3 2 3 4 3 4
AI Score 3 2 5 7 3 3 6 4
Draws 0 1 1 0 3 2 0 1

678 A. Sarkar et al.



collaborative gameplay from that of typically developed individuals and also to
determine any long-term effect that our system has on the collaborative skills of
individuals with ASD. We intend to add other forms of input besides keyboard, such as
joysticks or mobile devices (i.e., iPhone, Android, etc.). We also aim to implement
some form of audio streaming to allow increased separation, while playing collabo-
ratively, between participants in experiments. In addition, we intend to implement a
“rally” mode which would allow a more sophisticated kind of collaboration game,
instead of pure competitive gameplay. A rally mode would involve two players, each
controlling their own paddle, playing with each other, instead of against each other, and
the goal would be to continuously pass the ball from paddle to paddle. In this scenario,
to succeed, users would have to accurately gauge their paddle movements and the effect
their actions will have on the other player. We believe that this will provide highly
accurate data regarding participation and collaboration between users.

Acknowledgment. This work was supported in part by the National Institute of Health Grant
1R01MH091102-01A1, National Science Foundation Grant 0967170 and the Hobbs Society
Grant from the Vanderbilt Kennedy Center.

References

1. Wingate, M., Kirby, R.S., Pettygrove, S., Cunniff, C., Schulz, E., Ghosh, T., Robinson, C.,
Lee, L.C., Landa, R., Constantino, J., Fitzgerald, R., Zahorodny, W., Daniels, J., Nicholas,
J., Charles, J., McMahon, W., Bilder, D., Durkin, M., Baio, J., Christensen, D., Van, N.
Braun, K., Clayton, H., Goodman, A., Doernberg, N., Yeargin-Allsopp, M., Monitoring, A.
D.D.: Prevalence of autism spectrum disorder among children aged 8 years - autism and
developmental disabilities monitoring network, 11 Sites, United States, 2010. Mmwr
Surveillance Summaries, vol. 63, March 28 2014

2. Senju, A., Johnson, M.H.: Atypical eye contact in autism: models, mechanisms and
development. Neurosci. & Biobehav. Rev. 33, 1204–1214 (2009)

3. Bekele, E., Crittendon, J., Zheng, Z., Swanson, A., Weitlauf, A., Warren, Z., Sarkar, N.:
Assessing the utility of a virtual environment for enhancing facial affect recognition in
adolescents with autism. J. Autism Dev. Disord. 44, 1641–1650 (2014)

4. Bekele, E., Zheng, Z., Swanson, A., Crittendon, J., Warren, Z., Sarkar, N.: Understanding
how adolescents with autism respond to facial expressions in virtual reality environments.
IEEE Trans. Vis. Comput. Graph. 19, 711–720 (2013)

5. Lahiri, U., Bekele, E., Dohrmann, E., Warren, Z., Sarkar, N.: Design of a virtual reality
based adaptive response technology for children with autism. IEEE Trans. Neural Syst.
Rehabil. Eng. 21, 55–64 (2013)

6. Kuriakose, S., Sarkar, N., Lahiri, U.: A step towards an intelligent human computer
interaction: physiology-based affect-recognizer. In: 2012 4th International Conference on
Intelligent Human Computer Interaction (IHCI), pp. 1–6 (2012)

7. Stichter, J.P., Laffey, J., Galyen, K., Herzog, M.: iSocial: Delivering the social competence
intervention for adolescents (SCI-A) in a 3D virtual learning environment for youth with
high functioning autism. J. Autism Dev. Disord. 44, 417–430 (2014)

8. Hourcade, J.P., Bullock-Rest, N.E., Hansen, T.E.: Multitouch tablet applications and
activities to enhance the social skills of children with autism spectrum disorders. Pers.
Ubiquit. Comput. 16, 157–168 (2012)

Understanding and Improving Collaborative Skills 679



9. Montoya, M.M., Massey, A.P., Lockwood, N.S.: 3D collaborative virtual environments:
exploring the link between collaborative behaviors and team performance. Decis. Sci. 42,
451–476 (2011)

10. Cheng, Y., Chiang, H.-C., Ye, J., Cheng, L.-H.: Enhancing empathy instruction using a
collaborative virtual learning environment for children with autistic spectrum conditions.
Comput. & Educ. 55, 1449–1458 (2010)

11. Cheng, Y., Moore, D., McGrath, P., Fan, Y.: Collaborative virtual environment technology
for people with autism. In: Fifth IEEE International Conference on Advanced Learning
Technologies, ICALT 2005, pp. 247–248 (2005)

12. Nguyen, T.T.H., Fleury, C., Duval, T.: Collaborative exploration in a multi-scale shared
virtual environment. In: 2012 IEEE Symposium on 3D User Interfaces (3DUI), pp. 181–182
(2012)

13. Lee, E.A., Seshia, S.A.: Introduction to embedded systems: A cyber-physical systems
approach. Lee & Seshia (2011)

680 A. Sarkar et al.


	Understanding and Improving Collaborative Skills Among Individuals with ASD in a Distributed Virtual Environment
	Abstract
	1 Introduction
	2 System Design
	2.1 Overview
	2.2 Game Design
	2.3 Architecture
	2.4 Models of Computation (MoC)
	2.5 Implementation

	3 Procedures
	3.1 Network Throughput Analysis
	3.2 Human Validation Study

	4 Results and Discussion
	4.1 Network Throughput Analysis Results
	4.2 Human Validation Results
	4.3 Discussion

	5 Conclusion
	Acknowledgment
	References


