Chapter 25
GUI for Agent Based Modeling

Tadashi Kurata, Hiroshi Deguchi, and Manabu Ichikawa

Abstract In this paper, we discuss how to build a model by SOARS VisualShell
intuitively and explain its architecture. SOARS (Agent based simulation modeling
language) SOARS Project (http://www.soars.jp), Tanuma et al. (Post-proceedings
of AESCS04. Springer, Japan, pp 49-56, 2004) and Tanuma and Deguchi (Inst
Electron Inf Commun Eng D J90-D(9):2415-2422, 2007) is a programming
language to model social phenomena by agent-based simulation. We aim to make
SOARS a simulation description language by which a domain expert can simulate
social interactions occurred in the real world by ones conceptual model intuitively.
Therefore, a support tool for realizing and achieving specialized concepts is
necessary for a domain expert to build and run a simulation model based on
his/her only domain knowledge without possessing complex programming skill, and
SOARS VisualShell is an application to support such intuitive modeling by SOARS.

25.1 Background

In this paper, we focus on the agent-based simulation modeling of social phe-
nomena. By agent-based simulation, we can model a system composed of agents
who make decisions autonomously, and simulate the interactions between them.
On the other hand, big data analysis is becoming more important in IoT era,
for experts in divergent fields, and it is becoming challenging yet promising
to construct an agent-based simulation model by applying the big data [3]. We
consider it important to design IoT or IoE, which handle the interrelationship among
autonomous agents such as real person and things on the internet, by using agent-
based simulation. As we have already implemented Pub/Sub(the standard protocol
for IoT) library for SOARS, it is possible to communicate the agent of IoT through
the broker [1].

T. Kurata (2<) « H. Deguchi * M. Ichikawa

Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa,
226-8503, Japan

e-mail: kuratal2@cs.dis.titech.ac.jp; deguchi @dis.titech.ac.jp; ichikawa@dis.titech.ac.jp

© The Author(s) 2015 275
H. Takayasu et al. (eds.), Proceedings of the International Conference on Social

Modeling and Simulation, plus Econophysics Colloquium 2014, Springer

Proceedings in Complexity, DOI 10.1007/978-3-319-20591-5_25

http://www.soars.jp
mailto:kurata12@cs.dis.titech.ac.jp
mailto:deguchi@dis.titech.ac.jp
mailto:ichikawa@dis.titech.ac.jp

276 T. Kurata et al.

For agent-based simulation modeling, domain experts need to design and model
the complex interactions among agents in the real world. However, it is hard
work for domain experts who have no programming experiences to construct such
agent-based simulation models since many such models are built by programming
languages. To solve this problem, it is necessary to construct an application for
experts without programming skills to build models, same as using a CAD /
CAM [4, 11] based on their domain knowledge.

In order to fulfill this purpose, a Modeling GUI which could naturally realize
the agent concept and their interactions that expresses is essential and necessary.
Modeling GUI provides a support environment for constructing models by a domain
specific language under the specific model frame. For example, Stella [10] is the
domain specific language under the system dynamics model frame, and its Modeling
GUI allows users to construct stock-flow type models visually and intuitively while
only mathematical knowledge about the system dynamics is required. Another
domain specific language is Matlab [6] whose Modeling GUI is designed to
construct control models visually and intuitively under the control model frame,
and only mathematical knowledge on the control theory is necessary.

However, in terms of agent-based modeling, although there are modeling GUIs
which can model the agent over two-dimensional cells intuitively, i.e. NetLogo [7],
few of them could express agents social interactions intuitively, and there is no
Modeling GUI to express agents social role interaction neither.

25.2 Objectives

SOARS, a domain specific language under agent-based simulation model frame,
was developed by Deguchi Laboratory of Tokyo Institute of Technology since
2004 [9, 12, 13] and continued to evolve. Since its simulation engine is a text-
based programming language, programming skills by the text editor are required in
order to construct models. As a result, domain experts without programming skills
may face difficulties of constructing agent-based simulation models by using it.
Therefore, SOARS VisualShell was developed as the Modeling GUI for SOARS. It
enables domain experts who have few programming experiences to construct agent-
based simulation models only based on their domain knowledge.

Similar to Stella, Matlab and Scratch [5, 8], SOARS VidualShell should be
designed with an intuitive user interface, by achieving two objectives. The first one
is to prevent the occurrence of syntactical bugs. In this way, the user could identify
the semantic bug, i.e. the model design bug, when the simulation does not behave
in accordance with the original intention. The other one is for domain experts to
realize SOARS specific model concepts intuitively, such as social role interactions.

This paper is organized as follows. In Sect.25.3, we will explain the design of
SOARS VisualShell developed to achieve these two objectives, and conclusions and
future work are discussed in Sects. 25.4 and 25.5 respectively.

25 GUI for Agent Based Modeling 277

/ Spot role2
Spot2

Fig. 25.1 Agent, spot and role in SOARS

25.3 Design

25.3.1 Architecture of SOARS

SOARS is composed of agents/spots as entity with their associated roles. Agents
can move between any spot on the space. Agents and spots have variables, such
as string, numeric, array, hash table variables and so on. A role has instructions as
conditions and actions. Agent and spot can select any role to execute corresponding
instructions with their variables in order to advance the simulation progresses, as
shown in Fig. 25.1.

Furthermore, SOARS has the stage concept to control the instruction execution
order in a role. One loop of a simulation is divided into one or more stages, which
are executed in a specific order. While each stage, it is possible to define parallel
executable instructions of which the execution order does not matter. By imposing
such restrictions, all instructions will be executed in the correct order.

However, as its program is based on text, programming with the text editor is
required, as shown in Fig. 25.2.

25.3.2 Design Concept of SOARS VisualShell

General computing languages, such as C, C++, Java, Fortran, and so on, are not
domain specific languages, and the programming freedom degree is high and the
description is fine-grained. As a result, their corresponding GUI is complicated
to handle due to the high freedom degree, and a text editor is required for
programming, such as Eclipse, Microsoft Visual Studio and so on.

On the other hand, the programming freedom of domain specific language, such
as Stella, Matlab, SOARS, and so on, is low and the description is coarse-grained.

278

T. Kurata et al.

: i) N —
§ ot vte Oy ?.h.‘.}‘:_.,_;_.:... s w
—T ———— — o
. 7 A —— e S
,) (P DUNRURSIR, ~Sgy
i -
spotName spotCommand
outworld <>setSpot __spot_variable
shop <>setSpot __spot_variable
restaurant <>setSpot __spot_variable
park <>setSpot __spot_variable
school <>setSpot __spot_variable
home <>setEquip p=util.DoubleProbability ; <>logEquip p

Fig. 25.2 SOARS programming in text base. It requires to type the program in each cell without

syntactical error check

Table 25.1 Comparison among programming languages, model frame and modeling GUI

Programming language DSL? Model frame Modeling GUI
General computing language® No None None

Stella Yes System dynamics Stella GUI

Matlab Yes Control theory Matlab GUI
SOARS Yes Agent-based simulation SOARS VisualShell

2 Domain specific language

b C, C++, Java, Fortran and so on

As a result, the GUI is not complicated to handle due to the low freedom degree,
and it is possible to construct the model with Modeling GUI.
The comparison among above-mentioned programming languages is shown in

Table 25.1.

In this study, we construct SOARS VisualShell, the Modeling GUI for SOARS

by Java.

25 GUI for Agent Based Modeling 279
25.3.3 User Interface of SOARS VisualShell

SOARS VisualShell is the Modeling GUI for model construction by SOARS, and
can manipulate agents, spots, roles and stages of SOARS visually and intuitively.
Since SOARS VisualShell can define every element to create SOARS text base
program, SOARS VisualShell can describe every SOARS program as the simu-
lation development environment. SOARS VisualShell holds the visual description
language in XML format to describe elements designed for SOARS, such as agents,
spots, roles and stages. There are two features of SOARS VisualShell. One is the
interactive interface which does not require users to remember instructions and
formats, while the other is the automatical SOARS text-based program genera-
tor.

Furthermore, SOARS VisualShell requires only mouse operations for input and
output, and the keyboard input is only required to set the value of variables. Syntacti-
cal bugs are prevented as the check of input strings is done automatically. Therefore,
while knowing only the agent/spot concept of SOARS, it is possible to use this GUI
intuitively without holding complex programming skill. SOARS VisualShell does
not require users to handle syntactical bugs. In SOARS VisualShell, agents, spots
and roles are represented as icons, as shown in Fig. 25.3, and the data structure is
shown in Fig. 25.4. Its user interface visualizes the structure of SOARS intuitively.
Through the interface, users are able to create a new agent, spot and role only
by drag and drop from the icon menu. By clicking the start button, users can
create a SOARS text base program automatically and launch the simulation more
easily.

There is the editing tool Dia Diagram Editor(UML editor) such as SOARS
VisualShell. Dia Diagram Editor is a document generation tool to edit UML
diagram [2]. On the other hand, SOARS VisualShell is a tool for automatically
generating the source code of the agent-based simulation actually works. SOARS
VisualShell can build the model without syntactical bugs and run it.

25.3.3.1 Agent/Spot Edit

In SOARS VisualShell, agents and spots are represented as icons. By double
clicking the icon, users can define the agent/spot name, the number of agent/spot
and variables, such as string, numeric, array, hash table and so on, as shown in
Fig.25.5. It is possible to specify the number of agent/spot of up to several billion.
SOARS VisualShell is actually used to infection simulation model building of huge
city of about 300,000.

This user interface requires only mouse operations to select a variable type, and
the keyboard input is only used for setting an agent/spot definition, a variable name
and the initial value of variables.

T. Kurata et al.

280
Simulation start button
800 SOARS Viswatnet - J
90« o0 sax O & ol # §CO 0 um s [
Mure fater Name momer e |m‘_ Dm‘g and drop to ol
. ﬂ e create a new agent, F
C i == Lok spot and role
tiwme #‘m 'IH‘ :'.uhv- I"f;’ﬂ \-rc‘ n‘ch
Fiole Fole B L=
U O I
Name g Name whool Mave Rome
p- o - / Icon menu
! e
T tethe wolee ot werfer
! ~
'r s\
'! “\
! \\\
i ~
]
i
' \E.. Ly |1 12)
=)
O O O
Name : father Name : mother Name * child Agent icons
Spot : Spot : Spot
Role : father Role : mother Role : child)

Role :

Role :

Name . outworld MName

Role :

Role :

Role :

[]

Name : shop Name : stw Nané' home

. officeName : restaurant Name : park
Role :

father

2 33

Spot icons

Role icons

Fig. 25.3 SOARS VisualShell

25 GUI for Agent Based Modeling

Log

Name <

Variable name

Entity » Variable

Name
Initial value

v,
@,
e,
,
v

Role »| Statement

Condition
Command

Stage

Name

Fig. 25.4 Data structure of SOARS VisualShell

25.3.3.2 Role Edit

281

In SOARS VisualShell, roles are represented as icons, as shown in Fig.25.6. By
double clicking the icon, it is possible to define the role name, conditions and actions

executed on each stage. The conditions and actions are defined as instructions.

This user interface is in spreadsheet format, and a stage and associated instruc-
tions should be set to each cell. Besides, it requires only mouse operations to
select a stage, a condition type, an action type, an instruction and each instructions

arguments, and the keyboard input is only necessary for inputting the role name.

25.3.3.3 Stage Edit

In SOARS VisualShell, stages are defined in the GUI, as shown in Fig.25.7. This
user interface requires the keyboard input for only inputting the stage name, and it
requires only mouse operations to set the stage order.

282 T. Kurata et al.

Name father

Number 3

s '"__4 Agent/Spot definition
B. Image

Double click
9. Others

i T vy

’,,_.-"’}— - i \ .

-) e
=i | Agent/Spot icons

Variable type = Keyword -

Name home o+ L‘

\\----4 Varisble definition |
Variable type selection |

Fig. 25.5 Agent/Spot edit in SOARS VisualShell

Stage selection

Initial spot

Initial role | father

2. Variablel —t gt
3. Variable2
| 4. Class variable R
Yot e TS

5. File variable
6. Initial data file
7. ExTransfer

Time : isTime @8:00
Time : isTime @9:00
Time : isTime 17:00
Time : isTime 17:00
Time : isTime 17:00

@ Condition
7 1. Spot

1 2. Keyword

il]

" 4. Role
\

Condition Type I3

Time

At e
After the specified time
l&efore the specified time

(®) Time variable
Between start time and stop time

Condition type selection

Fig. 25.6 Role edit in SOARS VisualShell

25 GUI for Agent Based Modeling 283

| ® O) O Edit main stage property

Stage |init
Comment

Random

oK | Cancel

Fig. 25.7 Stage edit in SOARS VisualShell

25.3.3.4 Log Output Specification

In SOARS, the value of agent/spot variables is recorded in a log file during the
simulation running. In SOARS VisualShell, the logged variables are defined in the
GUI, as shown in Fig. 25.8. This user interface requires only mouse operations to
select the logged variables from the list.

25.3.3.5 Simulation Condition Specification

In SOARS, it is necessary to set simulation conditions, such as the simulation start
time, step time, stop time and so on. In SOARS VisualShell, they are defined in the
GUIL, as shown in Fig.25.9. This user interface requires only mouse operations to
select numeric values and keyboard operations for direct value input.

284 T. Kurata et al.

Fig. 25.8 Log output edit in —~
SOARS VisualShell e)

Agent keyword Agent num
™ sName
™ SRole
I_’f $Spot
|Zf goOut

@ home

12[shopping

Fig. 25.9 Simulation enn
condition edit in SOARS .
VisualShell

HELTI Simulation

Start time 0] / 00 = 00 :
Step time ol J 01 = 00 :

End time rd 00 = 00 =

Set log step time

4 Export end time

Random seed

25.4 Conclusion

In SOARS VisualShell, as the concepts necessary to construct a model are expressed
systematically, it is possible for the domain expert to construct a model only by
selecting those elements sequentially. In other words, it is possible to construct a
model merely by mouse operations. Though the string input is done via keyboard,
the checking of input strings is done automatically. Therefore, it is possible to
construct a model intuitively and syntactical bugs are avoided naturally. When the
simulation goes against ones original intention, domain experts can identify the
causes as semantic bugs, i.e. model design bugs, immediately. In addition, users
can get familiar with the SOARS VisualShell operations within a very short period
on any Java-installed PC (Windows, Mac, Linux).

In order to promote SOARS and for education purposes, SOARS Project holds
SOARS Workshop every year [9]. By attending the intense tutorials with the

25 GUI for Agent Based Modeling 285

assistant of experienced SOARS programmers, anyone can construct an agent-based
simulation model by SOARS through the SOARS VisualShell within a short period.
SOARS VisualShell is available in the humanities universities(Waseda University,
Tokyo Institute of Technology, and so on).

In this paper, we have shown that this GUI, which is designed for a domain
specific language of agent-based modeling, SOARS, is effective in modeling. More
specifically, since the syntactical bug never occurs by using this GUI, users can
devote their effort to resolving the semantic bugs only. In addition the user can
manipulate this GUI to realize the model concept intuitively while programming
skills are not required.

25.5 Future Work

Agent-based modeling is expected to develop systems composed of agents in the
real world in IOT era. In future, SOARS is not only expected to model autonomous
agents abstracted from the real world, but also to become an agent-based designing
language which could utilize big data collected from sensors and enable motion
control of actuator from the real world more intuitively [1]. In addition, SOARS
VisualShell is expected to evolve to enable visual description of models.

Open Access This book is distributed under the terms of the Creative Commons Attribution Non-
commercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.

References

1. Deguchi H (2014) Multiagent simulation: 2. Social and organizational ICT architecture design
in the IoE Era—from social simulation to real world OS -. Inf Process Society of Japan
55(6):589-548 (in Japanese)
2. Dia Diagram Editor (2004) http://sourceforge.net/projects/dia-installer/
3. Karnouskos S, Tarig MMJ, (2009) Using multi-agent systems to simulate dynamic infras-
tructures populated with large numbers of web service enabled devices. In: International
symposium on autonomous decentralized systems, 2009 (ISADS 2009), pp 23-25
4. Kirk JA, Anand DK, Anjanappa M, Uppal R (1986) Implementation of a flexible manufac-
turing protocol. In: Proceedings of 2nd IASTED international conference. Los Angeles, CA,
USA,p71

. Maloney J et al (2010) The scratch programming language and environment. ACM Trans
Comput Educ 10(4), Article 16 (11/2010):15

. Matlab (late 1970s) http://www.mathworks.com/

. NetLogo (1999) https://ccl.northwestern.edu/netlogo/

. Resnick M et al (2009) Scratch: programming for all. Commun ACM 52(11):60-67

. SOARS Project (2004) http://www.soars.jp

. Stella (1987) http://www.iseesystems.com/

V)]

S O 0NN

—_

http://sourceforge.net/projects/dia-installer/
http://www.mathworks.com/
https://ccl.northwestern.edu/netlogo/
http://www.soars.jp
http://www.iseesystems.com/

286 T. Kurata et al.

11. Sutherland I (1963) Sketchpad: a man-machine graphical communication system. In: Proceed-
ings of the 1963 spring joint computer conference. Spartan Books, Baltimore, MD, pp 45-53

12. Tanuma H, Deguchi H (2007) Development of agent-based simulation language: SOARS. Inst
Electron Inf Commun Eng D J90-D(9):2415-2422

13. Tanuma H, Deguchi H, Shimizu T (2004) SOARS: spot oriented agent role simulator: design
and implementation. In: Post-proceedings of AESCS04. Springer, Japan, pp 49-56

	25 GUI for Agent Based Modeling
	25.1 Background
	25.2 Objectives
	25.3 Design
	25.3.1 Architecture of SOARS
	25.3.2 Design Concept of SOARS VisualShell
	25.3.3 User Interface of SOARS VisualShell
	25.3.3.1 Agent/Spot Edit
	25.3.3.2 Role Edit
	25.3.3.3 Stage Edit
	25.3.3.4 Log Output Specification
	25.3.3.5 Simulation Condition Specification

	25.4 Conclusion
	25.5 Future Work
	References

