
Chapter 8
Why I am not a Bayesian

Clark Glymour

The aim of confirmation theory is to provide a true account of the principles
that guide scientific argument in so far as that argument is not, and does not
purport to be, of a deductive kind. A confirmation theory should serve as a critical
and explanatory instrument quite as much as do theories of deductive inference.
Any successful confirmation theory should, for example, reveal the structure and
fallacies, if any, in Newton’s argument for universal gravitation, in nineteenth-
century arguments for and against the atomic theory, in Freud’s arguments for
psychoanalytic generalizations. Where scientific judgements are widely shared,
and sociological factors cannot explain their ubiquity, and analysis through the
lens provided by confirmation theory reveals no good explicit arguments for
the judgements, confirmation theory ought at least sometimes to suggest some
good arguments that may have been lurking misperceived. Theories of deductive
inference do that much for scientific reasoning in so far as that reasoning is supposed
to be demonstrative. We can apply quantification theory to assess the validity of
scientific arguments, and although we must almost always treat such arguments
as enthymematic, the premisses we interpolate are not arbitrary; in many cases,
as when the same subject-matter is under discussion, there is a common set of
suppressed premisses. Again, there may be differences about the correct logical
form of scientific claims; differences of this kind result in (or from) different
formalizations, for example, of classical mechanics. But such differences often
make no difference for the assessment of validity in actual arguments. Confirmation
theory should do as well in its own domain. If it fails, then it may still be of interest
for many purposes, but not for the purpose of understanding scientific reasoning.

Who cares whether a pig-farmer is a Bayesian?—R. C. Jeffrey.
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The aim of confirmation theory ought not to be simply to provide precise
replacements for informal methodological notions, that is, explications of them.
It ought to do more; in particular, confirmation theory ought to explain both
methodological truisms and particular judgements that have occurred within the
history of science. By ‘explain’ I mean at least that confirmation theory ought to
provide a rationale for methodological truisms, and ought to reveal some systematic
connections among them and, further, ought, without arbitrary or question-begging
assumptions, to reveal particular historical judgements as in conformity with its
principles.

Almost everyone interested in confirmation theory today believes that confirma-
tion relations ought to be analysed in terms of probability relations. Confirmation
theory is the theory of probability plus introductions and appendices. Moreover,
almost everyone believes that confirmation proceeds through the formation of
conditional probabilities of hypotheses on evidence. The basic tasks facing con-
firmation theory are thus just those of explicating and showing how to determine
the probabilities that confirmation involves, developing explications of such meta-
scientific notions as ‘confirmation’, ‘explanatory power’, ‘simplicity’, and so on
in terms of functions of probabilities and conditional probabilities, and showing
that the canons and patterns of scientific inference result. It was not always so.
Probabilistic accounts of confirmation really became dominant only after the publi-
cation of Carnap’s Logical Foundations of Probability (1950), although of course
many probabilistic accounts had preceded Carnap’s. An eminent contemporary
philosopher (Putnam 1967) has compared Carnap’s achievement in inductive logic
with Frege’s in deductive logic: just as before Frege there was only a small and
theoretically uninteresting collection of principles of deductive inference, but after
him the foundation of a systematic and profound theory of demonstrative reasoning,
so with Carnap and inductive reasoning. After Carnap’s Logical Foundations,
debates over confirmation theory seem to have focused chiefly on the interpre-
tation of probability and on the appropriate probabilistic explications of various
meta-scientific notions. The meta-scientific notions remain controversial, as does
the interpretation of probability, although, increasingly, logical interpretations of
probability are giving way to the doctrine that probability is degree of belief.1 In
very recent years a few philosophers have attempted to apply probabilistic analyses
to derive and to explain particular methodological practices and precepts, and even
to elucidate some historical cases.

I believe these efforts, ingenious and admirable as many of them are, are none
the less misguided. For one thing, probabilistic analyses remain at too great a
distance from the history of scientific practice to be really informative about that
practice, and in part they do so exactly because they are probabilistic. Although
considerations of probability have played an important part in the history of science,
until very recently, explicit probabilistic arguments for the confirmation of various

1A third view, that probabilities are to be understood exclusively as frequencies, has been most
ably defended by Wesley Salmon (1969).
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theories, or probabilistic analyses of data, have been great rarities in the history of
science. In the physical sciences at any rate, probabilistic arguments have rarely
occurred. Copernicus, Newton, Kepler, none of them give probabilistic arguments
for their theories; nor does Maxwell or Kelvin or Lavoisier or Dalton or Einstein or
Schrödinger or : : : There are exceptions. Jon Dorling has discussed a seventeenth-
century Ptolemaic astronomer who apparently made an extended comparison of
Ptolemaic and Copernican theories in probabilistic terms; Laplace, of course, gave
Bayesian arguments for astronomical theories. And there are people—Maxwell, for
example—who scarcely give a probabilistic argument when making a case for or
against scientific hypotheses but who discuss methodology in probabilistic terms.
This is not to deny that there are many areas of contemporary physical science where
probability figures large in confirmation; regression analysis is not uncommon in
discussions of the origins of cosmic rays, correlation and analysis of variance in
experimental searches for gravitational waves, and so on. It is to say that, explicitly,
probability is a distinctly minor note in the history of scientific argument.

The rarity of probability considerations in the history of science is more an
embarrassment for some accounts of probability than for others. Logical theories,
whether Carnap’s or those developed by Hintikka and his students, seem to lie at
a great distance from the history of science. Still, some of the people working in
this tradition have made interesting steps towards accounting for methodological
truisms. My own inclination is to believe that the interest such investigations
have stems more from the insights they obtain into syntactic versions of structural
connections among evidence and hypotheses than to the probability measures they
mesh with these insights. Frequency interpretations suppose that for each hypothesis
to be assessed there is an appropriate reference class of hypotheses to which
to assign it, and the prior probability of the hypothesis is the frequency of true
hypotheses in this reference class. The same is true for statements of evidence,
whether they be singular or general. The matter of how such reference classes are to
be determined, and determined so that the frequencies involved do not come out to
be zero, is a question that has only been touched upon by frequentist writers. More to
the point, for many of the suggested features that might determine reference classes,
we have no statistics, and cannot plausibly imagine those who figure in the history of
our sciences to have had them. So conceived, the history of scientific argument must
turn out to be largely a history of fanciful guesses. Further, some of the properties
that seem natural candidates for determining reference classes for hypotheses—
simplicity, for example—seem likely to give perverse results. We prefer hypotheses
that posit simple relations among observed quantities, and so on a frequentist view
should give them high prior probabilities. Yet simple hypotheses, although often
very useful approximations, have most often turned out to be literally false.

At present, perhaps the most philosophically influential view of probability
understands it to be degree of belief. The subjectivist Bayesian (hereafter, for
brevity, simply Bayesian) view of probability has a growing number of advocates
who understand it to provide a general framework for understanding scientific
reasoning. They are singularly unembarrassed by the rarity of explicit probabilistic
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arguments in the history of science, for scientific reasoning need not be explicitly
probabilistic in order to be probabilistic in the Bayesian sense. Indeed, a number
of Bayesians have discussed historical cases within their framework. Because of
its influence and its apparent applicability, in what follows it is to the subjective
Bayesian account that I shall give my full attention.

My thesis is several-fold. First, there are a number of attempts to demonstrate
a priori the rationality of the restrictions on belief and inference that Bayesians
advocate. These arguments are altogether admirable, but ought, I shall maintain,
to be unconvincing. My thesis in this instance is not a new one, and I think many
Bayesians do regard these a priori arguments as insufficient. Second, there are a
variety of methodological notions that an account of confirmation ought to explicate
and methodological truisms involving these notions that a confirmation theory ought
to explain: for example, variety of evidence and why we desire it, ad hoc hypotheses
and why we eschew them, what separates a hypothesis integral to a theory from
one ‘tacked on’ to the theory, simplicity and why it is so often admired, why
‘de-Occamized’ theories are so often disdained, what determines when a piece of
evidence is relevant to a hypothesis, and what, if anything, makes the confirmation
of one bit of theory by one bit of evidence stronger than the confirmation of
another bit of theory (or possibly the same bit) by another (or possibly the same)
bit of evidence. Although there are plausible Bayesian explications of some of
these notions, there are not plausible Bayesian explications of others. Bayesian
accounts of methodological truisms and of particular historical cases are of one
of two kinds: either they depend on general principles restricting prior probabilities,
or they don’t. My claim is that many of the principles proposed by the first kind of
Bayesian are either implausible or incoherent, and that, for want of such principles,
the explanations the second kind of Bayesians provide for particular historical cases
and for truisms of method are chimeras. Finally, I claim that there are elementary but
perfectly common features of the relation of theory and evidence that the Bayesian
scheme cannot capture at all without serious—and perhaps not very plausible—
revision.

It is not that I think the Bayesian scheme or related probabilistic accounts capture
nothing. On the contrary, they are clearly pertinent where the reasoning involved
is explicitly statistical. Further, the accounts developed by Carnap, his predeces-
sors, and his successors are impressive systematizations and generalizations, in
a probabilistic framework, of certain principles of ordinary reasoning. But so far
as understanding scientific reasoning goes, I think it is very wrong to consider
our situation to be analogous to that of post-Fregean logicians, our subject-matter
transformed from a hotchpotch of principles by a powerful theory whose outlines
are clear. We flatter ourselves that we possess even the hotchpotch. My opinions are
outlandish, I know; few of the arguments I shall present in their favour are new, and
perhaps none of them is decisive. Even so, they seem sufficient to warrant taking
seriously entirely different approaches to the analysis of scientific reasoning.

The theories I shall consider share the following framework, more or less. There
is a class of sentences that express all hypotheses and all actual or possible evidence
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of interest; the class is closed under Boolean operations. For each ideally rational
agent, there is a function defined on all sentences such that, under the relation
of logical equivalence, the function is a probability measure on the collection
of equivalence classes. The probability of any proposition represents the agent’s
degree of belief in that proposition. As new evidence accumulates, the probability
of a proposition changes according to Bayes’s rule: the posterior probability of
a hypothesis on the new evidence is equal to the prior conditional probability of
the hypothesis on the evidence. This is a scheme shared by diverse accounts of
confirmation. I call such theories ‘Bayesian’, or sometimes ‘personalist’.

We certainly have grades of belief. Some claims I more or less believe, some
I find plausible and tend to believe, others I am agnostic about, some I find
implausible and far-fetched, still others I regard as positively absurd. I think
everyone admits some such gradations, although descriptions of them might be
finer or cruder. The personalist school of probability theorists claim that we also
have degrees of belief, degrees that can have any value between 0 and 1 and that
ought, if we are rational, to be representable by a probability function. Presumably,
the degrees of belief are to co-vary with everyday gradations of belief, so that one
regards a proposition as preposterous and absurd just if his degree of belief in it is
somewhere near zero, and he is agnostic just if his degree of belief is somewhere
near a half, and so on. According to personalists, then, an ideally rational agent
always has his degrees of belief distributed so as to satisfy the axioms of probability,
and when he comes to accept a new belief, he also forms new degrees of belief by
conditionalizing on the newly accepted belief. There are any number of refinements,
of course; but that is the basic view.

Why should we think that we really do have degrees of belief? Personalists have
an ingenious answer: people have them because we can measure the degrees of
belief that people have. Assume that no one (rational) will accept a wager on which
he expects a loss, but anyone (rational) will accept any wager on which he expects a
gain. Then we can measure a person’s degree of belief in proposition P by finding,
for fixed amount v, the highest amount u such that the person will pay u in order
to receive u C � if P is true, but receive nothing if P is not true. If u is the greatest
amount the agent is willing to pay for the wager, his expected gain on paying u must
be zero. The agent’s gain if P is the case is v; his gain if P is not the case is �u.
Thus

v � prob.P/ C .�u/ � prob .� P/ D 0:

Since prob (�P) D 1 � prob(P), we have

prob.P/ D u= .u C v/ :

The reasoning is clear: any sensible person will act so as to maximize his expected
gain; thus, presented with a decision whether or not to purchase a bet, he will make
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the purchase just if his expected gain is greater than zero. So the betting odds he
will accept determine his degree of belief.2

I think that this device really does provide evidence that we have, or can produce,
degrees of belief, in at least some propositions, but at the same time it is evident that
betting odds are not an unobjectionable device for the measurement of degrees of
belief. Betting odds could fail to measure degrees of belief for a variety of reasons:
the subject may not believe that the bet will be paid off if he wins, or he may doubt
that it is clear what constitutes winning, even though it is clear what constitutes
losing. Things he values other than monetary gain (or whatever) may enter into his
determination of the expected utility of purchasing the bet: for example, he may
place either a positive or a negative value on risk itself. And the very fact that he is
offered a wager on P may somehow change his degree of belief in P.

Let us suppose, then, that we do have degrees of belief in at least some
propositions, and that in some cases they can be at least approximately measured
on an interval from 0 to 1. There are two questions: why should we think that, for
rationality, one’s degrees of belief must satisfy the axioms of probability, and why
should we think that, again for rationality, changes in degrees of belief ought to
proceed by conditionalization? One question at a time. In using betting quotients
to measure degrees of belief, it was assumed that the subject would act so as to
maximize expected gain. The betting quotient determined the degree of belief by
determining the coefficient by which the gain is multiplied in case that P is true in
the expression for the expected gain. So the betting quotient determines a degree of
belief, as it were, in the role of a probability. But why should the things, degrees
of belief, that play this role be probabilities? Supposing that we do choose those
actions that maximize the sum of the product of our degrees of belief in each
possible outcome of the action and the gain (or loss) to us of that outcome. Why
must the degrees of belief that enter into this sum be probabilities? Again, there is an
ingenious argument: if one acts so as to maximize his expected gain using a degree-
of-belief function that is not a probability function, and if for every proposition
there were a possible wager (which, if it is offered, one believes will be paid off
if it is accepted and won), then there is a circumstance, a combination of wagers,
that one would enter into if they were offered, and in which one would suffer a net
loss whatever the outcome. That is what the Dutch-book argument shows; what it
counsels is prudence.

Some of the reasons why it is not clear that betting quotients are accurate
measures of degrees of belief are also reasons why the Dutch-book argument is
not conclusive: there are many cases of propositions in which we may have degrees
of belief, but on which, we may be sure, no acceptable wager will be offered us;

2More detailed accounts of means for determining degrees of belief may be found in Jeffrey (1965).
It is a curious fact that the procedures that Bayesians use for determining subjective degrees of
belief empirically are an instance of the general strategy described in Glymour 1981, ch. 5. Indeed,
the strategy typically used to determine whether or not actual people behave as rational Bayesians
involves the bootstrap strategy described in that chapter.
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again, we may have values other than the value we place on the stakes, and these
other values may enter into our determination whether or not to gamble; and we
may not have adopted the policy of acting so as to maximize our expected gain or
our expected utility: that is, we may save ourselves from having book made against
us by refusing to make certain wagers, or combinations of wagers, even though we
judge the odds to be in our favour.

The Dutch-book argument does not succeed in showing that in order to avoid
absurd commitments, or even the possibility of such commitments, one must have
degrees of belief that are probabilities. But it does provide a kind of justification
for the personalist viewpoint, for it shows that if one’s degrees of belief are
probabilities, then a certain kind of absurdity is avoided. There are other ways of
avoiding that kind of absurdity, but at least the personalist way is one such.3

One of the common objections to Bayesian theory is that it fails to provide any
connection between what is inferred and what is the case. The Bayesian reply is
that the method guarantees that, in the long run, everyone will agree on the truth.
Suppose that Bi are a set of mutually exclusive, jointly exhaustive hypotheses, each
with probability B(i). Let xr be a sequence of random variables with a finite set

of values and conditional distribution given by P
�

xr D xr

ˇ̌
ˇBi

�
D ©

�
xr

ˇ̌
ˇBi

�
; then

we can think of the values xr as the outcomes of experiments, each hypothesis
determining a likelihood for each outcome. Suppose that no two hypotheses have
the same likelihood distribution; that is, for i ¤ j it is not the case that for all values
xr of xr; "(xrjBi) D "(xrjBj), where the "’s are defined as above. Let x denote the first
n of these variables, where x is a value of x. Now imagine an observation of these n
random variables. In Savage’s words:

Before the observation, the probability that the probability given x of whichever
element of the partition actually obtains will be greater than ˛ is

X
i

B.i/P
�

P
�

Bi

ˇ̌
ˇx

�
> ’

ˇ̌
ˇBi

�
;

where summation is confined to those i’s for which B(i) ¤ 0. (1972: 49)
In the limit as n approaches infinity, the probability that the probability given x

of whichever element of the partition actually obtains is greater than ˛ is 1. That is
the theorem. What is its significance? According to Savage, ‘With the observation
of an abundance of relevant data, the person is almost certain to become highly
convinced of the truth, and it has also been shown that he himself knows this to
be the case’ (p. 50). That is a little misleading. The result involves second-order
probabilities, but these too, according to personalists, are degrees of belief. So what
has been shown seems to be this: in the limit as n approaches infinity, an ideally
rational Bayesian has degree of belief 1 that an ideally rational Bayesian (with
degrees of belief as in the theorem) has degree of belief, given x, greater than ˛

3For further criticisms of the Dutch-book argument see Kyburg 1978.
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in whichever element of the partition actually obtains. The theorem does not tell us
that in the limit any rational Bayesian will assign probability 1 to the true hypothesis
and probability 0 to the rest; it only tells us that rational Bayesians are certain that
he will. It may reassure those who are already Bayesians, but it is hardly grounds
for conversion. Even the reassurance is slim. Mary Hesse points out (1974: 117–19),
entirely correctly I believe, that the assumptions of the theorem do not seem to apply
even approximately in actual scientific contexts. Finally, some of the assumptions of
stable estimation theorems can be dispensed with if one assumes instead that all of
the initial distributions considered must agree regarding which evidence is relevant
to which hypotheses. But there is no evident a priori reason why there should be
such agreement.

I think relatively few Bayesians are actually persuaded of the correctness of
Bayesian doctrine by Dutch-book arguments, stable estimation theorems, or other a
priori arguments. Their frailty is too palpable. I think that the appeal of Bayesian
doctrine derives from two other features. First, with only very weak or very
natural assumptions about prior probabilities, or none at all, the Bayesian scheme
generates principles that seem to accord well with common sense. Thus, with minor
restrictions, one obtains the principle that hypotheses are confirmed by positive
instances of them; and, again, one obtains the result that if an event that actually
occurs is, on some hypothesis, very unlikely to occur, then that occurrence renders
the hypothesis less likely than it would otherwise have been. These principles, and
others, can claim something like the authority of common sense, and Bayesian
doctrine provides a systematic explication of them. Second, the restrictions placed
a priori on rational degrees of belief are so mild, and the device of probability
theory at once so precise and so flexible, that Bayesian philosophers of science may
reasonably hope to explain the subtleties and vagaries of scientific reasoning and
inference by applying their scheme together with plausible assumptions about the
distribution of degrees of belief. This seems, for instance, to be Professor Hesse’s
line of argument. After admitting the insufficiency of the standard arguments for
Bayesianism, she sets out to show that the view can account for a host of alleged
features of scientific reasoning and inference. My own view is different: particular
inferences can almost always be brought into accord with the Bayesian scheme
by assigning degrees of belief more or less ad hoc, but we learn nothing from
this agreement. What we want is an explanation of scientific argument; what the
Bayesians give us is a theory of learning—indeed, a theory of personal learning.
But arguments are more or less impersonal; I make an argument to persuade
anyone informed of the premisses, and in doing so I am not reporting any bit of
autobiography. To ascribe to me degrees of belief that make my slide from my
premisses to my conclusion a plausible one fails to explain anything, not only
because the ascription may be arbitrary, but also because, even if it is a correct
assignment of my degrees of belief, it does not explain why what I am doing is
arguing—why, that is, what I say should have the least influence on others, or why
I might hope that it should. Now, Bayesians might bridge the gap between personal
inference and argument in either of two ways. In the first place, one might give
arguments in order to change others’ beliefs because of the respect they have for his



8 Why I am not a Bayesian 139

opinion. This is not very plausible; if that were the point of giving arguments, one
would not bother with them, but would simply state one’s opinion. Alternatively,
and more hopefully, Bayesians may suggest that we give arguments exactly because
there are general principles restricting belief, principles that are widely subscribed
to, and in giving arguments we are attempting to show that, supposing our audience
has certain beliefs, they must in view of these principles have other beliefs, those
we are trying to establish. There is nothing controversial about this suggestion, and I
endorse it. What is controversial is that the general principles required for argument
can best be understood as conditions restricting prior probabilities in a Bayesian
framework. Sometimes they can, perhaps; but I think that when arguments turn on
relating evidence to theory, it is very difficult to explicate them in a plausible way
within the Bayesian framework. At any rate, it is worth seeing in more detail what
the difficulties may be.

There is very little Bayesian literature about the hotchpotch of claims and notions
that are usually canonized as scientific method; very little seems to have been
written, from a Bayesian point of view, about what makes a hypothesis ad hoc, about
what makes one body of evidence more various than another body of evidence, and
why we should prefer a variety of evidence, about why, in some circumstances,
we should prefer simpler theories, and what it is that we are preferring when we
do. And so on. There is little to nothing of this in Carnap, and more recent, and
more personalist, statements of the Bayesian position are almost as disappointing.
In a lengthy discussion of what he calls ‘tempered personalism’, Abner Shimony
(1970) discusses only how his version of Bayesianism generalizes and qualifies
hypothetico-deductive arguments. (Shimony does discuss simplicity, but only to
argue that it is overvalued.) Mary Hesse devotes the later chapters of her book to
an attempt to show that certain features of scientific method do result when the
Bayesian scheme is supplemented with a postulate that restricts assignments of prior
probabilities. Unfortunately, as we shall see, her restrictive principle is incoherent.4

One aspect of the demand for a variety of evidence arises when there is some
definite set of alternative hypotheses between which we are trying to decide. In
such cases we naturally prefer the body of evidence that will be most helpful in
eliminating false competitors. This aspect of variety is an easy and natural one
for Bayesians to take account of, and within an account such as Shimony’s it is
taken care of so directly as hardly to require comment. But there is more to variety.
In some situations we have some reason to suspect that if a theory is false, its
falsity will show up when evidence of certain kinds is obtained and compared. For
example, given the tradition of Aristotelian distinctions, there was some reason to
demand both terrestrial and celestial evidence for seventeenth-century theories of
motion that subjected all matter to the same dynamical laws. Once again, I see no
special reason why this kind of demand for a variety of evidence cannot be fitted
into the Bayesian scheme. But there is still more. A complex theory may contain

4Moreover, I believe that much of her discussion of methodological principles has only the loosest
relation to Bayesian principles.
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a great many logically independent hypotheses, and particular bodies of evidence
may provide grounds for some of those hypotheses but not for others. Surely part of
the demand for a variety of evidence, and an important part, derives from a desire to
see to it that the various independent parts of our theories are tested. Taking account
of this aspect of the demand for a variety of evidence is just taking account of the
relevance of evidence to pieces of theory. How Bayesians may do this we shall
consider later.

Simplicity is another feature of scientific method for which some Bayesians have
attempted to account. There is one aspect of the scientific preference for the simple
that seems beyond Bayesian capacities, and that is the disdain for ‘de-Occamized’
hypotheses, for theories that postulate the operation of a number of properties,
determinable only in combination, when a single property would do. Such theories
can be generated by taking any ordinary theory and replacing some single quantity,
wherever it occurs in the statement of the theory, by an algebraic combination of
new quantities. If the original quantity was not one that occurs in the statement of
some body of evidence for the theory, then the new, de-Occamized theory will have
the same entailment relations with that body of evidence as did the original theory.
If the old theory entailed the evidence, so will the new, de-Occamized one. Now, it
follows from Bayesian principles that if two theories both entail e, then (provided
the prior probability of each hypothesis is neither 1 nor 0), if e confirms one of
them, it confirms the other. How then is the fact (for so I take it to be) that pieces of
evidence just don’t seem to count for de-Occamized theories to be explained? Not
by supposing that de-Occamized theories have lower prior probabilities than un-de-
Occamized theories, for being ‘de-Occamized’ is a feature that a theory has only
with respect to a certain body of evidence, and it is not hard to imagine artificially
restricted bodies of evidence with respect to which perfectly good theories might
count as de-Occamized. Having extra wheels is a feature a theory has only in
relation to a body of evidence; the only Bayesian relation that appears available
and relevant to scientific preference is the likelihood of the evidence on the theory,
and unfortunately the likelihood is the same for a theory and for its de-Occamized
counterparts whenever the theory entails the evidence.

It is common practice in fitting curves to experimental data, in the absence of an
established theory relating the quantities measured, to choose the ‘simplest’ curve
that will fit the data. Thus linear relations are preferred to polynomial relations
of higher degree, and exponential functions of measured quantities are preferred
to exponential functions of algebraic combinations of measured quantities, and so
on. The problem is to account for this preference. Harold Jeffreys, a Bayesian
of sorts, offered an explanation (1979) along the following lines. Algebraic and
differential equations may be ordered by simplicity; the simpler the hypothetical
relation between two or more quantities, the greater is its prior probability. If
measurement error has a known probability distribution, we can then compute the
likelihood of any set of measurement results given an equation relating the measured
quantities. It should be clear, then, that with these priors and likelihoods, ratios
of posterior probabilities may be computed from measurement results. Jeffreys
constructed a Bayesian significance test for the introduction of higher-degree terms
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in the equation relating the measured quantities. Roughly, if one’s equation fits
the data too well, then the equation has too many terms and too many arbitrary
parameters; and if the equation does not fit the data well enough, then one has not
included enough terms and parameters in the equation. The whole business depends,
of course, entirely on the ordering of prior probabilities. In his Theory of Probability
Jeffreys (1967) proposed that the prior probability of a hypothesis decreases as the
number of arbitrary parameters increases, but hypotheses having the same number
of arbitrary parameters have the same prior probability. This leads immediately to
the conclusion that the prior probability of every hypothesis is zero. Earlier, Jeffreys
proposed a slightly more complex assignment of priors that did not suffer from this
difficulty. The problem is not really one of finding a way to assign finite probabilities
to an infinite number of incompatible hypotheses, for there are plenty of ways to do
that. The trouble is that it is just very implausible that scientists typically have their
prior degrees of belief distributed according to any plausible simplicity ordering,
and still less plausible that they would be rational to do so. I can think of very few
simple relations between experimentally determined quantities that have with-stood
continued investigation, and often simple relations are replaced by relations that
are infinitely complex: consider the fate of Kepler’s laws. Surely it would be naïve
for anyone to suppose that a set of newly measured quantities will truly stand in a
simple relation, especially in the absence of a well-confirmed theory of the matter.
Jeffreys’ strategy requires that we proceed in ignorance of our scientific experience,
and that can hardly be a rational requirement (Jeffreys 1973).

Consider another Bayesian attempt, this one due to Mary Hesse. Hesse puts a
‘clustering’ constraint on prior probabilities: for any positive r, the conjunction
of r C 1 positive instances of a hypothesis is more probable than a conjunction
of r positive instances with one negative instance. This postulate, she claims, will
lead us to choose, ceteris, paribus, the most economical, the simplest, hypotheses
compatible with the evidence. Here is the argument:

Consider first evidence consisting of individuals a1, a2, : : : , an, all of which
have properties P and Q. Now consider an individual anC1 with property P. Does
anC1 have Q or not? If nothing else is known, the clustering postulate will direct
us to predict Q˛C1 since, ceteris paribus, the universe is to be postulated to be
as homogeneous as possible consistently with the data : : : But this is also the
prediction that would be made by taking the most economical general law which
is both confirmed by the data and of sufficient content to make a prediction about
the application of Q to anC1. For h D ‘All P are Q’ is certainly more economical
than the ‘gruified’ conflicting hypothesis of equal content h0: ‘All x up to an that are
P are Q, and all other x that are P are Q.’

If follows in the [case] considered that if a rule is adopted to choose the prediction
resulting from the most probable hypothesis on grounds of content, or, in case of a
tie in content, the most economical hypothesis on those of equal content, this rule
will yield the same predictions as the clustering postulate.

Here is the argument applied to curve-fitting:
Let f be the assertion that two data points (x1, y1,), (x2, y2) are obtained from

experiments : : : The two points are consistent with the hypothesis y D a C bx,
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and also of course with an indefinite number of other hypotheses of the form
y D a0 C a1 C � � � C anx1, where the values of a0, : : : , an are not determined
by (x1, y1), (x2, y2). What is the most economical prediction of the y-value of a
further point g, where the x-value of g is x3? Clearly it is the prediction which uses
only the information already contained in f, that is, the calculable values of a, b
rather than a prediction which assigns arbitrary values to the parameters of a higher-
order hypothesis. Hence the most economical prediction is about the point g D (x3,
a C bx3), which is also the prediction given by the ‘simplest’ hypothesis on almost
all accounts of the simplicity of curves. Translated into probabilistic language, this
is to say that to conform to intuitions about economy we should assign higher initial
probability to the assertion that points (x1, a C bx1), (x2, a C bx2), (x3, a C bx3) are
satisfied by the experiment than to that in which the third point is inexpressible in
terms of a and b alone. In this formulation economy is a function of finite descriptive
lists of points rather than general hypotheses, and the relevant initial probability is
that of a universe containing these particular points rather than that of a universe in
which the corresponding general law is true : : : Description in terms of a minimum
number of parameters may therefore be regarded as another aspect of homogeneity
or clustering of the universe. (Hesse 1974: 230–2)

Hesse’s clustering postulate applies directly to the curve-fitting case, for her
clustering postulate then requires that if two paired values of x and y satisfy the
predicate y D ax C b, then it is more probable than not that a third pair of values will
satisfy the predicate. So the preference for the linear hypothesis in the next instance
results from Hesse’s clustering postulate and the probability axioms. Unfortunately,
with trivial additional assumptions, everything results. For, surely, if y D a C bx is a
legitimate predicate, then so is y D ˛1 C b1x2

, for any definite values of a1 and b1.
Now Hesse’s first two data points can be equally well described by (x1; a1 C b1x2

1)
and (x2; a1 C b1x2

2), where

b1 D y1 � y2

x2
1 � x2

2

a1 D y1 � x2
1

�
y1 � y2

x2
1 � x2

2

�
;

Hence her first two data points satisfy both the predicate y D a C bx and the
predicate y D a1 C b1x2. So, by the clustering postulate, the probability that the
third point satisfies the quadratic expression must be greater than one-half, and the
probability that the third point satisfies the linear expression must also be greater
than one-half, which is impossible.

Another Bayesian account of our preference for simple theories has recently
been offered by Roger Rosencrantz (1976). Suppose that we have some criterion
for ‘goodness of fit’ of a hypothesis to data—for example, confidence regions
based on the ¦2 distribution for categorical data, or in curve-fitting perhaps that the
average sum of squared deviations is less than some figure. Where the number of
possible outcomes is finite, we can compare the number of such possible outcomes
that meet the goodness-of-fit criterion with the number that do not. This ratio
Rosencrantz calls the ‘observed sample coverage’ of the hypothesis. Where the
possible outcomes are infinite, if the region of possible outcomes meeting the
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goodness-of-fit criterion is always bounded for all relevant hypotheses, we can
compare the volumes of such regions for different hypotheses, and thus obtain a
measure of comparative sample coverage.

It seems plausible enough that the smaller the observed sample coverage of a
hypothesis, the more severely it is tested by observing outcomes. Rosencrantz’s
first proposal is this: the smaller the observed sample coverage, the simpler the
hypothesis. But further, he proves the following for hypotheses about categorical
data: if H1 and H2 are hypotheses with parameters, and H1 is a special case of
H2 obtained by letting a free parameter in H2 take its maximum likelihood value,
then if we average the likelihood of getting evidence that fits each hypothesis well
enough over all the possible parameter values, the average likelihood of H1 will
be greater than the average likelihood of H2. The conclusion Rosencrantz suggests
is that the simpler the theory, the greater the average likelihood of data that fit
it sufficiently well. Hence, even if a simple theory has a lower prior probability
than more complex theories, because the average likelihood is higher for the simple
theory, its posterior probability will increase more rapidly than that of more complex
theories. When sufficient evidence has accumulated, the simple theory will be
preferred. Rosencrantz proposes to identify average likelihood with support.

Rosencrantz’s approach has many virtues; I shall concentrate on its vices. First,
observed sample coverage does not correlate neatly with simplicity. If H is a
hypothesis, T another utterly irrelevant to H and to the phenomena about which
H makes predictions, then H & T will have the same observed sample coverage as
does H. Further, if H* is a de-Occamization of H, then H* and H will have the same
observed sample coverage. Second, Rosencrantz’s theorem does not establish nearly
enough. It does not establish, for example, that in curve-fitting the average likelihood
of a linear hypothesis is greater than the average likelihood of a quadratic or higher-
degree hypothesis. We cannot explicate support in terms of average likelihood unless
we are willing to allow that evidence supports a de-Occamized hypothesis as much
as un-de-Occamized ones, and a hypothesis with tacked-on parts as much as one
without such superfluous parts.

Finally, we come to the question of the relevance of evidence to theory. When
does a piece of evidence confirm a hypothesis according to the Bayesian scheme of
things? The natural answer is that it does so when the posterior probability of the
hypothesis is greater than its prior probability, that is, if the conditional probability
of the hypothesis on the evidence is greater than the probability of the hypothesis.
That is what the condition of positive relevance requires, and that condition is
the one most commonly advanced by philosophical Bayesians. The picture is a
kinematic one: a Bayesian agent moves along in time having at each moment a
coherent set of degrees of belief; at discrete intervals he learns new facts, and each
time he learns a new fact, e, he revises his degrees of belief by conditionalizing on e.
The discovery that e is the case has confirmed those hypotheses whose probability
after the discovery is higher than their probability before. For several reasons, I think
this account is unsatisfactory; moreover, I doubt that its difficulties are remediable
without considerable changes in the theory.



144 C. Glymour

The first difficulty is a familiar one. Let us suppose that we can divide the
consequences of a theory into sentences consisting of reports of actual or possible
observations, and simple generalizations of such observations, on the one hand;
and on the other hand, sentences that are theoretical. Then the collection of
‘observational’ consequences of the theory will always be at least as probable as
the theory itself; generally, the theory will be less probable than its observational
consequences. A theory is never any better established than is the collection of
its observational consequences. Why, then, should we entertain theories at all?
On the probabilist view, it seems, they are a gratuitous risk. The natural answer
is that theories have some special function that their collection of observational
consequences cannot serve; the function most frequently suggested is explanation—
theories explain; their collection of observational consequences do not. But however
sage this suggestion may be, it only makes more vivid the difficulty of the Bayesian
way of seeing things. For whatever explanatory power may be, we should certainly
expect that goodness of explanation will go hand in hand with warrant for belief; yet,
if theories explain, and their observational consequences do not, the Bayesian must
deny the linkage. The difficulty has to do both with the assumption that rational
degrees of belief are generated by probability measures and with the Bayesian
account of evidential relevance. Making degrees of belief probability measures in
the Bayesian way already guarantees that a theory can be no more credible than
any collection of its consequences. The Bayesian account of confirmation makes it
impossible for a piece of evidence to give us more total credence in a theory than in
its observational consequences. The Bayesian way of setting things up is a natural
one, but it is not inevitable, and wherever a distinction between theory and evidence
is plausible, it leads to trouble.

A second difficulty has to do with how praise and blame are distributed among
the hypotheses of a theory. Recall the case of Kepler’s laws (discussed in Glymour
1981, ch. 2). It seems that observations of a single planet (and, of course, the
sun) might provide evidence for or against Kepler’s first law (all planets move on
ellipses) and for or against Kepler’s second law (all planets move according to the
area rule), but no observations of a single planet would constitute evidence for or
against Kepler’s third law (for any two planets, the ratio of their periods equals the
3�

2 power of the ratio of their distances). Earlier [in Ch. 2 of Glymour’s Theory
and Evidence] we saw that hypothetico-deductive accounts of confirmation have
great difficulty explaining this elementary judgement. Can the Bayesians do any
better? One thing that Bayesians can say (and some have said) is that our degrees of
belief are distributed—and historically were distributed—so that conditionalizing
on evidence about one planet may change our degrees of belief in the first and
second laws, but not our degree of belief in the third law.5 I don’t see that this is
an explanation for our intuition at all; on the contrary, it seems merely to restate
(with some additional claims) what it is that we want to be explained. Are there any
reasons why people had their degrees of belief so distributed? If their beliefs had

5This is the account suggested by Horwich (1978).
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been different, would it have been equally rational for them to view observations
of Mars as a test of the third law, but not of the first? It seems to me that we never
succeed in explaining a widely shared judgement about the relevance or irrelevance
of some piece of evidence merely by asserting that degrees of belief happened to be
so distributed as to generate those judgements according to the Bayesian scheme.
Bayesians may instead try to explain the case by appeal to some structural difference
among the hypotheses; the only gadget that appears to be available is the likelihood
of the evidence about a single planet on various combinations of hypotheses. If it
is supposed that the observations are such that Kepler’s first and second laws entail
their description, but Kepler’s third law does not, then it follows that the likelihood
of the evidence on the first and second laws—that is, the conditional probability of
the evidence given those hypotheses—is unity, but the likelihood of the evidence on
the third law may be less than unity. But any attempt to found an account of the case
on these facts alone is simply an attempt at a hypothetico-deductive account. The
problem is reduced to one already unsolved. What is needed to provide a genuine
Bayesian explanation of the case in question (as well as of many others that could
be adduced) is a general principle restricting conditional probabilities and having
the effect that the distinctions about the bearing of evidence that have been noted
here do result. Presumably, any such principles will have to make use of relations
of content or structure between evidence and hypothesis. The case does nothing to
establish that no such principles exist; it does, I believe, make it plain that without
them the Bayesian scheme does not explain even very elementary features of the
bearing of evidence on theory.

A third difficulty has to do with Bayesian kinematics. Scientists commonly argue
for their theories from evidence known long before the theories were introduced.
Copernicus argued for his theory using observations made over the course of
millennia, not on the basis of any startling new predictions derived from the theory,
and presumably it was on the basis of such arguments that he won the adherence of
his early disciples. Newton argued for universal gravitation using Kepler’s second
and third laws, established before the Principia was published. The argument that
Einstein gave in 1915 for his gravitational field equations was that they explained
the anomalous advance of the perihelion of Mercury, established more than half a
century earlier. Other physicists found the argument enormously forceful, and it is a
fair conjecture that without it the British would not have mounted the famous eclipse
expedition of 1919. Old evidence can in fact confirm new theory, but according to
Bayesian kinematics, it cannot. For let us suppose that evidence e is known before
theory T is introduced at time t. Because e is known at t, probt(e) D 1. Further,
because probt(e) D 1, the likelihood of e given T, probt(e, T), is also 1. We then
have

probt .T; e/ D probt.T/ � probt .e; T/

probt.e/
D probt.T/:

The conditional probability of T on e is therefore the same as the prior probability
of T: e cannot constitute evidence for T in virtue of the positive relevance condition
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nor in virtue of the likelihood of e on T. None of the Bayesian mechanisms apply,
and if we are strictly limited to them, we have the absurdity that old evidence cannot
confirm new theory. The result is fairly stable. If the probability of e is very high
but not unity, probt(e, T) will still be unity if T entails e, and so probr(T, e) will be
very close to probt(T). How might Bayesians deal with the old evidence/new theory
problem?6 Red herrings abound. The prior probability of the evidence, Bayesians
may object, is not really unity; when the evidence is stated as measured or observed
values, the theory does not really entail that those exact values obtain; an ideal
Bayesian would never suffer the embarrassment of a novel theory. None of these
replies will do: the acceptance of old evidence may make the degree of belief in it
as close to unity as our degree of belief in some bit of evidence ever is; although
the exact measured value (of, e.g., the perihelion advance) may not be entailed by
the theory and known initial conditions, that the value of the measured quantity lies
in a certain interval may very well be entailed, and that is what is believed anyway;
and, finally, it is beside the point that an ideal Bayesian would never face a novel
theory, for the idea of Bayesian confirmation theory is to explain scientific inference
and argument by means of the assumption that good scientists are, about science at
least, approximately ideal Bayesians, and we have before us a feature of scientific
argument that seems incompatible with that assumption.

A natural line of defence lies through the introduction of counterfactual degrees
of belief. When using Bayes’s rule to determine the posterior probability of a new
theory on old evidence, one ought not to use one’s actual degree of belief in the old
evidence, which is unity or nearly so; one ought instead to use the degree of belief
one would have had in e if : : : The problem is to fill in the blanks in such a way that
it is both plausible that we have the needed counterfactual degrees of belief, and that
they do serve to determine how old evidence bears on new theory. I tend to doubt
that there is such a completion. We cannot merely throw e and whatever entails e out
of the body of accepted beliefs; we need some rule for determining a counterfactual
degree of belief in e and a counterfactual likelihood of e on T. To simplify, let us
suppose that T does logically entail e, so that the likelihood is fixed.

If one flips a coin three times and it turns up heads twice and tails once, in
using this evidence to confirm hypotheses (e.g. of the fairness of the coin), one
does not take the probability of two heads and one tail to be what it is after the
flipping—namely, unity—but what it was before the flipping. In this case there is an
immediate and natural counterfactual degree of belief that is used in conditionalizing
by Bayes’s rule. The trouble with the scientific cases is that no such immediate and
natural alternative distribution of degree of belief is available. Consider someone
trying, in a Bayesian way, to determine in 1915 how much Einstein’s derivation

6All of the defences sketched below were suggested to me by one or another philosopher
sympathetic to the Bayesian view; I have not attributed the arguments to anyone for fear of
misrepresenting them. None the less, I thank Jon Dorling, Paul Teller, Daniel Garber, Ian
Hacking, Patrick Suppes, Richard Jeffrey, and Roger Rosencrantz for valuable discussions and
correspondence on the point at issue.
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of the perihelion advance confirmed general relativity. There is no single event,
like the coin flipping, that makes the perihelion anomaly virtually certain. Rather,
Leverrier first computed the anomaly in the middle of the nineteenth-century; Simon
Newcomb calculated it again around 1890, using Leverrier’s method but new values
for planetary masses, and obtained a substantially higher value than had Leverrier.
Both Newcomb and Leverrier had, in their calculations, approximated an infinite
series by its first terms without any proof of convergence, thus leaving open the
possibility that the entire anomaly was the result of a mathematical error. In 1912
Eric Doolittle calculated the anomaly by a wholly different method, free of any
such assumption, and obtained virtually the same value as had Newcomb.7 For
actual historical cases, unlike the coin-flipping case, there is no single counterfactual
degree of belief in the evidence ready to hand, for belief in the evidence sentence
may have grown gradually—in some cases, it may have even waxed, waned, and
waxed again. So the old evidence/new theory problem cannot be assimilated to coin
flipping.

The suggestion that what is required is a counterfactual degree of belief is
tempting, none the less; but there are other problems with it besides the absence
of any unique historical degree of belief. A chief one is that various ways of
manufacturing counterfactual degrees of belief in the evidence threaten us with
incoherence. One suggestion, for example, is the following, used implicitly by some
Bayesian writers. At about the time T is introduced, there will be a number of
alternative competing theories available; call them T1, T2, : : : , Tk, and suppose that
they are mutually exclusive of T and of each other. Then P(e) is equal to

P .T1/ P .e; T1/ C P .T2/ P .e; T2/ C � � � C P .Tk/ P .e; Tk/ C P .� .T1 _ � � � _ Tk/

�P .e; � T1 _ � � � _ Tk// ;

and we may try to use this formula to evaluate the counterfactual degree of belief
in e. The problem is with the last term. Of course, one could suggest that this term
just be ignored when evaluating P(e), but it is difficult to see within a Bayesian
framework any rationale at all for doing so. For if one does ignore this term, then the
collection of prior probabilities used to evaluate the posterior probability of T will
not be coherent unless either the likelihood of e on T is zero or the prior probability
of T is zero. One could remedy this objection by replacing the last term by

P.T/P .e; T/ ;

but this will not do either, for if one’s degree of belief in

P .T1 _ T2 _ � � � _ Tk _ T/

7The actual history is still more complicated. Newcomb and Doolittle obtained values for the
anomaly differing by about 2 s of are per century. Early in the 1920s. Grossmann discovered that
Newcomb had made an error in calculation of about that magnitude.
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is not unity, then the set of prior degrees of belief will still be incoherent. Moreover,
not only will it be the case that if the actual degree of belief in e is replaced by
a counterfactual degree of belief in e according to either of these proposals, then
the resulting set of priors will be incoherent, it will further be the case that if we
conditionalize on e the resulting conditional probabilities will be incoherent. For
example, if we simply delete the last term, one readily calculates that

P .T1 _ � � � _ Tk; e/ D P .T1 _ � � � _ Tk/ P .e; T1 _ � � � _ Tk/

P .e; T1 _ � � � _ Tk/ P .T1 _ � � � _ Tk/
D 1;

and further that

P .T; e/ D P.T/ P .e; T/

P .e; T1 _ � � � _ Tk/ P .T1 _ � � � _ Tk/
:

But because T is supposed inconsistent with T1 _ � � � _ Tk and P(T, e) is not zero,
this is incoherent.

Let us return to the proposal that when new theory confronts old evidence,
we should look backwards to the time when the old evidence e had not yet been
established and use for the prior probability of e whatever degree of belief we would
have had at that time. We cannot just stick in such a counterfactual value for the
prior probability of e and change nothing else without, as before, often making both
prior and conditionalized probabilities incoherent. If we give all of our sentences
the degree of belief they would have had in the relevant historical period (supposing
we somehow know what period that is) and then conditionalize on e, incoherence
presumably will not arise; but it is not at all clear how to combine the resulting
completely counterfactual conditional probabilities with our actual degrees of belief.
It does seem to me that the following rather elaborate procedure will work when a
new theory is introduced. Starting with your actual degree of belief function P,
consider the degree of belief you would have had in e in the relevant historical
period, call it H(e). Now change P by regarding H(e) as an arbitrary change in
degree of belief in e and using Richard Jeffrey’s (1965) rule,

P0.S/ D H.e/P .S; e/ C .1 � H.e// P .S; � e/ :

Jeffrey’s rule guarantees that P0 is a probability function. Finally, conditionalize on
e:

P00.S/ D P0 .S; e/ ;

and let P00 be your new actual degree of belief function. (Alternatively, P00 can be
formed by using Jeffrey’s rule a second time.)

There remain a number of objections to the historical proposal. It is not obvious
that there are, for each of us, degrees of belief we personally would have had in
some historical period. It is not at all clear which historical period is the relevant
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one. Suppose, for example, that the gravitational deflection of sunlight had been
determined experimentally around 1900, well before the introduction of general
relativity.8 In trying to assess the confirmation of general relativity, how far back
in time should a twentieth-century physicist go under this supposition? If only to
the nineteenth, then if he would have shared the theoretical prejudices of the period,
gravitational deflection of light would have seemed quite probable. Where ought
he to stop, and why? But laying aside these difficulties, it is implausible indeed that
such a historical Bayesianism, however intriguing a proposal, is an accurate account
of the principles by which scientific judgements of confirmation are made. For if it
were, then we should have to condemn a great mass of scientific judgements on the
grounds that those making them had not studied the history of science with sufficient
closeness to make a judgement as to what their degrees of belief would have been
in relevant historical periods. Combined with the delicacy that is required to make
counterfactual degrees of belief fit coherently with actual ones, these considerations
make me doubt that we should look to counterfactual degrees of belief for a plausible
Bayesian account of how old evidence bears on new theory.

Finally, consider a quite different Bayesian response to the old evidence/new
theory problem. Whereas the ideal Bayesian agent is a perfect logician, none of us
are, and there are always consequences of our hypotheses that we do not know to
be consequences. In the situation in which old evidence is taken to confirm a new
theory, it may be argued that there is something new that is learned, and typically,
what is learned is that the old evidence is entailed by the new theory. Some old
anomalous result is lying about, and it is not this old result that confirms a new
theory, but rather the new discovery that the new theory entails (and thus explains)
the old anomaly. If we suppose that semi-rational agents have degrees of belief about
the entailment relations among sentences in their language, and that

P
�

h
ˇ̌
ˇ � e

�
D 1 implies P .e; h/ D 1;

this makes a certain amount of sense. We imagine the semi-rational Bayesian
changing his degree of belief in hypothesis h in light of his new discovery that h
entails e by moving from his prior degree of belief in h to his conditional degree of
belief in h given that e, that h e, and whatever background beliefs there may be.
Old evidence can, in this vicarious way, confirm a new theory, then, provided that

8Around 1900 is fanciful, before general relativity is not. In 1914 E. Freundlich mounted an
expedition to Russia to photograph the eclipse of that year in order to determine the gravitational
deflection of starlight. At that time, Einstein had predicted an angular deflection for light passing
near the limb of the sun that was equal in value to that derived from Newtonian principles by
Soldner in 1801. Einstein did not obtain the field equations that imply a value for the deflection
equal to twice the Newtonian value until late in 1915. Freundlich was caught in Russia by the
outbreak of World War I, and was interned there. Measurement of the deflection had to wait until
1919.
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P
�

h; b&e&
�

h
ˇ̌
ˇ � e

��
> P .h; b&e/ :

Now, in a sense, I believe this solution to the old evidence/new theory problem to
be the correct one; what matters is the discovery of a certain logical or structural
connection between a piece of evidence and a piece of theory, and it is in virtue of
that connection that the evidence, if believed to be true, is thought to be evidence for
the bit of theory. What I do not believe is that the relation that matters is simply the
entailment relation between the theory, on the one hand, and the evidence, on the
other. The reasons that the relation cannot be simply that of entailment are exactly
the reasons why the hypothetico-deductive account (see Glymour 1981, ch. 2)
is inaccurate; but the suggestion is at least correct in sensing that our judgement
of the relevance of evidence to theory depends on the perception of a structural
connection between the two, and that degree of belief is, at best, epiphenomenal. In
the determination of the bearing of evidence on theory, there seem to be mechanisms
and stratagems that have no apparent connection with degrees of belief, which are
shared alike by people advocating different theories. Save for the most radical
innovations, scientists seem to be in close agreement regarding what would or
would not be evidence relevant to a novel theory; claims as to the relevance to
some hypothesis of some observation or experiment are frequently buttressed by
detailed calculations and arguments. All of these features of the determination
of evidential relevance suggest that that relation depends somehow on structural,
objective features connecting statements of evidence and statements of theory. But if
that is correct, what is really important and really interesting is what these structural
features may be. The condition of positive relevance, even if it were correct, would
simply be the least interesting part of what makes evidence relevant to theory.

None of these arguments is decisive against the Bayesian scheme of things, nor
should they be; for in important respects that scheme is undoubtedly correct. But
taken together, I think they do at least strongly suggest that there must be relations
between evidence and hypotheses that are important to scientific argument and to
confirmation but to which the Bayesian scheme has not yet penetrated.
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