Skip to main content

Part of the book series: Proceedings of the International Plant Sulfur Workshop ((PIPSW))

Abstract

Sulfur cycling in plants is essential, not only to distribute this nutrient to the sites of its demand in growth and development, but also to signal the sulfur status of the plant and to control whole plant sulfur nutrition. Under most environmental conditions, uptake of sulfur compounds from the soil and their transport in the xylem to the shoot ensures adequate sulfur supply. However, metabolism of sulfur compounds in roots as well as in the shoot can result in both a surplus and a deficiency of individual sulfur compounds. Sinks and sources for individual sulfur compounds may change during the annual growth cycle, plant developmental stage and in response to environmental changes. In addition to the xylem, a second long-distance transport path, i.e. the phloem, plays an important role in whole plant sulfur cycling because it connects source and sink organs. However, a particular organ can change from source to sink and vice versa depending on environmental conditions as well as plant growth and developmental stage. Signaling of the sulfur demand is not only systemically, but also locally controlled. Still ‘the systemic signal’ does not appear to exist. Sulfate as a potential systemic signal communicating environmental stress from the roots to the shoot will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA (2013) Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25:3133–3145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barbier-Brygoo H, De Angeli A, Filleur S, Frachisse JM, Gambale F, Thomine S, Wege S (2011) Anion channels/transporters in plants: from molecular bases to regulatory networks. Annu Rev Plant Biol 62:25–51

    Article  CAS  PubMed  Google Scholar 

  • Bauer H, Ache P, Lautner S, Fromm J, Hartung W, Al-Rasheid KAS, Sonnewald S, Sonnewald U, Kneitz S, Lachmann N, Mendel RR, Bittner F, Hetherington AM, Hedrich R (2013) The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr Biol 23:53–57

    Article  CAS  PubMed  Google Scholar 

  • Bogs J, Boubouloux A, Cagnac O, Wachter A, Rausch T, Delrot S (2003) Functional characterization and expression analysis of a glutathione transporter, BjGT1, from Brassica juncea: evidence for regulation by heavy metal exposure. Plant Cell Environ 26:1703–1711

    Article  CAS  Google Scholar 

  • Bourgis F, Roje S, Nuccio ML, Fisher DB, Tarczynski MC, Li C, Herschbach C, Rennenberg H, Pimenta MJ, Shen T-L, Gage DA, Hanson AD (1999) S-Methylmethionine plays a major role in phloem sulfur transport and is synthesized by a novel type of methyltransferase. Plant Cell 11:1485–1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brunold C (1990) Reduction of sulfate to sulfide. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic Publishing, The Hague, pp 13–31

    Google Scholar 

  • Buhtz A, Pieritz J, Springer F, Kehr J (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Burgener M, Suter M, Jones S, Brunold C (1998) Cyst(e)ine is the transport metabolite of assimilated sulfur from bundle-sheath to mesophyll cells in maize leaves. Plant Physiol 116:1315–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cagnac O, Bourbouloux A, Chakrabarty D, Zhang M-Y, Delrot S (2004) AtOPT6 transports glutathione derivatives and is induced by primisulfuron. Plant Physiol 135:1378–1387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cao M-J, Wang Z, Zhao Q, Mao J-L, Speiser A, Wirtz M, Hell R, Zhu J-K, Xiang C-B (2014) Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. Plant J 77:604–615

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Petersen BL, Olsen CE, Schulz A, Halkier BA (2001) Long-distance phloem transport of glucosinolates in Arabidopsis. Plant Physiol 127:194–201

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiou T-J, Lin S-I (2011) Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol 62:185–206

    Article  CAS  PubMed  Google Scholar 

  • Collier MD, Fotelli MN, Nahm M, Kopriva S, Rennenberg H, Hanke DE, Geßler A (2003) Regulation of nitrogen uptake by Fagus sylvatica on a whole plant level – interactions between cytokinins and soluble N compounds. Plant Cell Environ 26:1549–1560

    Article  CAS  Google Scholar 

  • Cram WJ (1990) Uptake and transport of sulfate. In: Rennenberg H, Brunold C, De Kok LJ, Stulen I (eds) Sulfur nutrition and sulfur assimilation in higher plants. SPB Academic Publishing, The Hague, pp 3–11

    Google Scholar 

  • Daszkowska-Golec A, Szarejko I (2013) Open or close the gate – stomata action under the control of phytohormones in drought stress conditions. Front Plant Sci 4:138

    Article  PubMed Central  PubMed  Google Scholar 

  • Davidian J-C, Kopriva S (2010) Regulation of sulfate uptake and assimilation – the same or not the same? Mol Plant 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • De Kok LJ, Westerman S, Stuiver CEE, Stulen I (2000) Atmospheric H2S as plant sulfur source: interaction with pedospheric sulfur nutrition – a case study with Brassica oleracea L. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants. Paul Haupt Publisher, Bern, pp 41–55

    Google Scholar 

  • De Schepper V, Swaef TD, Bauweraerts I, Steppe K (2013) Phloem transport: a review of mechanisms and controls. J Exp Bot 64:4839–4850

    Article  PubMed  Google Scholar 

  • Durenkamp M, De Kok LJ, Kopriva S (2007) Adenosine 5′-phosphosulphate reductase is regulated differently in Allium cepa L. and Brassica oleracea L. upon exposure to H2S. J Exp Bot 58:1571–1579

    Article  CAS  PubMed  Google Scholar 

  • Dürr J, Bücking H, Mult S, Wildhagen H, Palme K, Rennenberg H, Ditengou F, Herschbach C (2010) Seasonal and cell type specific expression of sulfate transporters in the phloem of Populus reveals tree specific characteristics for SO4 2- storage and mobilization. Plant Mol Biol 72:499–518

    Article  PubMed  Google Scholar 

  • Ernst L, Goodger JQD, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulfate as a xylem-born chemical signal precedes the expression of ABA synthetic genes in maize root. J Exp Bot 61:3395–3405

    Article  CAS  PubMed  Google Scholar 

  • Gessler A, Kopriva S, Rennenberg H (2004) Regulation of nitrate uptake at the whole-tree level: interaction between nitrogen compounds, cytokinins and carbon metabolism. Tree Physiol 24:1313–1321

    CAS  PubMed  Google Scholar 

  • Gojon A, Nacry P, Davidian J-C (2009) Root uptake regulation: a central process for NPS homeostasis in plants. Curr Opin Plant Biol 12:328–338

    Article  CAS  PubMed  Google Scholar 

  • Goodger JQD, Schachtmann DP (2010) Re-examining the role of ABA as the primary long-distance signal produced by water-stressed roots. Plant Signal Behav 5:1298–1301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hedrich R (2012) Ion channels in plants. Physiol Rev 92:1777–1811

    Article  CAS  PubMed  Google Scholar 

  • Herschbach C, Rennenberg H (1991) Influence of glutathione (GSH) on sulfate influx, xylem loading and exudation in excised tobacco roots. J Exp Bot 42:1021–1029

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1994) Influence of glutathione (GSH) on net uptake of sulfate and sulfate transport in tobacco plants. J Exp Bot 45:1069–1076

    Article  CAS  Google Scholar 

  • Herschbach C, Rennenberg H (1996) Storage and re-mobilization of sulfur in beech trees (Fagus sylvatica). Physiol Plant 97:125–132

    Article  Google Scholar 

  • Herschbach C, Rennenberg H (2001) Sulfur nutrition of deciduous trees. Naturwissenschaften 88:25–36

    Article  CAS  PubMed  Google Scholar 

  • Herschbach C, De Kok LJ, Rennenberg H (1995a) Net uptake of sulfate and its transport to the shoot in spinach plants fumigated with H2S or SO2: does atmospheric sulfur affect the ‘inter-organ’ regulation of sulfur nutrition. Bot Acta 108:41–46

    Article  CAS  Google Scholar 

  • Herschbach C, De Kok LJ, Rennenberg H (1995b) Net uptake of sulfate and its transport to the shoot in tobacco plants fumigated with H2S or SO2. Plant Soil 175:75–84

    Article  CAS  Google Scholar 

  • Herschbach C, van der Zalm E, Schneider A, Jouanin L, De Kok LJ, Rennenberg H (2000) Regulation of sulfur nutrition in wild-type and transgenic poplar overexpressing γ-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiol 124:461–473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herschbach C, Scheerer U, Rennenberg H (2010) Redox states of glutathione and ascorbate in root tips of poplar (Populus tremula x P. alba) depend on phloem transport from the shoot to the roots. J Exp Bot 61:1065–1074

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Herschbach C, Gessler A, Rennenberg H (2012) Long-distance transport and plant internal cycling of N- and S-compounds. Prog Bot 73:161–188

    Article  CAS  Google Scholar 

  • Honsel A, Kojima M, Haas R, Frank W, Sakakibara H, Herschbach C, Rennenberg H (2012) Sulfur limitation and early sulfur deficient responses in poplar: significance of gene expression, metabolites and plant hormones. J Exp Bot 63:1873–1893

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hubberten H-M, Drozd A, Tran BV, Hesse H, Hoefgen R (2012) Local and systemic regulation of sulfur homeostasis in roots of Arabidopsis thaliana. Plant J 72:625–635

    Article  CAS  PubMed  Google Scholar 

  • Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell Online 16:2693–2704

    Article  CAS  Google Scholar 

  • Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulfur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  CAS  PubMed  Google Scholar 

  • Kehr J (2013) Systemic regulation of mineral homeostasis by microRNAs. Front Plant Sci 4:145

    Article  PubMed Central  PubMed  Google Scholar 

  • Koprivova A, Mugford ST, Kopriva S (2010) Arabidopsis root growth dependence on glutathione is linked to auxin transport. Plant Cell Rep 29:1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Koralewska A, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2008) Regulation of sulfate uptake, expression of the sulfate transporters Sultr1;1 and Sultr1;2, and APS reductase in Chinese cabbage (Brassica pekinensis) as affected by atmospheric H2S nutrition and sulfate deprivation. Funct Plant Biol 35:318–327

    Article  CAS  Google Scholar 

  • Koralewska A, Buchner P, Stuiver CEE, Posthumus FS, Kopriva S, Hawkesford MJ, De Kok LJ (2009) Expression and activity of sulfate transporters and APS reductase in curly kale in response to sulfate deprivation and re-supply. J Plant Physiol 166:168–179

    Article  CAS  PubMed  Google Scholar 

  • Lappartient AG, Touraine B (1996) Demand-driven control of root ATP sulfurylase activity and SO4 2- uptake in intact canola. The role of phloem-translocated glutathione. Plant Physiol 111:147–157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leustek T, Glass ADM, Touraine B (1999) Inter-organ signaling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Lass B, Ullrich-Eberius C (1984) Evidence for proton/sulfate cotransport and its kinetics in Lemna gibba G1. Planta 1:53–60

    Article  Google Scholar 

  • Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057

    CAS  PubMed  Google Scholar 

  • Liu T-Y, Chang C-Y, Chiou T-J (2009) The long-distance signaling of mineral macronutrients. Curr Opin Plant Biol 12:312–319

    Article  CAS  PubMed  Google Scholar 

  • Lucas WJ, Groover A, Lichtenberger R, Furuta K, Yadav SR, Helariutta Y, He XQ, Fukuda H, Kang J, Brady SM, Patrick JW, Sperry J, Yoshida A, López-Millán AF, Grusak MA, Kachroo P (2013) The plant vascular system: evolution, development and functions. J Integr Plant Biol 55:294–388

    Article  CAS  PubMed  Google Scholar 

  • Malcheska F, Honsel A, Wildhagen H, Dürr J, Larisch C, Rennenberg H, Herschbach C (2013) Differential expression of specific sulfate transporters underlies seasonal and spatial patterns of sulfate allocation in trees. Plant Cell Environ 36:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Marquez-Garcia B, Njo M, Beeckman T, Goormachtig S, Foyer CH (2014) A new role for glutathione in the regulation of root architecture linked to strigolactones. Plant Cell Environ 37:488–498

    Article  CAS  PubMed  Google Scholar 

  • Marschner P (2012) Marschner’s mineral nutrition of higher plants, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Maruyama-Nakashita A, Yumiko N, Yamaya T, Takahashi H (2004) A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J 38:779–789

    Article  CAS  PubMed  Google Scholar 

  • Mendel RR, Hänsch R (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 53:1689–1698

    Article  CAS  PubMed  Google Scholar 

  • Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Raseid KAS, Geider D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  • Negi J, Hashimoto-Sugimoto M, Kusumi K, Iba K (2014) New approaches to the biology of stomatal guard cells. Plant Cell Physiol 55:241–250

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Oparka KJ, Santa Cruz S (2000) The great escape: phloem transport and unloading of macromolecules. Annu Rev Plant Physiol Plant Mol Biol 51:323–347

    Article  CAS  PubMed  Google Scholar 

  • Osawa H, Stacey G, Gassmann W (2006) ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem J 393:267–275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Piñeros MA, Cançado GMA, Maron LG, Lyi SM, Menossi M, Kochian LV (2008) Not all ALMT1-type transporters mediate aluminum-activated organic acid responses: the case of ZmALMT1 – an anion-selective transporter. Plant J 53:352–367

    Article  PubMed  Google Scholar 

  • Rennenberg H, Herschbach C (2014) A detailed view on sulphur metabolism at the cellular and whole plant level illustrates challenges in metabolite flux analyses. J Exp Bot 65:5711–5724

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Schmitz K, Bergmann L (1979) Long-distance transport of sulfur in Nicotiana tabacum. Planta 147:57–62

    Article  CAS  PubMed  Google Scholar 

  • Rennenberg H, Schupp R, Glavac V, Jochheim H (1994) Xylem sap composition of beech (Fagus sylvatica L.) trees: seasonal changes in the axial distribution of sulfur compounds. Tree Physiol 14:541–548

    Article  CAS  PubMed  Google Scholar 

  • Rouached H, Wirtz M, Alary R, Hell R, Arpat AB, Davidian J-C, Fourcroy P, Berthomieu P (2008) Differential regulation of the expression of two high-affinity sulfate transporters, SULTR1.1 and SULTR1.2, in Arabidopsis. Plant Physiol 147:897–911

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakakibara H (2006) Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol 57:431–449

    Article  CAS  PubMed  Google Scholar 

  • Sauter JJ, van Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8:297–304

    Article  Google Scholar 

  • Schachtman DP, Goodger JQD (2008) Chemical root to shoot signaling under drought. Trends Plant Sci 13:281–287

    Article  CAS  PubMed  Google Scholar 

  • Schneider A, Kreuzwieser J, Schupp R, Sauter JJ, Rennenberg H (1994) Thiol and amino acid composition of the xylem sap of poplar trees (Populus x canadensis ‘Robusta’). Can J Bot 72:347–351

    Google Scholar 

  • Schupp R, Glavac V, Rennenberg H (1991) Thiol composition of xylem sap of beech trees. Phytochemistry 30:1415–1418

    Article  CAS  Google Scholar 

  • Schwarz G, Mendel RR (2006) Molybdenum cofactor biosynthesis and molybdenum enzymes. Annu Rev Plant Biol 57:623–647

    Article  CAS  PubMed  Google Scholar 

  • Stroock AD, Pagay VV, Zwieniecki MA, Holbrook NM (2014) The physicochemical hydrodynamics of vascular plants. Annu Rev Fluid Mech 46:615–642

    Article  Google Scholar 

  • Takahashi H, Yamazaki M, Sasakura N, Watanabe A, Leustek T, Engler JA, Engler G, Van Montagu M, Saito K (1997) Regulation of sulfur assimilation in higher plants: a sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc Natl Acad Sci USA 94:11102–11107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith Frank W, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulfate transporters involved in uptake and translocation of sulfate in Arabidopsis thaliana. Plant J 23:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    Article  CAS  PubMed  Google Scholar 

  • Tan Q, Zhang L, Grant J, Cooper P, Tegeder M (2010) Increased phloem transport of S-methylmethionine positively affects sulfur and nitrogen metabolism and seed development in pea plants. Plant Physiol 154:1886–1896

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tyburski J, Tretyn A (2010) Glutathione and glutathione disulfide affect adventitious root formation and growth in tomato seedling cuttings. Acta Physiol Plant 32:411–417

    Article  CAS  Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld J-P, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ, Sung ZR (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Werner T, Nehnevajova E, Köllmer I, Novák O, Strnad M, Krämer U, Schmülling T (2010) Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signaling: the co-ordination of responses to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Yoshimoto N, Takahashi H, Smith FW, Yamaya T, Saito K (2002) Two distinct high-affinity sulfate transporters with different inducibilities mediate uptake of sulfate in Arabidopsis roots. Plant J 29:465–473

    Article  CAS  PubMed  Google Scholar 

  • Zhang M-Y, Bourbouloux A, Cagnac O, Srikanth CV, Rentsch D, Bachhawat AK, Delrot S (2004) A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiol 134:482–491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The author thanks Heinz Rennenberg for critical reading of the manuscript and for supporting her research throughout the years. Financial support of the DFG is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Herschbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herschbach, C. (2015). Significance of Long-Distance Transport. In: De Kok, L., Hawkesford, M., Rennenberg, H., Saito, K., Schnug, E. (eds) Molecular Physiology and Ecophysiology of Sulfur. Proceedings of the International Plant Sulfur Workshop. Springer, Cham. https://doi.org/10.1007/978-3-319-20137-5_3

Download citation

Publish with us

Policies and ethics