Procedural Generation of Adjustable Terrain for
Application in Computer Games Using 2D Maps

Izabella Antoniuk®™) and Przemystaw Rokita

Institute of Computer Science, Warsaw University of Technology,
Nowowiejska 15/19, 00-665 Warsaw, Poland
I.Antoniuk@stud.elka.pw.edu.pl,
P.Rokita@ii.pw.edu.pl

Abstract. This paper describes method for generating 3D terrain for
usage in computer games by processing set of 2D maps and employing
of user-specified parameters. Most of existing solutions don’t allow for
modifications during generation process, while introducing any changes
usually requires complex activities, or is limited to adjusting input maps.
We present our solution that allows not only for easy edition of created
terrain, but also verification of its quality at each step of generation.

1 Introduction

Computer games, depending on their genre, can include numerous terrains with
different properties and details. Some areas are represented schematically, while
others are created with great level of detail, showing even the smallest elements.

Terrain designed for usage in computer games must posses series of different
properties as well as allow easy introduction of various changes. Those concern
not only terrain shape but also other game elements connected to them such
as: story, quests, placement of objects, enemies and other constituents. Because
of those requirements most of maps are modelled by hand, usually requiring
considerable amount of time to create. Procedural content generation in it most
common form is rarely used in those applications, because of low level of control
over created content, as well as many difficulties with further edition of obtained
objects. However it may provide interesting results.

While considering different terrains and arrangement of occurring elements,
it is possible to notice that most of them can be divided by similar features and
inclusive properties. Parts that contain distinctive similarities (considering that
they are smaller and content inside them is mostly uniform) are much easier
to generate and combine. It is also easier to decide precise set of constraints for
single tile. That leads to the idea of generating 3D terrain using image processing
approach based on simplified 2D maps.

While this concept is not new, existing methods still have a few drawbacks.
They allow for creation of suitable and complex terrains, but their final product
lacks the capability for further terrain adjustments. Usually procedure allows
introducing modifications either by editing input maps (which greatly decreases
© Springer International Publishing Switzerland 2015

M. Kryszkiewicz et al. (Eds.): PReMI 2015, LNCS 9124, pp. 75-84, 2015.
DOI: 10.1007/978-3-319-19941-2_8



76 I. Antoniuk and P. Rokita

level of control over final shape of generated object) or requires conversion of
generated terrain to 3D modelling environment (where results of such actions are
not always satisfactory and often hard to predict). Another issue is complexity
of obtained terrain, which not always meets computer games requirements.

In our approach we propose a method for creating 3D terrains by processing
set of simplified maps. This allows for fast and precise generation, easy adjust-
ment and regeneration of both entire terrain and its individual parts. As a test
platform for our algorithm we chose Blender 2.73a application (for Blender doc-
umentation see [19]).

The rest of the paper is organized as follows. In Sect.2 we review other
works related to our area of research. Section 3 describes initial assumptions for
our method. Section 4 contains procedure overview. Section 5 outlines some areas
of future work. Finally we conclude our work in Sect. 6.

2 Related Work

Procedural generation for computer games is not a new topic similarly to gener-
ating terrain by processing 2D maps or other simplified input. Among existing
algorithms some focus only on generating 2D maps from their more basic ver-
sions [6], while other generate complex terrains, containing various data and
details [17,18]

One of many problems described in some of the existing works is building
entire worlds in real time (which is not an easy case, considering amount of data
that needs to be processed) [2]. Other interesting area of research is creating
objects from input given by the users in form of pre-processed objects [5]. Some
works focus on increasing level of control over generated output by defining
terrain with various constraints and parameters such as set of actions that will
be performed at generated map [4] or by restricting some of its properties to
better fit desired results [13].

Simple and complex algorithms proposed for creation of various virtual worlds,
range from basic methods [7] to entire frameworks and methodologies [11,16].
Among the interesting issues is representation of real world data through sets of
height maps [10].

When it comes to generation itself, there are many different ways to realize
it. Some solutions use sets of height maps to create complex objects [12], others
introduce genetic algorithms, evolving terrain according to user preferences [§],
or focus on efficient introduction of various changes to created map(i.e. adding
roads) [9].

There are many methods for generation of objects and terrains. For detailed
study of procedural content generation algorithms see [1,3,14,15].

3 Initial Assumptions

In this section we present assumptions that led to design of our algorithm in its
current form.



Procedural Generation of Adjustable Terrain for Application 7

While planning our procedure, we assumed that generated terrain must meet
certain constraints and have a few significant properties, if it is to be used in
computer games.

Most important features concern terrain itself. We assumed that any area
must allow for introducing various changes, both during algorithm operations
and after it terminates its work. At the same time, any created object should be
as close to desired output as possible, providing high level of control over terrain
properties.

Another crucial issue is generation process. Designing and modelling of com-
plex 3D objects takes considerable amount of time. We decided to use image
processing and base our procedure on 2D maps to simplify the process. In our
approach each pixel represents different region inside generated object. Since
terrain tiles contain different data, that would be difficult to represent on single
image, also increasing its complexity. We decided to use set of maps, where each
file contains different information. Currently we consider three type of maps:
height map (containing information about basic terrain level, represented in
greyscale colour value), dispersion map (describing dispersion range for height
value in single region, stored in text file) and terrain map (showing different
terrains distribution through the scene, represented as RGB colour value). Each
map is independent from others therefore performing changes to one of them
does not require updating others (for example, if we want to slightly adjust
dispersion range, we don’t need to change terrain level or type).

While creating 2D images is easier than modelling 3D environment, very
complex maps can still take a lot of time to finish, especially if we consider large
maps with great level of detail. Since each terrain can be divided into patches
containing elements of the same type (like mountains, plains, forests etc.) we
decided to simplify that input as much as possible. Such patches are represented
by pixels in our maps and are further processed adding details during algorithm
operations and merging terrains according to user-defined properties.

After generation is complete, each of the regions processed from pixels in
input maps is represented as different object. Although its internal properties
are to some point determined by adjacent regions, it can be further adjusted or
regenerated independently, therefore allowing for easier management of terrain
data. At the same time, one faulty region doesn’t disqualify entire terrain - it
can simply be regenerated (or manually adjusted), without influencing other,
correct regions.

4 Algorithm Overview

In this section we describe procedure we use for generating 3D maps by process-
ing set of 2D images and using chosen properties of emerging terrain. As a test
platform for our algorithm we use newest Blender application (version 2.73a).
We chose this 3D modelling environment because it contains complete python
interpreter and also allows for easy access to program functionality.

Terrain generation algorithm consists of two main steps: processing terrain
maps and building terrain according to input data and predefined properties.



78 I. Antoniuk and P. Rokita

4.1 Processing Terrain Maps

Storing different terrain data in separate files requires precise defining what type
of information is taken from which map. In our method we currently consider
three types of data, defining our output object.

First map contains data about basic altitude level of region represented by
each pixel. Since we assume that RGB values in that map are equal we read only
one colour value and represent terrain height with it (Fig. 1. left). This parameter
defines basic terrain level, which is a foundation for any further calculations (like
obtaining dispersion or performing terrain generation).

Fig. 1. Input Files: height map (left), and terrain map (right)

Second map, stored in text file, contains values of dispersion for each region.
Total range of this parameter is described by two variables - one concerning
dispersion value below terrain level, and one for terrain above it (depending on
desired results, those values might differ rather significantly).

Final map stored in RGB image (Fig.1. right), contains description of dif-
ferent terrains occurring in generated object. Each terrain type is assigned a
colour, and is then recognized by simply comparing pixel RGB values to those
stored in terrain dictionary (each item, apart from terrain ID also contains basic
properties for 3D generation algorithms to work with).

4.2 3D Terrain Generation

After information contained in map files is processed and interpreted we obtain
few sets of data that are used in next step, which is terrain generation. Our algo-
rithm currently consist of three main parts: creating and placing basic regions,
adding details to those regions and finally joining created terrain tiles and reduc-
ing visibility of borders between them, as presented in Algorithm 1.

In first step of our procedure we use values obtained by processing image
containing height map to place basic grids across the scene, as shown at Fig. 2
(top). Each grid has predefined number of vertices. We also normalize height
values for it to better fit terrain characteristic, using user-defined parameter
(normalization parameter allows us to adjust height differences between regions,

“

decreasing or increasing tiles dispersion along “z” axis).



Procedural Generation of Adjustable Terrain for Application 79

Algorithm 1. Terrain Generation
Require: Size, Heights, Dispersions, Terrains, Regions, Normalization
for all Regions do
CreateGrid(Size)
GetHeight(Heights, Region)
PlaceGrid(Height, Normalization)
end for
for all Grids do
AssignTerrainType(Region)
ChooseAlgorithm(TerrainType)
ReadDispersion(Dispersions, Region)
GenerateTerrain(Region, Algorithm, Dispersion)
end for
for all Grids do
CheckNeighbours()
AlignBorders(Regions, TerrainType)
SmoothTransition()
end for

Although in this step we do not perform any complex operations, obtained
results give quite good impression about overall terrain shape. It also provides
the possibility to fix any defects that generated terrain can have at this point
(like to high dispersion between regions) before main generation process begins.

After we create basic version of our terrain, we then use information from
remaining maps, to add details. First we check type of terrain for each existing
region (Fig.2. bottom), since that information decides what kind of algorithm
will be used for generation, as well as some of its input parameters. After obtain-
ing required data, we run proper algorithm with given parameters and obtained
dispersion range. At this point we gain set of separate regions, where each of
them contains part of output terrain, generated according to data from map
files. Results of such generation are shown at Fig.3 (top).

Final step of our procedure connects created regions and blurs border between
them. This part of algorithm works on two neighbouring tiles. It first checks
placement of border vertices (since grids are generated next to each other, global
x and y coordinates for those vertices will be the same) and moves them to
new location. Final placement of each vertex is calculated according to set of
constraints specified by user (i.e. they can be placed in the middle, or closer
to one region location, depending from influence that each terrain will have at
calculations outcome). Results of joining tiles are shown at Fig. 3 (middle).

Although at this point created regions are connected, borders between tiles
are clearly visible. We use simple procedure to blur those transitions, by defining
percentage of terrain that will be aligned (it corresponds directly to number
of vertices in each region that will be modified). Subsequently we level that
terrain to its border (already connected with neighbouring region), gradually
decreasing alignment influence. Final terrain is shown in Fig. 3 (bottom).



80 I. Antoniuk and P. Rokita

Fig. 2. Basic generation: placing regions (top), and assigning terrain type (bottom)

After this final step we obtain terrain made up from set of separate tiles,
where each of elements can be processed and modified independently. Since com-
puter games rarely store terrain as single object, and rather load small parts of it
when they are needed (i.e. while player travels to another locations or approaches
borders between them), such data representation helps to avoid unnecessary
operations (like dividing terrain after it was created, to include it in computer
game). At the same time we also allow possibility to connect regions into single
object (in this operation we consider both joining all regions as well as restricting
this action to chosen set of elements).

In its current form (see Fig. 4), our algorithm has both advantages and disad-
vantages. We still use rather simple procedures for generating terrain inside tiles
and blurring borders between them, therefore the amount of available terrains
as well as their variety is limited. At the same time terrains we can generate
can be easily edited and adjusted because they are editable Bender objects.
Unfortunately using Blender application as our test platform greatly limits our
performance. Our algorithm can generate terrain (including complex maps, with
many different terrain tiles), from relatively simple input, but without inserting
any additional detail (like vegetation or buildings). One big advantage is that
each step of our procedure can be verified, limiting number of errors occurring
in final object. Also due to its modular structure, appending new functionality
is an easy task.



Procedural Generation of Adjustable Terrain for Application 81

Fig. 3. Terrain generation: generating terrain details in regions (top), joining regions
(middle) and blurring borders between regions (bottom)

5 Future Work

Our algorithm in its current form can create rather large set of different terrains
and is only limited by generation procedure that we are using for different ter-
rain types. Currently we use diamond-square algorithm for that purpose. In the



82 I. Antoniuk and P. Rokita

Generating regions Assigning textures
Height Map Terrain Map

- h
Smoothing
transitions

Fig. 4. Algorithm overview

+Dispersion

@ Generating details

future we would like to add different and more complex procedures for generating
terrain.

Another issue is that our joining procedure does not provide satisfactory
results, since from time to time, borders between regions are still visible. We
would like to work on that problem and try some other solutions, like genetic
algorithms, or more complex, mathematical functions than the one we are cur-
rently using.

Finally, we would like to add some procedures to further add details to created
terrain (like vegetation, rocks, buildings and other).

6 Conclusions

In this work we presented procedure for creating 3D terrain by processing set
of schematic maps, and user-defined properties. Terrains obtained during gen-
eration process could not only be easily adjusted at different parts of their cre-
ation, but also are suitable base for further modifications. At the same time any
adjustments can be performed without further actions, either by editing maps,
or modifying terrain itself, since our output areas are editable Blender objects.

Our algorithm is at early stage of development and still has some drawbacks,
like to clear borders between terrain tiles, or insufficient base of generation algo-
rithms. We plan to address those problems.



Procedural Generation of Adjustable Terrain for Application 83

Even in this form our procedure creates interesting and playable terrains, that

can also be easily used in computer games and further adjusted by designers,
providing suitable base for future research.

References

1.

10.

11.

12.

13.

14.

15.

16.

Ebert, D.S., Kenton Musgrave, F., Peachey, D., Perlin, K., Worley, S.: Texturing
and Modelling: A Procedural Approach, 3rd edn. Morgan Kaufmann Publishers
Inc., San Francisco (2002)

Greuter, S., Parker, J., Stewart, N., Leach, G.: Real-time procedural generation
of ‘Pseudo Infinite’ cities. In: Proceedings of the 1st International Conference on
Computer Graphics and Interactive Techniques in Australasia and South East Asia
(2003)

Hendrix, M., Mejer, S., van der Velden, J., Iosup, A.: Procedural content generation
for games: a survey. Commun. Appl. ACM Trans. Multimed. Comput. 9 (2013)
Linden, van der R., Lopes, R., Bidarra, R.: Designing procedurally generated levels.
In: Proceedings of IDPv2 - Workshop on Artificial Intelligence in the Game Design
Process (2013)

Merrell, P., Manocha, D.: Model synthesis: a general procedural modeling algo-
rithm. IEEE Trans. Vis. Comput. Graph. 17(6), 715-728 (2011)

Prachyabrued, M., Roden, T.E., Benton, R.G.: Procedural generation of stylized
2D maps. In: Proceedings of the International Conference on Advances in Com-
puter Entertainment Technology (2007)

Prusinkiewicz, P., Hammel, M.: A fractal model of mountain with rivers. In: Pro-
ceedings of Graphics Interface, pp. 174180 (1993)

Raffe, W.L., Zambetta, F., Li, X.: Evolving patch-based terrains for use in video
games. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary
Computation (2011)

Raman, S., Jianmin, Z.: Efficient terrain triangulation and modification algorithms
for game applications. Int. J. Comput. Games Technol. 2008, 5 (2008)

Roberts, G., Balakirsky, S., Foufou, S.: 3D reconstruction of rough terrain for
USARSim using a height map method. In: Proceedings of the 8th Workshop on
Performance Metrics for Intelligent Systems (2008)

Roden, T., Parberry, I.: From artistry to automation: a structured methodology
for procedural content creation. In: Rauterberg, M. (ed.) ICEC 2004. LNCS, vol.
3166, pp. 151-156. Springer, Heidelberg (2004)

Santos, P., Toledo, de R., Gattas, M.: Solid height-maps sets: modelling and visu-
alisation. In: Proceedings of the ACM Symposium on Solid and Physical Modelling
(2008)

Smelik, R.M., Galka, K., Kraker, de K.J., Kujiper, F., Bidarra, R.: Semantic con-
straints for procedural generation of virtual worlds. In: Proceedings of the 2nd
International Workshop on Procedural Content Generation in Games (2011)
Smelik, R.M., Kraker, de K.J., Groenewegen, S.A.: A Survey of procedural methods
for terrain modelling. In: Proceedings of the Workshop on 3D Advanced Media in
Gaming and Simulation, pp. 25-34 (2009)

Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural modelling
for virtual worlds. Comput. Graph. Forum (2014)

Smelik, R.M., Tutenel, T., Kraker, de K.J., Bidarra, R.: A proposal for a procedural
terrain modelling framework. In: Proceedings of the 14th Eurographics Symposium
on Virtual Environments (2008)



84

17.

18.

19.

I. Antoniuk and P. Rokita

Smelik, R.M., Tutenel, T., Kraker, K.J., Bidarra, R.: Declarative terrain modelling
for military training games. Int. J. Comput. Games Technol. 2010, 11 (2010).
Article no. 2

Smelik, R.M., Tutenel, T., de Kraker, K.J., Bidarra, R.: A declarative approach to
procedural modelling of virtual worlds. Comput. Graph. 35(2), 352-363 (2010)
Blender application web page (2015). http://www.blender.org/. Accessed: 2 Feb-
ruary 2015


http://www.blender.org/

	Procedural Generation of Adjustable Terrain for Application in Computer Games Using 2D Maps
	1 Introduction
	2 Related Work
	3 Initial Assumptions
	4 Algorithm Overview
	4.1 Processing Terrain Maps
	4.2 3D Terrain Generation

	5 Future Work
	6 Conclusions
	References


