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Abstract. Fuzzy inference systems generate inference results based on
fuzzy IF-THEN rules. Fuzzy implications are mostly used as a way of
interpretation of the IF-THEN rules with fuzzy antecedent and fuzzy
consequent. From over eight decades a number of different fuzzy impli-
cations have been described, e.g. [6–10]. This leads to the following ques-
tion: how to choose the proper function among basic fuzzy implications.
In our paper, we propose a new method for choosing implication. Our
method allows to compare two fuzzy implications. If the truth value of
the consequent and the truth value of the implication are given, by means
of inverse fuzzy implications we can easily optimize the truth value of the
implication antecedent. In other words, we can choose the fuzzy implica-
tion, which has the highest or the lowest truth value of the implication
antecedent or which has higher or lower truth value than another impli-
cation.

Keywords: Fuzzy logic · Fuzzy implications · Inverted fuzzy implica-
tions · Backward reasoning

1 Introduction

There were proposed various methods of knowledge representation and reason-
ing. One of the most popular approaches to knowledge representation are the
fuzzy rules. However, reasoning is mainly classified into two types: forward rea-
soning and backward reasoning. The inference mechanism of forward reasoning is
based on a data-derived way, and has a powerful prediction ability, which is capa-
ble of alarming latent hazards, forthcoming accidents, and faults. By contrast,
backward reasoning is based on a goal-derived manner, has explicit objectives,
which are generally to search the most possible causes related to an existing fact.
Backward reasoning plays an essential role in fault diagnosis, accident analysis,
and defect detection. This kind of reasoning uses fuzzy logic [4] to reason about
data in the inference mechanism instead of a variety of other logics, includ-
ing Boolean logic, (non-fuzzy) many-valued logics, nonmonotonic logics, etc.
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From imprecise inputs and fuzzy rules imprecise conclusions are obtained.
Approximate reasoning with fuzzy sets encompasses a wide variety of inference
schemes.

Paper [5] discusses different representations of rules in a nonfuzzy setting and
extends these representations to rules with a fuzzy conclusion part. It introduces
the different types of fuzzy rules and put them in the framework of fuzzy sets
and possibility theory.

In [2] a new fuzzy reasoning method by optimizing the similarity of truth-
tables is presented. Its basic idea is to find a fuzzy set such that the truth-
tables generated by the antecedent rule and the consequent rule are as similar
as possible.

Fuzzy rules are often presented in the form of implications. A typology of
fuzzy rules and the problem of multiple-valued implications are discussed in
paper [4]. It reviews the problem of representing fuzzy knowledge, and ranges
from linguistic variables to conditional if-then rules and qualified statements.

Fuzzy implications can be represented in many ways. One of them is the
functional representation (e.g. [12,13,17]). The definition of fuzzy implications
and their mathematical properties were studied e.g. in [1] and [16]. One of basic
problems in building an inference system is choosing the relevant fuzzy implica-
tion (e.g. [2,11]). In [11] authors proposed a method allowing to choose the most
suitable fuzzy implication in an inference system application. They introduced
an algorithm that calculates the distance between two fuzzy implications and
which is based on generalized modus ponens.

In [14], we have presented a fuzzy forward reasoning methodology for rule-
based systems using the functional representation of fuzzy rules (fuzzy impli-
cations). In this paper, we extend a methodology for selecting relevant fuzzy
implications from [14] in backward reasoning. The proposed methodology takes
full advantage of the functional representation of fuzzy implications and the alge-
braic properties of the family of all fuzzy implications. It allows to compare two
fuzzy implications. If the truth value of the conclusion and the truth value of the
implication are given, we can easily optimize the truth value of the implication
premise. In particular, in this paper we introduced an algorithm of finding the
fuzzy implication which has the highest truth value of the antecedent when the
truth value of the consequent and the truth value of the implication are given.
This methodology can be useful for the design of inference engine based on the
rule knowledge for a given rule-based system.

In the solution in this paper to divide the domain of fuzzy implications into
areas, in which it will be possible to select appropriate fuzzy implication we
had to use the Lambert W function, also called product logarithm. Lambert W
function is a special function used when solving equations containing unknown to
both the base and the exponent power. It is defined as the inverse of f(z) = zez,
where z belongs to the set of complex numbers. It is marked W (z). Thus, for
each complex number z holds: z = W (z)eW (z).

The rest of this paper is organized as follows. Section 2 contains basic infor-
mation on fuzzy implications. In Sect. 3 the research problem is formulated.
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Section 4 presents the solution of the given research problem. Section 5 is devoted
to the pseudo-code of an algorithm for determining a basic fuzzy implication
which has the highest truth value of the antecedent when the truth value of the
consequent and the truth value of the implication are given. Section 6 includes
summarizing of our research and some remarks.

2 Preliminaries

In this section we recall a definition of a fuzzy implication and we list a few of
basic fuzzy implications known from the subject literature [1].

A function I : [0, 1]2 → [0, 1] is called a fuzzy implication if it satisfies, for all
x, x1, x2, y, y1, y2 ∈ [0, 1], the following conditions:

– if x1 ≤ x2, then I(x1, y) ≥ I(x2, y), i.e., I(., y) is decreasing;
– if y1 ≤ y2, then I(x, y1) ≤ I(x, y2), i.e., I(x, .) is increasing;
– I(0, 0) = 1;
– I(1, 1) = 1;
– I(1, 0) = 0.

There exist uncountably many fuzzy implications. The following Table 1 contains
a few examples of basic fuzzy implications. Figure 1 gives us some plots of these
functions.

Table 1. Examples of basic fuzzy implications

Name Year Formula of basic fuzzy implication

�Lukasiewicz 1923, [10] ILK(x, y) = min(1, 1 − x + y)

Gödel 1932, [4] IGD(x, y) =

{
1 if x ≤ y

y if x > y

Reichenbach 1935, [12] IRC(x, y) = 1 − x + xy

Kleene-Dienes 1938, [9]; 1949, [3] IKD(x, y) = max(1 − x, y)

Goguen 1969, [8] IGG(x, y) =

{
1 if x ≤ y
y
x
if x > y

Rescher 1969, [13] IRS(x, y) =

{
1 if x ≤ y

0 if x > y

Yager 1980, [18] IY G(x, y) =

{
1 if x = 0 and y = 0

yx if x > 0 or y > 0

Weber 1983, [17] IWB(x, y) =

{
1 if x < 1

y if x = 1

Fodor 1993, [3] IFD(x, y) =

{
1 if x ≤ y

max(1 − x, y) if x > y
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0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

Reichenbach implication

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

z

(a) (b)

Fig. 1. Plots of ILK and IRC fuzzy implications

3 Problem Statement

Our goal is to elaborate an algorithm to find a method of selecting fuzzy impli-
cation in view of the value of the implication antecedent.

Assume that there is given a basic fuzzy implication z = I(x, y), where x,
y belong to [0,1]. y is the truth value of the consequent and is known. z is
the truth value of the implication and is also known. In order to determine the
value of the truth of the implication antecedent x it is needed to compute the
inverse function InvI(y, z). In other words, the inverse function InvI(y, z) has
to be determined. Not every of basic implications can be inverted. The function
can be inverted only when it is injective.

Choosing implications in the opposite situation, where the truth value of the
antecedent and the truth value of the implication are given are described in the
paper [14] and primary results regarding this problem in forward reasoning are
included in the paper [15].

4 Results

Table 2 lists inverse fuzzy implications and their domains and in Fig. 2 there are
some plots of them.

The domains of every considered inverted fuzzy implications are included in
a half of the unit square, where y ≤ z < 1 and y ∈ (0, 1). Only one inverted
fuzzy implication has a domain which is smaller than this area. This is inverted
Fodor implication and in the whole its domain (y ≤ z < 1 − y, y ∈ [0, 1]) this
function is equal to inverted Kleene-Dienes implication.

For y ≤ z < 1 − y there are the following inequalities: InvIFD = InvIKD <
InvIRC < InvILK , InvIY G < InvIRC < InvILK , InvIGG < InvILK . A graph-
ical representation of the ordering of inverted basic fuzzy implications is given
in Fig. 3.

For 1 − y ≤ z < 1 and y ≤ z there are the same inequalities, but without
inverted Fodor implication, because this function does not exist in this area.
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Table 2. Inverted fuzzy implications

Formula of inverted fuzzy implication Domain of inverted fuzzy implication

InvILK(y, z) = 1 − z + y y ≤ z < 1, y ∈ [0, 1)

InvIRC(y, z) = 1−z
1−y

y ≤ z ≤ 1, y ∈ [0, 1)

InvIKD(y, z) = 1 − z y < z ≤ 1, y ∈ [0, 1)

InvIGG(y, z) = y
z

y ≤ z < 1, y ∈ (0, 1)

InvIY G(y, z) = logy z y ≤ z < 1, y ∈ (0, 1)

InvIFD(y, z) = 1 − z y < z < 1 − y, y ∈ [0, 1)
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Inverted Yager implication implication
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Fig. 2. Plots of InvILK , InvIRC , InvIY G and InvIGG fuzzy implications
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Fig. 3. A graphical representation of the ordering of inverted basic fuzzy implications
for y ≤ z < 1 − y

The resulting inverse functions can be compared with each other so that it
is possible to order them. However, some of those functions are incomparable
in the whole domain. Nevertheless, by dividing the domain into separable areas
(see Fig. 4), we obtained 19 inequalities between inverted fuzzy implications for
any y ≤ z < 1 and y ∈ (0, 1). A few from this inequalities are given below and
their graphical representation is in Table 3. This is only a part of the analysis.
Full description of the analysis will be in the full version of this work.
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1. For z > 1 − y and z > ProductLog(yLog(y))
Log(y)

InvIY G < InvIKD < InvIRC < InvIGG < InvILK

2. For z > y and z > 1 − y and z < ProductLog(yLog(y))
Log(y)

InvIKD < InvIY G < InvIRC < InvIGG < InvILK

3. For z < 1+
√
1−4y
2 and z > yLog(y)

ProductLog(yLog(y))

InvIY G < InvIGG < InvIKD < InvIRC < InvILK

4. For z > 1+
√
1−4y
2 and z > ProductLog(yLog(y))

Log(y) and z < 1 − y

InvIY G < InvIKD < InvIGG < InvIRC < InvILK

All inequalities given in Table 3 can be proven in a similar way. As examples, we
will consider one of inequalities. Let y ∈ (0, 1) and z ∈ (y, 1). y < z, so obviously
y2 < yz. By adding and subtracting 1 − z + y to the equation we obtained
1 − z < 1 − z + y − y + yz − y2. And therefore, 1−z

1−y < 1 − z + y. This completes
the proof of the inequality: InvIRC < InvILK in domains of these functions.

5 Algorithm

Below we present the pseudo-code of the algorithm (DetermineImplicationGTVA)
for determining a basic fuzzy implication which has the highest truth value of the
antecedent whereas the truth value of the consequent and the truth value of the
implication are given.

The algorithm uses the results of our research presented in Table 3. The first
step in the algorithm determines to which area (1) − (19) from Table 3 point
(y, z) belongs to.

Algorithm. DetermineImplicationGTVA

Input: W - a given subset of the basic fuzzy implications;
y - the truth value of the consequent;
z - the truth value of the implication

Output: I ∈ W - fuzzy implication(s) which has (have) the highest truth value
of the antecedent

1. a ← area(y, z) //determines the area from (1) − (19) to which a point (y, z)
belongs to;

2. order the set W with respect to the graph Ga of inequalities from the area a;
3. I ← the maximal element(s) from the ordered set W ;
4. return I;



Inverted Fuzzy Implications in Backward Reasoning 361

Table 3. A part of the table of inequalities (4 out of 19 possible cases)

No Area and inequality Chart of area Graph of inequalities

1 For z > 1 − y and
z > ProductLog(yLog(y))

Log(y)

InvIY G < InvIKD <
InvIRC < InvIGG <
InvILK

2 For z > y and z > 1 − y
and
z < ProductLog(yLog(y))

Log(y)

InvIKD < InvIY G <
InvIRC < InvIGG <
InvILK
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(Continued)
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Table 3. (Continued)

No Area and inequality Chart of area Graph of inequalities

3 For z < 1+
√

1−4y
2

and

z > yLog(y)
ProductLog(yLog(y))

InvIY G < InvIGG <
InvIKD < InvIRC <
InvILK
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√
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6 Concluding Remarks

In this paper, we introduced an algorithm of finding the fuzzy implication which
has the highest truth value of the antecedent from a given subset of the basic
fuzzy implications, when the truth value of the consequent and the truth value
of the implication are given.

Also it turned out, that an implication which has the largest truth value of
the antecedent is always the inverted �Lukasiewicz implication.

In the solution in this paper we used Lambert W function. Lambert W func-
tion cannot be expressed in terms of elementary functions. For this reason it is
impossible to calculate the coordinates of a point (y0, z0) in an analytical way
(area number 19 in Table 3).

It is possible to avoid this problem if we skip Yager fuzzy implication in our
analysis. This is one of problems which we would like to investigate applying the
approach presented in the paper.

Acknowledgments. This work was partially supported by the Center for Innovation
and Transfer of Natural Sciences and Engineering Knowledge at the University of
Rzeszów. We would like to thank the anonymous referees for critical remarks and
useful suggestions to improve the presentation of the paper.

References
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(1923)

11. Papadopoulos, B., Trasanides, G., Hatzimichailidis, A.: Optimization method for
the selection of the appropriate fuzzy implication. J. Optim. Theory Appl. 134(1),
135–141 (2007)

12. Reichenbach, H.: Wahrscheinlichkeitslogik. Erkenntnis 5, 37–43 (1935)
13. Rescher, N.: Many-Valued Logic. McGraw-Hill, New York (1969)



364 Z. Suraj and A. Lasek

14. Suraj, Z., Lasek, A., Lasek, P.: Inverted fuzzy implications in approximate reason-
ing. In: 23th International Workshop on Concurrency, Specification and Program-
ming, Chemnitz, Germany, 29 September– 01 October 2014

15. Suraj, Z., Lasek, A.: Toward optimization of approximate reasoning based on rule
knowledge. In: Proceedings of the International Conference on Systems and Infor-
matics, Shanghai, China, 15–17 November 2014

16. Tick, J., Fodor, J.: Fuzzy implications and inference processes. Comput. Inf. 24,
591–602 (2005)

17. Weber, S.: A general concept of fuzzy connectives, negations and implications based
on t-norms and t-conorms. Fuzzy Sets Syst. 11, 115–134 (1983)

18. Yager, R.R.: An approach to inference in approximate reasoning. Int. J. Man-Mach.
Stud. 13, 323–338 (1980)


	Inverted Fuzzy Implications in Backward Reasoning
	1 Introduction
	2 Preliminaries
	3 Problem Statement
	4 Results
	5 Algorithm
	6 Concluding Remarks
	References


