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Abstract. Parkinson (PD) is the second most common neurodegenerative
disease (ND) with characteristic movement disorders. There are well defined
standard procedures to measure disease stage (Hohen Yahr scale), progression
and effects of treatments (UPDRS — unified Parkinson Disease Rate Scale). But
these procedures can only be performed by experienced neurologist and they are
partly subjective. The purpose of our work was to test objective and non-
invasive method that may help to estimate disease stage by measuring fast and
slow eye movements (EM). It was demonstrated earlier that EM changes in PD.
We have measured reflexive saccades (RS) and slow pursuit ocular movements
(POM) in four sessions related to different treatments. With help of fuzzy rough
sets theory (FRST) we have related measurements with expert’s opinion by
generalizing experimental finding by fuzzy rules. In order to test our approach,
we have divided our measurements into training and testing sets. In the second
test, we have removed expert’s decisions and predicted them from the training
set in two situations: on the basis of only classical neurological measurements
and on the basis of EM measurements. We have observed, on 12 PD patients
basis, an increase in predictions accuracy when eye movements were included as
condition attributes. Our results with help of the FRST suggest that EM mea-
surements may become an important diagnostic tool in PD.
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1 Introduction

The brain’s deeper computational properties are still not well understood. We are even
not sure if brain computations are more powerful than the Turing machine and such
models as ARNN (analog recurrent neural networks) or coupled nonlinear oscillators
are appropriate [1, 2]. For example, we do not know exactly how brain processes are
affected by nerve cell deaths in the neurodegenerative diseases (ND) such as Parkinson
or Alzheimer. It is well documented, however, that the disease starts long before the
observed first symptoms and individual pathological mechanisms have a large spec-
trum. In Parkinson’s, for example, the first motor symptoms are observed when
70 —80 % cells in responsible structure (substantia nigra) are dead and once cells are
dead there is no chance for their recovery.

We can register symptoms of ND such as motor and/or mental disorders
(dementias) and even provide symptomatic relief, though the structural effects of these
are in most cases not yet understood. Fortunately, with early diagnosis there are often
many years of disease progression with symptoms that, when they are precisely
monitored, may result in improved therapies.

One of the purposes of this work is to try to extract knowledge from symptoms in
order to model possible mechanisms of disease progression and adjust therapies in
timely precise matter.

The majority of neurologists use the standard statistical methods to analyze the
results of PD patients’ treatment. As every patient suffers from PD in a different way
and reacts differently to the treatment, averaging methods can lead to the confusing
results. Therefore, in continuation of [3, 4], we propose to extend statistical analysis to
data mining techniques in order to adjust PD treatment to an individual patient. Our
method is based on fuzzy rough sets theory application as this approach should better
fit to predict partly noisy and continuous medical measurements than previously pro-
posed rough sets theory [3, 4].

As PD progression biomarker we have used measurements of eye movements. It is
well established on the animal experimental basis that the basal ganglia are involved in
the eye movement’s control (see review [5]). It was also demonstrated on human
subjects that fast (saccades) and also slow (pursuit ocular movements) eye movements
are affected in Parkinson’s diseases [6, 7].

Generally, different treatments are based on the UPDRS (Unified Parkinson’s
Disease Rating Scale) measurements, in particular on UPDRS 1II (activity of daily
living), UPDRS III (examination of motor symptoms), UPDRS V (modifies Hoehn and
Yahr staging — stage of the disease) and UPDRS VI (Schwab and England activities of
daily living scale). As these measurements are strongly doctor dependent and partly
subjective, we propose to use the eye movement (EM) as an individual doctor inde-
pendent measure to improve diagnosis and objectivity. In the consequence, in our
analysis in addition to standard neurological measurements, we have added EM
parameters as condition attributes, doctors’ expertise as the decision attribute and
placed them in the decision table [8]. As the data in the table were related to different
treatments, our purpose was to use the data mining techniques to estimate and to predict
effectiveness of different therapies related to individual patients.
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2 Methods

We have performed our analysis on PD data used earlier in [3, 4]. All of the 12 patients
had implanted electrodes in the subthalamic nucleus that is a standard procedure in
advanced Parkinson’s. As number of PD patients is relatively small, results of this
study are preliminary. The measurements were conducted in four sessions (S1—S4): in
the first session (S1) patients were off medications (L-Dopa) and DBS stimulators was
OFF; in the second session (S2) patient were off medication, but the stimulator was
ON;; in the third session (S3) patients were after his/her doses of L-Dopa and stimulator
was OFF, and in the fourth session (S4) patients were on medication with the stimulator
ON. The data set consisted of the estimation of the disease advancement made during
the medical interview (expressed by Unified Parkinson Disease Rate Scale - UPDRS)
related to changes in motor performance, behavioral dysfunction, cognitive impairment
and functional disability, and EM measurements. We have evaluates saccadic and slow
pursuit eye movements. The EM were recorded by head-mounted saccadometer (Ober
Consulting, Poland). We have used an infrared eye track system coupled with a head
tracking system (JAZZ-pursuit — Ober Consulting, Poland). In the EM measurements
patient was sitting at the distance of 60—70 cm from the monitor with head supported
by a headrest in order to minimize head motion. We measured fast eye movements in
response to a light spot switched on and off, which moved horizontally from the
straight eye fixation position (0 °) to 10 ° to the left or 10 ° to the right after arbitrary
time ranging between 0.5-1.5 s. When the patient fixated eyes on the spot in the middle
marker (0 °) the spot then changed color from white to green, indicating a signal for
performance of RS (reflexive saccades); or from white to red meaning a signal for
performing AS (antisaccades) — not evaluated in this study. Then the central spot was
switched off and one of the two peripheral targets, selected at random with equal
probability, was illuminated instead (non-overlapping test). Patients had to look at the
targets and follow them as they moved in the RS task. After making a saccade to the
peripheral target, the target remained on for 0.1 s after which another trial was initiated.
In each test the subject had to perform 10 RS and 10 AS in a row in Med-off (med-
ication off) within two situations: with DBS off (S1) and DBS on (S2). In the next step
the patient took medication and had a break for one half to one hour, and then the same
experiments were performed, with DBS off (S3) and DBS on (S4). Slow EM — pursuit
ocular movements (POM) were measured in response to a light spot with horizontal
sinusoidal movements (with slow (0.125 HZ), medium (0.25 Hz) and fast (0.5 Hz)
frequencies), placed from 10 ° to the left to 10 ° to the right. POM measurements were
performed in four different sessions in similar procedures as described above for RS
measurements.

In this work we have analyzed only RS data using the following parameters:
averaged for both eyes: delay (RS latency), amplitude (RS amplitude), duration (RS
duration), velocity (RS velocity). We have analyzed POM data using the following
parameters averaged for both eyes: gain (eye movement amplitude/sinus amplitude)
and accuracy (difference between sinusoid and eye positions) for three different fre-
quencies. More details can be found in [3, 4].
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3 Theoretical Basis

Our data were represented as a decision table. In the rows we put the measurements’
values for respective patients during each single session. As columns we use patient’s
number, patient’s age, session number, estimations of UPDRS, Schwab and England
and Hoehn and Yahr scales and EM measurements: RS parameters and slow, medium
and fast sinus parameters for POM.

As fuzzy rough set theory (FRST) is an extension of rough set theory (RST) [8]
we define here a similarity or tolerance relation [9, 10] instead of crisp equivalence.
The tolerance relation R,(x,y) determines the discernibility between the values of the
specific attribute for a pair of observation. There are several means to describe this
relation R,(x,y) as presented below after [8-12]:

Ra(x,y) = 1 —1a0) = ad)| (1)

|amin — max |

In this way, the value of tolerance relations is directly proportional to the absolute
value of the difference between the attribute’s values for the two observations.

~(a(y)—a(x))?
Ro(x,y) =€ 2)

where o, stands for standard deviation for the given attribute a. This equation includes
standard deviation of the data, therefore in most cases it is more sensible for the
behavior of the data than Eq. (1) mentioned above.

~lla()-a()|
Ri(x,y) =e 7 3)

where d is a positive number. In our case, we take absolute value as a norm and
variance ¢, in place of d.

In the next step, we have normalized the differences between each pair of conditional
attributes’ values. For this purpose, we have used a t-norm, marked t. For a given pair of
attributes a and b we get Ry, ) (x,y) = ©(Ra(x,y), Ry(x,y)). In order to get the value of
the relations for the whole set of conditional attributes B, it is enough to normalize the
difference between the first pair and the successive element and then by recurrence the
difference between the value for the set got at the preceding step and a successive added
element: Ry, 51 (x,y) = T(R{ap) (¥, ), Re(x,y)). The two most commonly used t-norms
are: t.cos and Lukasiewicz t-norm, described respectively by equations:

R{a,b}(xa Y) = max{O, Ra(x y Rb X y \/1 - vY) ’ \/1 - Rb(xv Y)}7 (4)
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R{a,b} (Xv y) = max{O, Ra(xa Y) + Rb(X, y) - 1} (5)

Tolerance relation defined by (1) is transitive in both t-norms, while tolerance
relations defined with (2, 3) are transitive only with t-norm [9].

In case of modelling the difference between values for the decision attribute, we
O,x=y
Lx#y’

In FRS concept, for the sets (U, B) of observations and condition attributes we
define B-lower and B-upper approximations separately for every observation x. For
each of the observations x we define B-lower approximation as: (Rp | X)(x) =
525 I(Rp(x,y),X(y)), where I is an implicator [9]. The B-lower approximation for the

usually use the relation of identity: R;(x,y) = {

observation x is then the set of observations which are the most similar to observation
x and it can predict the decision attribute with the highest confidence, based on con-
ditional attributes B.

The B-upper approximation is defined by (Rp T X)(x) = sup t(Rp(x,y),X(y)).

yelU
Then, in fuzzy rough sets approach, the B-upper approximation is a set of observations
for which the prediction of decision attribute has the smallest confidence.

Another term used in further explanations is positive region for an element y. The
fuzzy B-positive region is a fuzzy set in the set U that contains each observation x to
the extent that all objects with approximately equal values for the set of conditional
attributes B have equal values for decision attribute. Formally after [9]:
POS(y) = U(Rp | Rax)(y).

The predictive ability for d of the set of conditional attributes B is reflected in the
POSS| D ey POSHW)
POSaviay]| ™ 3" | POSx () (x)
any other subset B’ of B such that POSp = POSy\ (4, B is called a decision reduct.

The rules in FRST approach are constructed from tolerance classes and corre-
sponding decision concepts. A ready fuzzy rule will be a triple (B, C, D), where B is a
set of conditional attributes that appear in the rule, C stands for fuzzy tolerance class of
object and D stands for decision class of object.

Apparently, many terms are defined differently in rough sets (applied and described
in [3, 4]) and fuzzy rough sets approach, e.g. in RST upper approximation is a global
term, defined for the whole data set while in FRST we define upper approximation
separately for each element. Those sets are also larger in fuzzy method, as they contain
observations that are not necessarily identical with the observation for which we define
the upper approximation. As a consequence of this difference, in most cases we get
close to 100 % of class coverage for predictors in FRST approach, while the coverage
in RST is usually much lower.

degree of dependency defined as y; = . If there does not exist

4 Results

Below are examples of decision tables that include fast eye movements - reflexive
saccades: RS (Table 1) and slow, pursuit eye movements - POM (Table 2) parameters.
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Table 1. A part of the decision table for the first experiment including RS

Schwab SceVel
EngSc
11 58 1 45 60 52 259 15 5523 75
11 58 2 17 90 52 204 14 549.8 32
11 58 3 32 60 46 315 12 514 62
11 58 4 10 90 54 239 11 371,7 25

Pat - patient’s number, age - patient’s age, Sess - session number, UPDRS III -
motor tests, SchwabEngSc —Schwab & England activity, SccDurat - RS duration,
SccLat - RS latency, SccAmp - RS amplitude, SccVel - RS velocity, UPDRS Total -
sum of a UPDRS I to VL

On the basis of Table 1 we understand rules as (the last column is the decision
attribute) for the first row:

(‘Paf’ = 11)&(‘age’ = 58) &(‘Sess’ = 1)& ... = > (‘UPDRSII' =45) (6)

The rule should be read as follows: if for patient #11 and his/her age 58 and session
S1 and value equal to 45 and ... then his/her UPDRS III value is 45. We get such rules
separately for each of the rows of the decision table. The main purpose of our analysis
is to reduce number and increase universality of these rules.

In order to create fuzzy rules, we have used the algorithm called Hybrid Fuzzy-
Rough Rule Induction and Feature Selection and described in detail in [13—15]. In the
mentioned algorithm feature selection (a process of finding a subset of attributes which
represent the same information as the complete feature set) and rule induction are
performed simultaneously.

Table 2. A part of the decision table including POM

gxms access accms

11 | 58 |1 4 60 1.0583 0.9327 0.8487 0.8863 0.8151 0.7434
11 | 58 |2 1 90 1.0077 0.9145 0.8823 0.5768 0.658 0.6929
11 | 58 | 3 4 60 1.0336 1.0046 0.9498 0.6864 0.652 0.4858
11 | 58 | 4 1 90 1.0588 1.0262 0.9408 0.7838 0.8019 0.8384

Pat- patient’s number, age - patient’s age, Sess - session number, HYscale - Hoehn
and Yahr’s scale, SchwabEngSc- as above, gxss/gxms/gxfs - gain for slow/medium/
fast sinus, accss/accms/accfs - accuracy for slow/medium/fast sinus.
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The rules determining UPDRS III are important in prediction of PD symptoms
while the rules for session numbers are crucial in measuring the effects of different
treatments. In order to predict results from new patients, we have performed the fest-
and-train scenario (e.g. [8]). For this purpose we divide the data set into two parts:
training set, containing 75 % of the data and testing set, composed of the remaining
25 % that we have tested. We have removed decision attributes from the test set and
compared them with attributes values obtained from our rules.

As the test-and-train scenario strongly depends on which part of our measurements
was taken as training and which part was tested. In order to make the result possibly
generalized, we have divided our experimental set into 4 subsets (4-fold-test). Then we
treated each of them separately as a testing set, using the sum of other sets as a training
set. The mean of four predictions gave the final measure of the accuracy.

In order to measure the effects of the treatment, we performed the prediction of the
session numbers as a decision attribute. In the first step, as other attributes we used
patient’s number, age, results of UPDRS III, UPDRS IV and UPDRS Total, result in
Hoehn and Yahr’s scale and in Schwab and England’s scale.

To make the prediction, we have used the RoughSets package in R environment.
We checked the results of the prediction using different tolerance and t-norm defini-
tions (Table 3).

Table 3. Global accuracy for different parameters chosen for the prediction of session numbers
(S1-S4) without EM attributes

tolerance relation global accuracy

eq.(1) eq.(5) 0.33
eq.(1) eq.(4) 0.38
eq.(2) eq.(4) 0.29
eq.(3) eq.(4) 0.29

We chose then Eqs. 1 and 4 as parameters for our prediction. Its results are pre-
sented in the confusion matrix below (Table 4).

Table 4. Confusion matrix for different session numbers (S1—S4) without EM attributes

Predicted
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TPR: True positive rates for decision classes, ACC: Accuracy for decision classes.
Class coverage for predictors: 1 and global coverage = 1, and global accuracy = 0.42.

In order to compare how eyes movements parameters change the diagnostic ability
of the data set, in the second step we have used the parameters of eyes movements:
POM gain and accuracy for medium sinus (Table 5).

Table 5. Global accuracy for prediction of session numbers (S1—S4) including POM attributes

tolerance relation global accuracy

eq.(1) eq.(9) 0.46
eq.(1) eq.(4) 0.55
eq.(2) eq.(4) 0.46
eq.(3) eq.(4) 0.5

We chose then Egs. (1) and (4) as parameters for our prediction. Its results are
presented in the confusion matrix below (Table 6).

Table 6. Confusion matrix for different session numbers (S1—S4) including POM

Predicted

ACC

0.25 0.75 0 025 0.6
|_0.5 0 05 0.75 0.42

Actual

TPR: True positive rates for decision classes, ACC: Accuracy for decision classes.
Class coverage for predictors: 1 and global coverage = 1, and global accuracy = 0.55.

In order to predict individual patient’s symptoms related to different treatments, we
made prediction of the UPDRS III. To estimate the global accuracy for the predictions
of UPDRS attributes, we decided to recognize the prediction as accurate if it does not
differ from the actual values from more than 20 % of values range.

As our purpose was to find if RS (saccade) attributes are significant, we began with
prediction of UPDRS III using classical neurological measures but without UPDRS
total and without EM parameters. Below, in Table 7 we gave results of global accu-
racies using different parameters of tolerance and t-norm. The best result gave Eqs. 1
and 6: the global accuracy was 46 %.
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In the next step, we have tested results of UPDRS III prediction using in addition to
standard neurological data (without UPDRS total) also RS duration and amplitude. The
best result - global accuracy of 63 % - was obtained for Eqgs. 2 and 5 (Table 8).

Table 7. Global accuracy for different parameters chosen for the prediction of UPDRS values,
not including any eye movements parameters

tolerance relation global accurac

eq.(1) eq.(5) 0.46
eq.(1) eq.(4) 0.33
eq.(2) eq.(4) 0.38
eq.(3) eq.(4) 0.38

Table 8. Global accuracy for the UPDRS III prediction including RS

tolerance relation global accuracy

eq.(1) eq.(9) 0.58
eq.(1) eq.(4) 0.54
eq.(2) eq.(4) 0.63
eq.(3) eq.(4) 0.54

5 Conclusions

We have presented a comparison of several tolerance and t-norm equations in pre-
diction results of different treatments in Parkinson patients using fuzzy rough set theory
(FRST). We have performed similar calculations for the symptoms predictions also
using FRST. Our results demonstrated that attribute related to the eye movements are
important and gave better predictions than only classical neurological measurements.
This work is continuation of our previous papers where rough set theory (RST) was
used. The global coverage results were better when FRST was used, however the
global accuracy was higher with RST, but number of measurement is relatively small.
A big advantage of the eye movement (EM) measurements is that they might be
perform without doctor help, objectively with high precision and in the near future at
patient’s home. With help of the data mining methods such as RST or FRST these data
can be automatically evaluated in order to give instant, objective advice to individual
patient — it is the future method related to the tele-medicine. However, in order to be
able to use the analyzed methods in practical applications, we need to perform mea-
surements and confirm our results on larger group of patients that is actually in work in-
progress.
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