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Abstract. The paper presents an approach to the large scale text doc-
uments classification problem in parallel environments. A two stage clas-
sifier is proposed, based on a combination of k-nearest neighbors and
support vector machines classification methods. The details of the clas-
sifier and the parallelisation of classification, learning and prediction
phases are described. The classifier makes use of our method named one-
vs-near. It is an extension of the one-vs-all approach, typically used with
binary classifiers in order to solve multiclass problems. The experiments
were performed on a large scale dataset, with use of many parallel threads
on a supercomputer. Results of the experiments show that the proposed
classifier scales well and gives reasonable quality results. Finally, it is
shown that the proposed method gives better performance compared to
the traditional approach.

Keywords: SVM · k-nearest neighbor · Wikipedia · Documents cate-
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1 Introduction

Since the beginning of the Internet, its size and the amount of globally stored
data has been growing. With every year, the estimated number of indexed web
pages is increasing and today it is somewhere between 20 and 50 billion pages [1].
Because of the size of an average dataset, a need for automatic categorization
arises. Repositories, such as Wikipedia, reaching 4.5 million articles, organized
with hundreds of thousands of categories, could benefit from automatic cate-
gorization. There are many existing approaches to this problem, with different
results both in terms of accuracy and performance [2–4], but there is still need
for improvements in this area.

The aim of the work presented here is to propose a two stage classifier, capable
of automatic categorization of text documents, from repositories containing over
100 k categories and millions of articles. The proposed classification is performed
in two stages. The first one is a fast, initial classification stage, done by the
k-nearest neighbours (kNN) classifier, where the dataset is limited to selected
categories. The second stage is the final, accurate classification stage, done by
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the support vector machines (SVM)classifier, trained on the limited dataset. The
experiments designed to evaluate our approach are performed using Wikipedia
data, processed with our application that allows us to construct its machine-
processable representation [5]. The original contribution of this paper is the
application of our method named one-vs-near in classification of large scale text
documents repositories. This is done in order to improve the performance of a
typical linear SVM in the one-vs-all setting.

The next section briefly describes SVM and kNN classifiers and the way they
are incorporated to solve multiclass classification problems. Section 3 presents the
details of the solution. Then, Sect. 4 briefly describes the Galera supercomputer,
used to test the performance of our classifier in highly parallel environments
and with big datasets. The experiments using our implementation, along with
empirical results based on Wikipedia datasets, are given in Sect. 5. The last
section summarizes the paper and gives ideas for future research in this area.

2 kNN and SVM Classifiers in a Typical Multiclass
Setting

2.1 kNN in Multiclass Setting

One of the simplest, as well as the oldest machine classification techniques, is
the approach called kNN [6]. In a typical setting each test object is assigned to
a certain class, based on majority of its k nearest neighbors [6,7]. However, this
approach can be computationally expensive for datasets containing millions of
test objects. Some papers have shown [7,8] that kNN classifiers trained with the
use of pre-labled examples can highly improve the quality of classification. Since
a standard kNN approach can be very demanding performance-wise, modified
solutions are introduced, eg. the centroid kNN [3]. The idea is to calculate a
centroid for groups of feature vectors belonging to the same category and apply
the similarity metric on these centroids, instead of on each feature vector indi-
vidually. Given a set of S documents we can define the centroid vector as:

C =
1
|S| ×

∑

dεS

d (1)

where |S| is the number of articles in a class S and d are the vectors representing
the articles. After computing the centroids, we can use any similarity metric to
compare them in the prediction phase. The complexity of prediction in such case
(assigning labels to mtest test objects) is at most O (mtest ·N), where N is the
number of categories. The complexity of computing the model is at best only
O (mtrain), where mtrain is the number of training examples.

2.2 SVM in Multiclass Setting

SVM’s are one of the most effective methods of text classification [9]. In its base
form an SVM is a binary classifier that constructs a hyperplane h() in a high
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dimensional feature space (examples are typically projected into that space by
a kernel function), which is convex-optimized during training so that it sepa-
rates the classes leaving maximal possible space (margins) between them. The
prediction step can be summarized in a simple equation a = h(x), where a is the
activation of the hyperplane, and x is the feature vector (possibly transformed
by a kernel) of a testing object. The sign of a decides which class is predicted,
whereas the absolute value of a indicates the confidence of this decision. With
advanced optimization algorithms used by an SVM, time complexity of training
such hyperplane is O (mtrain). Although there are attempts to directly deal with
multiclass problems using reformulated SVMs [10], most often such problems
are divided into binary classifications and incorporate typical SVM classifiers
summarized above.

In a popular one–vs–all scheme for each class a separate hyperplane is
trained, by treating examples from that class as positives and all the remaining
examples in the dataset as negatives. During prediction, a test object is assigned
to a class which hyperplane’s activation a is the highest (winner takes all strat-
egy). Complexity of calculating the whole model in this setting is O (mtrain ·N).
For such a classifier the prediction can be performed in a O (mtest ·N) time, the
same as for the kNN classifier. The comparative study of this multiclass SVM
setting, as well as other less popular ones, can be found in [11]. It is important
to note that the classification of Wikipedia belongs to a multi-label family of
problems. In such cases, the winner takes all algorithm is replaced, each article
is tested against every category in the dataset and the final result consists of
categories with activation scores that exceed a specified threshold.

2.3 Hybrid Approaches

In order to improve the effectiveness of classification hybrid approaches of kNN
and SVM are introduced. The approaches vary in the way the classification
stages are combined and the types of datasets used. One of such methods is the
HKNNSVM classifier, proposed in [12] that improves kNN classier’s accuracy by
limiting the dataset only to the support vectors of each category’s hyperplane.
It should be noticed the accuracy of the kNN classifier is slightly increased in
this approach. Both the training and the prediction phase of the HKNNSVM
require a bigger amount of computations than in our approach, which might be
a problem when classifying big repositories such as Wikipedia.

Another approach proposed in [13] uses the kNN classifier to select the nearest
neighbours for a given query. An SVM classifier (DAGSVM) is then employed
in order to make the final decision. The classifier shows excellent accuracy in
character recognition however, a similar approach wouldn’t be as effective in the
case of large scale text documents classification. The initial search for nearest
neighbours amongst millions of articles, each containing thousands of features,
would be very demanding performance-wise. Moreover, the fact that an SVM
has to be trained for each query is also an issue in a dataset containing millions
of examples. Because of that our method should prove to be more efficient at
classifying sparse textual datasets. A similar approach to character recognition
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is also proposed in [14], however, just as the previous solution, it is not practical
for a large and sparse dataset such as Wikipedia.

A different approach is also proposed in [15]. The solution uses the kNN rule
in order to assign real value weights to the examples in the training dataset. This
is unlike the standard SVM, where examples belonging to a class are assigned
a 1 and all the others are assigned a −1. Just as in the previous examples this
approach proves to be more accurate than a single SVM. Again, the computa-
tional complexity of this approach makes it impractical in case of large scale text
documents classification. It is worth mentioning that unlike the other solutions
our approach deals with multi-label problems.

3 Details of Our Approach

Our classification system consists of four modules: the data preparation mod-
ule, the initial classification module, the final classification module, and the
results evaluation module. The results of every stage are saved in the file sys-
tem, which allows us to run the stages independently. The data preparation
module is designed to filter the dataset in order to meet requirements of the
classifier. The data evaluation module consists of programs designed to return
quality scores of the classifier such as its precision and recall.

3.1 Two Stage Classification

The classifier uses the one–vs–near approach instead of the one–vs–all approach
in order to limit the dataset during the learning phase [16]. For each category,
for which the classifier is trained, the dataset is limited to its closest neigh-
bours. The category neighbour list (used for limiting the dataset) is computed
by the kNN classifier in the first stage. It is important for the initial stage to be
lightweight, in order to minimize its impact on the overall performance of the
classifier. The kNN computes the distances between every centroid in the form
of an ordered list. This list is then saved in the filesystem and later used by
the second stage classifier. The second stage SVM uses the saved neighbour list
to limit the dataset used for training the classifier for a single category. Apart
from this, the second stage classifier works as a standard one–vs–all approach for
SVM. However, thanks to this difference it is possible to greatly limit the training
dataset size for each binary classifier. Because of that, the training performance
should be improved. Furthermore, the accuracy of the resulting classifier should
be comparable to one trained on the entire dataset. This two stage approach is
presented in Algorithm 1.

Algorithm 1. Two stage training
1. Get a category to train or end if no more categories exist
2. Get neighbours of that category from the neighbours list
3. Prepare the dataset containing only articles from neighbouring categories
4. Train the SVM classifier on that dataset and go to 1.
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3.2 Parallelisation of the Computations

One of the main goals of our research is for the final classifier to be easily scalable.
Both the training and the prediction tasks related to each SVM hyperplane and
kNN centroid are intrinsically independent, therefore the job of dividing the
problem between parallel compute nodes is straightforward. Each node is on its
own responsible for downloading tasks from a task queue. Each task is in fact
either a category to train (in the training phase) or an article for which classes
are to be predicted (in the prediction phase). Each compute node picks up tasks
from the task queue in batches.

In addition to machine level parallelisation, each node runs its computations
in parallel threads. Managing to distribute the training and prediction proce-
dures related to all classes over different compute nodes allows us to construct
a scalable classifier. The classifier accesses its files through a Network File Sys-
tem (NFS) so that every machine works in the same directory and has access to
the same files. As mentioned before, the jobs to be done are stored in a single file
queue – the TODO file. The TODO file contains names of hyperplanes to train,
in case of training and a list of objects to predict labels for, in case of prediction.
Every node can obtain a certain number of jobs from the TODO file and run
these jobs using available cores. Having done that it can receive new jobs and so
on. Synchronization between nodes is obtained using Message Passing Interface
(MPI) implementation Open MPI [17].

Because many parallel nodes need access to the TODO file, there is a need for
some synchronization mechanism. The solution to this problem is to use the MPI
in order to implement a master–slave scheme. The processes of the application
are divided into a single master process and many slave processes. The master
process is used to distribute the tasks between the slave processes and the slave
processes are in turn used to conduct the computations. The access to the TODO
file is granted to slave processes by the master process. Each slave has to request
access to the queue from the master before downloading its tasks.

4 Test Environment

In order to test our approach on big datasets a parallel computations environ-
ment was needed. The classifier was tested on the Galera supercomputer, in
Academic Computer Centre (CI TASK), part of Gdansk Univeristy of Tech-
nology. The cluster consists of 1344 2,33 GHz Intel Xeon QuadCore processors
(5376 cores), 25 TB total system memory, 100 TB disk storage and Mellanox
InfiniBand interconnect with 20 Gb/s bandwidth. The cluster is operated under
a Linux family operating system. The total theoretical peak performance of the
cluster is 50 TFLOPS. Upon its launch, the cluster performance was measured
to be 38.2 TFLOPS.

The environment is configured to use the message passing interface (MPI)
implementation for communication between different nodes of the cluster. The
tasks are queued for execution with a portable batch system (PBS) based queue.
For the purpose of this work only a fraction of the cluster was used, comprising
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of 500 cores. This was more than enough to test the classifier in a massively
parallel environment. The results of these experiments can be seen in the next
section.

5 Experiments

To evaluate the effectiveness of our approach a series of tests was performed.
They were planned to check performance, scalability and F-score of the classifier.
Initial tests have been conducted with smaller size data and without cross vali-
dation. The final tests have been performed using large scale datasets and with
evaluation based on cross validation. The datasets used in this paper were created
from the entire Wikipedia, based on 8th March 2013 dump [18]. This dump was
processed using Matrix’u application [5] in order to create a bag of words [19]
representation of the dataset. The dataset was then filtered, which among other
things deleted administrative categories and merged small categories with their
parents. Remaining very small categories (for small categories there is not enough
examples in order to train an accurate classifier) were removed.

5.1 KNN and SVM Training Scalability

The first test was designed in order to test the scalability of the solution by
comparing training phase performance of both classifiers (the initial kNN and
the final SVM classifier). The dataset for this test was limited to 530 categories,
containing 853 283 documents. Apart form testing the scalability in a highly
parallel environment (between 8 and 160 logical processors) another important
result of this test is the comparison of the fast initial kNN classifier and the final
accurate SVM classifier. The results in this test represent only the time needed
for creating the classification models. All additional time is subtracted form the
results, they can be seen in Fig. 1. As expected the fast initial classifier is faster
by an order of magnitude. This result shows that it is indeed feasible to use the
kNN classifier in order to conduct a fast initial classification and then to use that
data to improve performance of the SVM classifier. Moreover, the scalability of
both classifiers is very good.

5.2 Classification Quality for Big Data

After performing the scaling tests for small data, the next step was to run the
classifier on the entire Wikipedia. After filtering, the dataset for this test con-
sisted of 2 992 212 articles grouped in 18 335 categories. The quality of the clas-
sifier was validated in 10-fold cross validation. The calculated values are the
precision, recall and the F-score. In order to compare the quality of the stage
classifier with the standard one–vs–all approach, as well as the centroid kNN
classifier, all three classifiers were trained on the same dataset. Together all the
models trained for a single classifier took around 50 gigabytes of disk space.
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Fig. 1. SVM training performance on Galera cluster

First, the one–vs-all SVM classifier was run. In order to find best results (mod-
ify the recall of the classifier), different acceptance thresholds were tested. This
means that the SVM classification rule was altered, by an additional parameter
t, changing the hyperplanes h(x) position:

Category(x) = sign(h(x)− t) (2)

Additional explanation of this threshold, as well as more advanced approaches
to its optimization can be found in [20]. The results of this test can be seen in
Table 1. As we can see, the optimal results were achieved for 0.05 acceptance
threshold, further increase of the threshold gave better precision but the recall
suffered greatly. On the other hand, decreasing the threshold gave better recall,
but the precision deteriorated quickly.

As mentioned before, the same dataset was classified using the centroid kNN
classifier, with cosine similarity used as the distance metric. The F-score of this
classification is much lower however, it is still acceptable. For the kNN classifier
the acceptance threshold is the minimal level of cosine similarity, between a
category and the article feature vector, used to determine whether it belongs to
that category. The recall (depending on the acceptance threshold) was as high as
50%, which is still usable. On the other hand, limiting the results even more, by
increasing the acceptance threshold, gave good precision of over 50% with small

Table 1. SVM classifier precission

Accept thresh. True pos. False pos. False neg. Precision Recall F-score

0.30 3 681 502 1 700 894 7 033 603 68.39 % 34.35 % 45.74 %
0.05 4 239 491 2 905 837 6 475 614 59.33 % 39.56 % 47.47%
0 4 365 491 3 405 395 6 349 614 56.17 % 40.74 % 47.23 %
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Table 2. kNN classifier precission

Accept thresh. True pos. False pos. False neg. Precision Recall F-score

0.2 4 831 716 22 737 151 5 883 389 17.52 % 45.09 % 25.06 %
0.3 3 542 955 12 079 258 7 172 150 22.67 % 33.06 % 26.90%
0.9 1 644 218 1 431 920 9 070 887 53.45 % 15.34 % 23.84 %

Table 3. Two stage classifier precission

Accept thresh. True pos. False pos. False neg. Precision Recall F-score

0.1 4 127 571 6 161 031 6 587 534 40.11 % 38.52 % 39.30 %
0.3 3 676 520 2 819 521 7 038 585 56.59 % 34.31 % 42.72%
0.35 3 572 710 2 441 656 7 142 395 59.40 % 33.34 % 42.71 %

recall of 15%. Some example results in relation to the acceptance threshold can
be seen in Table 2.

Finally the two stage classifier was tested on the same dataset. Based on the
results from small data tests, the amount of neighbours was set to 30% of cate-
gories. The results of this test can be seen in Table 3. The F-score is considerably
better than for the kNN classifier and slightly lower than for a one–vs–all solution
(but with much better performance). Furthermore, it is worth noting that the
two stage classifier achieved F-score comparable to classifiers that took part in
the Pascal Large Scale Hierarchical Text Classification Challenge (LSHTC3) [21].
Comparing results form this paper to the ones from Wikipedia based tasks in
LSHTC3, we can see that these values are very similar. For example, the best
F-score for Wikipedia datasets in LSHTC3 was 49% for the medium and 45%
for the large dataset.

5.3 Performance for Big Data

Another important experiment was to test the performance of the training and
the prediction phase for all three classifiers. The results presented in Fig. 2 are
for the same dataset as before, with 18 335 categories and 2 992 212 articles. The
tests were conducted with 62 compute nodes, each with 8 logical processors, giv-
ing 496 processors in total. The results are averaged in 10-fold cross validation.
We can clearly see that in the training phase the two stage approach is consid-
erably faster, than the traditional one–vs–all classifier. Although the centroid
kNN approach presents poor precision, the training time is shorter by an order
of magnitude. This means that this approach could still be useful in certain
cases where lower precision is not an issue. All in all, the multi stage approach
presents itself as a good way to increase performance of SVM classification, while
maintaining high F-score.

As mentioned in the previous sections all presented classifiers are compara-
ble when it comes to computational complexity of the prediction phase. The
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Fig. 2. Performance comparison of different solutions for big data

prediction times for the entire dataset are therefore very similar for the three
approaches. The calculated times are as follows: 29min for the two stage, 31min
for the SVM and 30min for the kNN classifier.

6 Conclusions and Future Work

The aim of the research presented in this paper was to develop and evaluate
a parallel multi stage approach to classification of text documents with SVM.
Our solution was designed to be used with large scale text document reposi-
tories in mind, such as Wikipedia. The results of the experiments show that
our approach scales up well and gives good F-score. The two stage approach
based on one–vs–near scheme was tested on big datasets created from the entire
Wikipedia. Precision and recall of our solution proved to be comparable to the
typical one–vs–all scheme, while significantly improving the time needed for
classifiers construction. Additionally it was proven that the simple centroid kNN
classifier can also produce useful quality results, with classifier creation time
shorter by an order of magnitude. Although the problem of text documents clas-
sification was extensively tested in many works (eg. [2,4,22]), there is still some
room for further research and improvements in this area.

There are many yet untested approaches to this problem that are worth
pursuing. It would be interesting to verify how substituting the initial kNN
classifier with different approaches would impact the quality and performance of
the classifier as well as allow to mining the relations between categories [23] . It
would be also interesting to test the two stage approach with different kinds of
SVM solvers and their parameters. The performance of the classifier could also
be improved using an array data DBMS (such as SciDB) to store the feature
vectors, instead of plain text files. This would further improve the performance of
the classifier and possibly decrease the memory requirements. Also improvement
of managing the threads distribution using BeesyCluster [24] can lead to results
improvement.
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