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Abstract. In this paper we present a modified exemplar based image
inpainting technique to remove objects from digital images. Traditional
exemplar based image inpainting techniques do not take into account
similarity among patches to be filled with neighbors inside the hole. This
gives visually incoherent results. To correct this problem we formulate
image inpainting as a global energy optimization problem. We use primal-
dual schema of linear programming for optimization. We also modify the
criteria for determining priority among candidate patches to be inpainted
by introducing one ‘edge length’ term which propagates linear structures
better than the existing techniques. Results show the effectiveness of our
method compared to other recent methods.

Keywords: Image restoration · Inpainting · Exemplar · Linear pro-
gramming · Metric labeling

1 Introduction

Inpainting is the process of filling damaged portions of an image, or removing
any portion of image and filling it such that it looks like an original image. Var-
ious applications of image inpaintng include photograph restoration, occlusion
removal, image enhancement, etc. Inpainting methods developed so far can be
broadly classified into structure based and texture based methods.

Structure based techniques are based on variational methods and solving a set
of partial differential equations [1,2]. They are good for inpainting non textured
and smaller regions. They interpolate the geometric structure of an image (e.g.
level lines, edges, etc.) in the region to be inpainted. They are local in nature as
they use information available only at the boundary between a known and an
unknown region. However, they introduce some blur in the inpainted region.

Exemplar based methods give relatively good results for large target regions.
But, these methods fill the hole by finding most similar patches from the rest
of the image iteratively [3,4]. They give good results for texture or repetitive
patterns. They are non-local as they search whole image to find the best exem-
plar. These methods may fail to synthesize a geometry, if there are no examples
of it in the image.
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Most of the exemplar based methods are greedy in the sense that each patch is
filled only once, and after filling it is not checked again for better reconstruction.
This may sometimes produce visually inconsistent results as they do not take
into account consistency between neighboring patches in the inpainted region.
To overcome this difficulty, some inpainting techniques [5–7] formulate the task
as solving a discrete global energy optimization problem.

In this paper, we present exemplar based image inpainting as a global energy
optimization problem. We use primal-dual optimization schema of the linear pro-
gramming problem to achieve global optimization. Our cost function consists of
one self cost and one neighbor cost term. Self cost term ensures consistency
between the boundary pixels, and neighbor cost term ensures visual consis-
tency among neighbors in the inpainting domain. To our knowledge primal-
dual optimization schema has not been used previously for image inpainting.
We also introduce a new parameter named ‘edge length’ in determining priority
for selecting candidate patches in exemplar based inpaintng [3]. This helps in
propagating linear structures more effectively compared to existing techniques.
Results demonstrate the effectiveness of our method.

In next section we describe our modification to the priority term of exem-
plar based inpainting technique [3]. In Sect. 3, we describe image inpaintng by
primal-dual optimization. Typical results of the proposed inpainting algorithm
are presented and discussed in Sect. 4. Conclusions are drawn in Sect. 5, high-
lighting future research directions that may come out of this work.

2 Modified Exemplar Based Inpainting

In exemplar based inpainting [3] we determine priority among candidate patches
in the target region. The patch having maximum priority is inpainted first. Pri-
ority ‘P (p)’ for each patch is given by:

P (p) = C(p)D(p). (1)

where C(p) is called the confidence term, and D(p) is called the data term. They
are given by:

C(p) =

∑

q∈ψp∩(I−Ω)

C(q)

| ψp | , D(p) =
| �I⊥

p .np |
α

. (2)

where | ψp | is the area of the patch to be inpainted denoted by ψp as shown in
Fig. 1a. α is the normalization factor, np is an orthogonal unit vector to the fill
front and ⊥ denotes the orthogonal operator.

We find that Eq. (1) gives equal priority to the two points ‘A’ and ‘B’ as
shown in Fig. 2. Clearly, point ‘B’ should be given more priority in order to
propagate linear structure inside the hole in a better way. To take care of this
situation, we introduce ‘edge length’ term defined as:

E(p) =

∑

q∈ψp∩(I−Ω)

I(q)

| ψp | . (3)
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Fig. 1. (From left to right) (a) Diagram showing an image, with target region ω, its
contour δω, source region φ, target patch and candidate patch. (b) Diagram showing
two candidate patches for a target patch. (c) Diagram showing neighboring patches for
a target patch.

where:
I(q) =| Ix(q) | + | Iy(q) | . (4)

In the above equations, Ix and Iy are respectively intensity gradients in x and y
directions. This ‘edge length’ term gives a measure of number of pixels, which
are part of an edge, and belong to known part of the candidate patch to be filled.
Thus, it gives more priority to that edge whose length is more. The modified
priority term is given by:

P̃ (p) = C(p)D(p)E(p). (5)

Fig. 2. (From left to right) (a) White line is to be inpainted. Both points A and B are
given equal priority according to [3] but point B is given more weightage due to the
E(p) term in our technique. (b) Result of inpainting due to [3]. (c) Result of inpainting
by our modified technique.

Figures 2a–c demonstrate the effectiveness of E(p) term to generate linear struc-
tures.

3 Inpainting by Primal-Dual Optimization

We apply the modified exemplar based inpainting algorithm to the image which
is to be inpainted. While filling each patch Ψp during modified exemplar based
inpainting we find first two exemplars Ψp̂1 , Ψp̂2 which are most similar to Ψp

according to minimum distance criterion, as shown in Fig. 1b.
We pose the inpainting problem as a metric labeling problem [8]. Here patches

in target region correspond to objects, and the best two exemplars Ψp̂1 and Ψp̂2
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correspond to its two candidate labels. We further consider the integer pro-
gramming formulation of the metric labeling problem introduced in [8]. For our
inpainting problem it becomes:

min(
∑

ψp∈V,ψ1∈L

cψp,ψ1μψp,ψ1 +
∑

(ψp,ψq)∈E

∑

ψ1,ψ2∈L

dψ1ψ2μψpψq,ψ1ψ2). (6)

s.t.
∑

ψ1

μψp,ψ1 = 1 ∀ψp ∈ V. (7)

∑

ψ1

μψp,ψ1 = 1 ∀ψ2 ∈ L, (ψp, ψq) ∈ E. (8)

∑

ψ2

μψpψq,ψ1ψ2 = μψp,ψ1 ∀ψ1 ∈ L, (ψp, ψq) ∈ E. (9)

μψp,ψ1 , μψpψq,ψ1ψ2 ∈ {0, 1} ∀ψp ∈ V, (ψp, ψq) ∈ E, {ψ1, ψ2} ∈ L. (10)

where, L is a set of labels containing ψ1 and ψ2. ψ1 corresponds to first best
matching exemplar patch and ψ2 corresponds to second best matching exemplar
patch. V is a set of vertices, and E is a set of edges of a graph (V,E). The
patches to be filled inside the target region (ψp, ψq, etc.) correspond to the set of
vertices or nodes. Set of edges consists of pairs of neighboring vertices. We have
considered four connected neighborhood. Distance between the centers of two
neighboring patches is w, where w × w is the patch size as shown in Fig. 1c. Let
“ψp ∼ ψ′′

q denotes either (ψp, ψq) ∈ E or (ψq, ψp) ∈ E. μψp,ψ1 is 1 when vertex
ψp is labeled ψ1, otherwise it is set to 0. Similarly, μψpψq,ψ1ψ2 is 1 when ψp is
labeled ψ1 and ψq is labeled ψ2, otherwise it is set to 0. cψp,ψ1 denotes the cost
of assigning label ψ1 to node ψp. It is given by the sum of squared differences
of the already filled pixels of the two patches ψp and ψ1. Let dψ1ψ2 denotes the
neighborhood cost of assigning label ψ1 to node ψp and label ψ2 to node ψq. It
is given by the sum of squared differences of the already filled pixels of the two
patches ψ1 and ψ2.

Constraint expressed in Eq. (10) is relaxed to μψp,ψ1 ≥ 0 and μψpψq,ψ1ψ2 ≥ 0,
so that the above integer program becomes a linear program. Dual problem [9]
of this linear program is given below:

max
∑

ψp

ξψp

s.t. ξψp
≤ cψp,ψ1 +

∑

ψq :ψq∼ψp

ξψpψq,ψ1 ∀ψp ∈ V, ψ1 ∈ L. (11)

and ξψpψq,ψ1 + ξψqψp,ψ2 ≤ dψ1ψ2 ∀(ψ1, ψ2) ∈ L, (ψp, ψq) ∈ E. (12)

Here, ξψp
is the dual variable for each vertex ψp. ξψpψq,ψ1 and ξψqψp,ψ1 are two

dual variables for each pair of neighboring vertices (ψp, ψq) and any label ψ1.
We define an auxiliary variable htξψp,ψ1

called “height variable” for any label
ψ1 as:

htξψp,ψ1
≡ Cψp,ψ1 +

∑

ψq :ψq∼ψp

ξψpψq,ψ1 . (13)
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This variable gives a measure of the cost of assigning a label ψ1 to a node ψp.
We use the following primal dual schema [9] to design our algorithm:

Primal-Dual Schema: Generate a sequence of pairs of integral-primal, dual
solutions {μk, ξk}t

k=1 until the elements μ = μt and ξ = ξt of the last pair
of the sequence are both feasible, and satisfy the relaxed primal complementary
slackness conditions.

We have used “PD1 algorithm” [10] of the primal-dual schema. The relaxed
primal complementary slackness conditions for our pair of primal-dual linear
program are given below.

ξψpψq,ψ1 + ξψqψp,ψ1 = 0. (14)

ξψp
= minψ1htξψp,ψ1

. (15)

htξψp,μψp
= minψ1htξψp,ψ1

. (16)

The feasibility condition for our algorithm, which can be derived from dual
constraint given in Eq. (12), is given below.

ξψpψq,ψ1 ≤ dψpψq,ψ1/2 ∀ψ1 ∈ L,ψp ∼ ψq. (17)

where, dψpψq,ψ1 denotes the neighborhood cost of assigning first best match-
ing exemplar patches to nodes ψp and ψq. Now, our solution has to satisfy
Eqs. (14) – (17).

In the PD1 algorithm, we generate a series of primal-dual pairs of solutions,
one primal-dual pair per iteration. At each iteration we make sure that Condi-
tions expressed by Eqs. (14), (15) and (17) are automatically satisfied by the cur-
rent primal-dual pair. Condition expressed by Eq. (16) requires that the height
of label ψ1 assigned to any node ψp must be lower than that of all other labels
at that node. Let ψp be a node for which this condition fails i.e. suppose height
of some label ψ2 is less than that of the currently applied label ψ1. To satisfy
Eq. (16), we need to raise height of label ψ2 up to that of label ψ1 by increasing
one of the balance variables {ξψpψq,ψ2}ψq :ψq∼ψp

according to Eq. (13). But as
we increase ξψpψq,ψ2 , neighbor variable ξψqψp,ψ2 decreases according to Eq. (14).
Thus, the height of label ψ2 at the neighboring vertex ψq decreases. This may
result in making height of label ψ2 at ψq lower than the height of currently
applied label at this node, thus violating Eq. (16). We observe that any update
of the balance variables can be simulated by pushing flow through an appro-
priately constructed capacitated graph. The optimal update can be achieved by
pushing maximum flow through that graph. The computational steps are briefly
discussed below:

1. We start the iterative algorithm by assigning the first best exemplar patch
Ψp̂1 to each patch Ψp in the target region.

2. We compare the height of both the labels (exemplar patches) Ψp̂1 and label
Ψp̂2 for each patch Ψp. If height of label Ψp̂2 is less than that of label Ψp̂1 for
any patch, then we need to rearrange label heights such that the label we
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Fig. 3. (From left to right) (a) An arrangement of labels (represented by circles) for
a graph G with 2 vertices Ψs, Ψt and an edge ΨsΨt. The labels are Ψp̂1 and Ψp̂2. The
dashed arrows show how the labels will move after adding flows calculated by max-
flow algorithm and dashed circle indicate final position of those labels. (b) Shows the
corresponding graph that will be used for the update of the dual variables.

assign to a node should have minimum height at that node. This is to obtain
better visual consistency with neighboring patches.

3. We construct a directed graph to update label’s heights. The graph G is
augmented by two external nodes - the source ‘V ’ and the sink ‘U ’ as shown
in Fig. 3. Let this graph be called Gμ,ξ. All other nodes of graph Gμ,ξ which
are also the nodes of graph G are known as internal nodes.

Interior Edges: Corresponding to each edge (ψp, ψq) ∈ G, there are two interior
edges ψpψq and ψqψp in graph Gμ,ξ. fψpψq

is the amount of flow leaving ψp

through ψpψq, and it gives increase in balance variable ξψpψq,ψ2 . Also, fψqψp

is the amount of flow entering ψp through ψqψp, and it gives the decrease in
ξψpψq,ψ2 . Thus, total change in ξψpψq,ψ2 is given by:

ξ′
ψpψq,ψ2

= ξψpψq,ψ2 + fψpψq
− fψqψp

. (18)

Capacity capψpψq
of an interior edge ψpψq represents the maximum allowed

increase of the ξψpψq,ψ2 variable. These capacities are given by:

capψpψq
= capψqψp

= 0 if Ψp = ψ2 or Ψq = ψ2. (19)

otherwise if Ψp 
= ψ2 and Ψq 
= ψ2,

ξψpψq,ψ2 + capψpψq
= dψpψq,ψ1/2 = ξψqψp,ψ2 + capψqψp

. (20)

Exterior Edges: Each external node is connected to either the sink (If
htξψp,Ψp̂2

> htξψp,Ψp̂1
) or source node (If htξψp,Ψp̂2

≤ htξψp,Ψp̂1
) through an external

edge. Capacities of external edges depend on following three cases.

Case 1: htξψp,Ψp̂2
< htξψp,Ψp̂1

: The flow fψp
passing through this edge represents

the total increase in height of label Ψp̂2 :

htξ′
ψp,Ψp̂2

= htξψp,Ψp̂2
+ fψp

. (21)
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where:
fψp

= fψpψq
− fψqψp

. (22)

Capacity of ψsψp is determined by the fact that we want to increase the height
of Ψp̂2 only upto the height of Ψp̂1 , so:

capψsψp
= htξψp,Ψp̂1

− htξψp,Ψp̂2
. (23)

Case 2: htξψp,Ψp̂2
> htξψp,Ψp̂1

. The flow fψp
passing through this edge represents

the total decrease in height of label Ψp̂2 :

htξ′
ψp,Ψp̂2

= htξψp,Ψp̂2
− fψp

. (24)

Capacity of ψpψt is determined by the fact that the maximum decrease in height
of Ψp̂′2 can be upto the height of Ψp̂′1 , so:

capψsψp
= htξψp,Ψp̂2

− htξψp,Ψp̂1
. (25)

Case 3: htξψp,Ψp̂2
= htξψp,Ψp̂1

. Here, we want to keep the height of Ψp̂2 fixed. So,
fψp

= 0. By convention we set capacity of the edge ψsψp capψsψp
equal to 1.

After construction of the graph, a maximum flow algorithm [11] is applied
to it to get flows through the edges. These flows are used to update the height
of label Ψp̂2 as:

htξ′
ψp,Ψp̂2

= htξψp,Ψp̂2
+ fψpψq

− fψqψp
. (26)

4. Based on the resulting heights we update the primal variables by assigning
new labels to the vertices of G. If the new height of label Ψp̂2 is greater than
that of label Ψp̂1 , we assign label Ψp̂2 as the new label of node ψp (because the
active label at ψp should be the lowest at ψp, (refer to Eq. (16)). This means
that we have filled the current patch of the target region with the second best
exemplar patch. In order to maintain visual consistency among filled patches,
patches with filling priority (refer to Eq. (5)) greater than the patch ψp are
assigned label ψ2 i.e. are filled with second best exemplar patch.

5. Now the priorities of patches corresponding to boundary pixels of the target
region which includes the patch ψp changes as it has been assigned label Ψp̂2 .
So, we again run the base inpainting algorithm to the remaining target region
and calculate ‘first two best matching exemplars for each patch to be filled’.

6. We repeat steps 1 to 5 for the remaining target region.

We keep on repeating steps 1 to 6 till the algorithm converges.

4 Results and Discussion

We applied our algorithm to remove objects from images. Number of iterations
required depends upon image size, size of object to be removed, and the patch
size. We have experimented with several images. A few typical results of our
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experimentation are presented here. We also compare the results with those
obtained by the techniques reported in [3,7]. The technique reported in [3] was
implemented by us and the code for technique reported in [7] was provided by
the author1. We took patches of size 9×9. While presenting these results we have
shown outputs of modified inpainting algorithm using edge length as a factor in
the computation of priority. Subsequently, the final result through primal-dual
optimization algorithm is shown. It is observed that there is an improvement in
the reconstruction quality in successive stages of above processing.

Fig. 4. (From left to right) (a) Original image with mask. (b) Result of [3]. (c) Result
of [7]. (d) Result of our modified exemplar based inpainting using edge-length measure
in the priority computation. (e) Result of PD1 primal dual optimization.

Fig. 5. (From left to right) Zoomed versions of inpainted regions of (b), (c), (d), (e) of
first row for clarity.

1 We are thankful to Mr. Yunqiang Liu for providing code for his paper [7].
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Fig. 6. Results for scratch inpainting. (a) Image with mask. (b) Criminisi’s [3]
(41.53 dB, 19.06 s). (c) Liu’s [7] (43.25 dB, 2.09 s). (d) Modified exemplar based inpaint-
ing (41.66 dB, 21.09 s). (e) PD1 primal-dual optimization (41.75 dB, 156.87 s). (f)
Image with mask. (g) Criminisi’s [3] (35.43 dB, 35.43 s). (h) Liu’s [7] (37.89 dB, 3.46 s).
(i) Modified exemplar based inpainting (36.16 dB, 36.16 s). (j) PD1 primal-dual opti-
mization (36.68 dB, 145.47 s). (k) Image with mask. (l) Criminisi’s [3] (40.42 dB,
18.09 s). (m) Liu’s [7] (43.89 dB, 2.03 s). (n) Modified exemplar based inpainting
(40.42 dB, 18.61 s). (o) PD1 primal-dual optimization (41.70 dB, 74.21 s).

In the first row of Fig. 4, the techniques reported in [3,7] do not reconstruct
the wooden stick, while our technique reconstructed it partially. In Fig. 5, zoomed
versions of inpainted regions of this set of images are shown for better visual-
ization. In the second row of images of Fig. 4, a spike of shadow is produced by
the technique reported in [3], and a rectangular shadow block is also observed
in the output obtained by the technique in [7]. Our modified exemplar based
inpainting using edge-length in the priority computation reduces this effect mar-
ginally. But, the overall optimization process reduces it considerably. In the third
row, there is a faulty reconstruction of a portion of river and mountain by the
techniques reported in [3,7], while our technique produces a better quality of
reconstruction. In the fourth row, there appears an abrupt change in boundaries
between tree bushes and dirt terrain in the inpainted region by the techniques in
[3,7], while the proposed technique provides a smoother transition. We applied
our technique to remove scratches from images as shown in Fig. 6. Here, scratch
(white region in Fig. 6) becomes the target region and rest of image becomes the
source region. The same algorithm is applied as explained in Sects. 2 and 3. We
computed peak signal to noise ratio (PSNR) of the reconstructed images as:

PSNR = 10 × log10(
255 × 255

MSE
). (27)

where, MSE is mean squared error. For reference image (original image I) and
reconstructed image (Ire) of size m × n it is given by:

MSE =
1

3 × m × n

2∑

i=0

m−1∑

j=0

n−1∑

k=0

[I(i, j, k) − Ire(i, j, k)]2. (28)
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Our technique gave better results than technique in [3], while results of tech-
nique in [7] are better than our technique. But, our technique outperforms the
technique in [7] for object removal as discussed in the beginning of this section.

5 Conclusion and Future Work

In this paper we first proposed a modification of the exemplar based image
inpainting technique [3]. We have introduced a new “edge length” term in the
priority equation of [3]. This propagates the linear structures in a better way.
Next, we have applied the “PD1 primal dual linear programming approximation”
with two labels to the image inpainting problem. In future, we would like to
extend our technique for handling more labels.
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