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Abstract. In the Shortest Superstring problem we are given a set
of strings S = {s1, . . . , sn} and an integer � and the question is to decide
whether there is a superstring s of length at most � containing all strings
of S as substrings. We obtain several parameterized algorithms and com-
plexity results for this problem.

In particular, we give an algorithm which in time 2O(k) poly(n) finds a
superstring of length at most � containing at least k strings of S. We com-
plement this by the lower bound showing that such a parameterization
does not admit a polynomial kernel up to some complexity assumption.
We also obtain several results about “below guaranteed values” parame-
terization of the problem. We show that parameterization by compression
admits a polynomial kernel while parameterization “below matching” is
hard.

1 Introduction

We consider the Shortest Superstring problem defined as follows:

This is a well-known NP-complete problem [10] with a range of practical appli-
cations from DNA assembly [7] to data compression [9]. Due to this fact
approximation algorithms for it are widely studied. The currently best known
approximation guarantee 211

23 is due to Mucha [17]. At the same time the best
known exact algorithms run in roughly 2n steps and are known for more than
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50 years already. More precisely, using known algorithms for the Traveling

Salesman problem, Shortest Superstring can be solved either in time
O∗(2n) and the same space by dynamic programming over subsets [3,13] or
in time O∗(2n) and only polynomial space by inclusion-exclusion [14,16] (here,
O∗(·) hides factors that are polynomial in the input length, i.e.,

∑n
i=1 |si|). Such

algorithms can only be used in practice to solve instances of very moderate
size. Stronger upper bounds are known for a special case when input strings
have bounded length [11,12]. There are heuristic methods for solving Travel-

ing Salesman, and hence also Shortest Superstring, they are efficient in
practice, however have no efficient provable guarantee on the running time (see,
e.g., [1]).

In this paper, we study the Shortest Superstring problem from the para-
meterized complexity point of view. This field studies the complexity of computa-
tional problems with respect not only to input size, but also to some additional
parameters and tries to identify parameters of input instances that make the
problem tractable. Interestingly, prior to our work, except observations follow-
ing from the known reductions to Traveling Salesman, not much about the
parameterized complexity of Shortest Superstring was known. We refer to
the survey of Bulteau et al. [4] for a nice overview of known results on parameter-
ized algorithms and complexity of strings problems. Thus our work can be seen
as the first non-trivial step towards the study of this interesting and important
problem from the perspective of parameterized complexity.

Our Results. In this paper we study two types of parameterization for Shortest
Superstring and present two kind of results. The first set of results concerns
“natural” parameterization of the problem. We consider the following general-
ization of Shortest Superstring:

If k = |S|, then this is Shortest Superstring. Notice that S can contain copies
of the same string and a string of S can be a substring of another string of the
collection. For Shortest Superstring, such cases could be easily avoided, but
for Partial Superstring it is natural to assume that we have such possibilities.

Here we show that Partial Superstring is fixed parameter tractable
(FPT) when parameterized by k or �. We complement this result by showing
that it is unlikely that the problem admits a polynomial kernel with respect to
these parameters.

The second set of results concerns “below guaranteed value” parameteriza-
tion. Note that an obvious (non-optimal) superstring of S = {s1, . . . , sn} is a
string of length

∑n
i=1 |si| formed by concatenating all strings from S. For a

superstring s of S the value
∑n

i=1 |si| − |s| is called by compression of s with
respect to S. Then finding a shortest superstring is equivalent to finding an
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order of s1, . . . , sn such that the consecutive strings have the largest possible
total overlap. We first show that it is FPT with respect to r to check whether
one can achieve a compression at least r by construction a kernel of size O(r4).
We complement this result by a hardness result about “stronger” parameteri-
zation. Let us partition n input strings into n/2 pairs such that the sum of the
n/2 resulting overlaps is maximized. Such a partition can be found in polyno-
mial time by constructing a maximum weight matching in an auxiliary graph.
Then this total overlap provides a lower bound on the maximum compression
(or, equivalently, an upper bound on the length of a shortest superstring). We
show that already deciding whether at least one additional symbol can be saved
beyond the maximum weight matching value is already NP-complete.

2 Basic Definitions and Preliminaries

Strings. Let s be a string. By |s| we denote the length of s. By s[i], where 1 ≤
i ≤ |s|, we denote the i-th symbol of s, and s[i, j] = s[i] . . . s[j] for 1 ≤ i ≤ j ≤ |s|.
We assume that s[i, j] is the empty string if i > j. We denote prefixi(s) = s[1, i]
and suffixi(s) = s[|s|−i+1, |s|] the i-th prefix and i-th suffix of s respectively for
i ∈ {1, . . . , |s|}; prefix0(s) = suffix0(s) is the empty string. Let s, s′ be strings. We
write s ⊆ s′ to denote that s is a substring of s′. If s ⊆ s′, then s′ is a superstring
of s. We write s ⊂ s′ and s ⊃ s′ to denote proper sub and superstrings. For a
collection of strings S, a string s is a superstring of S if s is a superstring of
each string in S. The compression measure of a superstring s of a collection of
strings S is

∑
x∈S |x| − |s|. If s ⊆ s′, then overlap(s, s′) = overlap(s′, s) = s;

otherwise, if s �⊆ s′ and s′ �⊆ s, then overlap(s, s′) = suffixr(s) = prefixr(s′),
where r = max{i | 0 ≤ i ≤ min{|s|, |s′|}, suffixi(s) = prefixi(s′)}. We denote by
ss′ the concatenation of s and s′. For strings s, s′, we define the concatenation
with overlap s◦s′ as follows. If s ⊆ s′, then s◦s′ = s′◦s = s′. If s �⊆ s′ and s′ �⊆ s,
then s◦s′ = prefixp(s)overlap(s, s′)suffixq(s′), where p = |s|−|overlap(s, s′)| and
q = |s′| − |overlap(s, s′)|.

We need the following folklore property of superstrings.

Lemma 1. Let s be a superstring of a collection S of strings. Let S′ =
{s1, . . . , sn} be a set of inclusion maximal pairwise distinct strings of S such that
each string of S is a substring of a string from S′. Let indices pi, qi ∈ {1, . . . , |s|}
be such that si = s[pi, qi] for i ∈ {1, . . . , n} and assume that p1 < · · · < pn. Then
s′ = s1 ◦ · · · ◦ sn is a superstring of S of length at most |s|.

Graphs. We consider finite directed and undirected graphs without loops or
multiple edges. The vertex set of a (directed) graph G is denoted by V (G), the
edge set of an undirected graph and the arc set of a directed graph G is denoted
by E(G). To distinguish edges and arcs, the edge with two end-vertices u, v
is denoted by {u, v}, and we write (u, v) for the corresponding arc. For an arc
e = (u, v), v is the head of e and u is the tail. Let G be a directed graph. For a ver-
tex v ∈ V (G), we say that u is an in-neighbor of v if (u, v) ∈ E(G). The set of all
in-neighbors of v is denoted by N−

G (v). The in-degree d−
G(v) = |N−

G (v)|. Respec-
tively, u is an out-neighbor of v if (v, u) ∈ E(G), the set of all out-neighbors
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of v is denoted by N+
G (v), and the out-degree d+G(v) = |N+

G (v)|. For a directed
graph G, a (directed) trail of length k is a sequence v0, e1, v1, e2, . . . , ek, vk of
vertices and arcs of G such that v0, . . . , vk ∈ V (G), e1, . . . , ek ∈ E(G), the arcs
e1, . . . , ek are pairwise distinct, and for i ∈ {1, . . . , k}, ei = (vi−1, vi). We omit
the word “directed” if it does not create a confusion. Slightly abusing notations
we often write a trail as a sequence of its vertices v0, . . . , vk or arcs e1, . . . , ek. If
v0, . . . , vk are pairwise distinct, then v0, . . . , vk is a (directed) path. Recall that
a path of length |V (G)|−1 is a Hamiltonian path. For an undirected graph G, a
set U ⊆ V (G) is a vertex cover of G if for any edge {u, v} of G, u ∈ U or v ∈ U .
A set of edges M with pairwise distinct end-vertices is a matching.
Parameterized Complexity. Parameterized complexity is a two dimensional
framework for studying the computational complexity of a problem. One dimen-
sion is the input size and another one is a parameter. We refer to the books of
Downey and Fellows [5], Flum and Grohe [8], and Niedermeier [19] for detailed
introductions to parameterized complexity.

Formally, a parameterized problem P ⊆ Σ∗×N, where Σ is a finite alphabet,
i.e., an instance of P is a pair (I, k) for I ∈ Σ∗ and k ∈ N, where I is an input
and k is a parameter. It is said that a problem is fixed parameter tractable (or
FPT), if it can be solved in time f(k)·|I|O(1) for some function f . A kernelization
for a parameterized problem is a polynomial algorithm that maps each instance
(I, k) to an instance (I ′, k′) such that

(i) (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance of the problem,
and

(ii) the size of I ′ and k′ are bounded by f(k) for a computable function f .

The output (I ′, k′) is called a kernel. The function f is said to be a size of a kernel.
Respectively, a kernel is polynomial if f is polynomial. While a parameterized
problem is FPT if and only if it has a kernel, it is widely believed that not all
FPT problems have polynomial kernels.

We use randomized algorithms for our problems. Recall that a Monte Carlo
algorithm is a randomized algorithm whose running time is deterministic, but
whose output may be incorrect with a certain (typically small) probability.
A Monte-Carlo algorithm is true-biased (false-biased respectively) if it always
returns a correct answer when it returns a yes-answer (a no-answer respectively).

3 FPT-Algorithms for Partial Superstring

In this section we show that Partial Superstring is FPT, when parameterized
by k or �. For technical reasons, we consider the following variant of the problem
with weights:
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Clearly, if w ≡ 1 and W = k, then we have the Partial Superstring problem.

Theorem 1. Partial Weighted Superstring can be solved in time O((2e)k·
kn2m log W ) by a true-biased Monte-Carlo algorithm and in time (2e)kkO(log k) ·
n2 log n · m log W by a deterministic algorithm for a collection of n strings of
length at most m.

Proof. First, we describe the randomized algorithm and then explain how it can
be derandomized. The algorithm uses the color coding technique proposed by
Alon, Yuster and Zwick [2].

If � ≥ km, then the problem is trivial, as the concatenation of any k strings
of S has length at most � and we can greedily choose k strings of maximum
weight. Assume that � < km.

We color the strings of S by k colors 1, . . . , k uniformly at random indepen-
dently from each other. Now we are looking for a string s that is a superstring
of k strings of maximum total weight that have pairwise distinct colors.

To do it, we apply the dynamic programming across subsets. For simplicity,
we explain only how to solve the decision problem, but our algorithm can be
modified to find a colorful superstring as well. For X ⊆ {1, . . . , k}, a string x ∈ S
and a positive integer h ∈ {1, . . . , �}, the algorithm computes the maximum
weight W (X,x, h) of a string s of length at most h such that

(i) s is a superstring of a collection of k′ = |X| strings S′ ⊆ S of pairwise
distinct colors from X,

(ii) x is inclusion maximal string of S′ and x = suffix|x|(s).

If such a string s does not exist, then W (X,x, h) = −∞.
We compute the table of values of W (X,x, h) consecutively for |X| = 1, . . . , k.

To simplify computations, we assume that W (X,x, h) = −∞ for h < 0. If
|X| = 1, then for each string x ∈ S, we set W (X,x, h) = w(x) if x is colored
by the unique color of X and |x| ≤ h. In all other cases W (X,x, h) = −∞.
Assume that |X| = k′ ≥ 2 and the values of W (X ′, x, h) are already computed
for |X ′| < k′. Let

W ′ = max{W (X \ {c}, x, h) + w(y) | y ⊆ x has color c ∈ X},

and

W ′′ = max{W (X \ {c}, y, h − |x| + |overlap(y, x)|) + w(x) | x �⊆ y, y �⊆ x},

where c is the color of x; we assume that W ′ = −∞ if there is no substring y of
x of color c ∈ X, and W ′′ = −∞ if every string y is a sub or superstring of x.
We set W (X,x, h) = max{W ′,W ′′}.

We show that max{W ({1, . . . , k}, x, �) | x ∈ S} is the maximum weight of k
strings of S colored by distinct colors that have a superstring of length at most
�; if this value equals −∞, then there is no string of length at most � that is a
superstring of k string of S of distinct colors.
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To prove this, it is sufficient to show that the values W (X,x, h) computed
by the algorithms are the maximum weights of strings of length at most h that
satisfy (i) and (ii). The proof is by induction on the size of |X|. It is straight-
forward to verify that it holds if |X| = 1. Assume that |X| > 1 and the claim
holds for sets of lesser size. Denote by W ∗(X,x, h) the maximum weight of a
string s of length at most h that satisfies (i) and (ii). By the description of the
algorithm, W ∗(X,x, h) ≥ W (X,x, h). We show that W ∗(X,x, h) ≤ W (X,x, h).

Let S′ be a collection of k′ strings of pairwise distinct colors from X that
have s as a superstring. Denote by S′′ a set of inclusion maximal distinct strings
of S′ that contains x such that every string of S′ is a substring of a string of
S′′. Assume that S′′ = {x1, . . . , xr} and xi = s[pi, qi] for i ∈ {1, . . . , r}. Clearly,
x = xr.

Suppose that there is y ∈ S′ \ {x} such that y ⊆ x. Let c ∈ X be a color
of y. Then s is a superstring of S′ \ {y} and the total weight of these string is
W ∗(X,x, h) − w(y). By induction, W ∗(X,x, h) − w(y) ≤ W (X \ {c}, x, h) and
we have that W ∗(X,x, h) ≤ W (X \ {c}, x, h) + w(y) ≤ W ′ ≤ W (X,x, h).

Suppose now that S′ \ {x} does not contain substrings of x. Then r ≥ 2.
Let y = sr−1 and s′ = s[1, qi−1]. Observe that y = suffix|y|(s′). Notice that
s′ is a superstring of S′′ \ x. Because S′ \ {x} has no substrings of x, every
string in S′ \ {x} is a substring of any superstring of S′′ \ {x} and, therefore,
s′ is a superstring of S′ \ {x} of length at most |s| − |x| + |overlap(y, x)| ≤
h−|x|+|overlap(y, x)|. The weight of S′\{x} is W ∗(X,x, h)−w(x). By induction,
W ∗(X,x, h)−w(x) ≤ W (X\{c}, y, h−|x|+|overlap(y, x)|). Hence W ∗(X,x, h) ≤
W (X \ {c}, y, h − |x| + |overlap(y, x)|) + w(x) ≤ W ′′ ≤ W (X,x, h).

To evaluate the running time of the dynamic programming algorithm, observe
that we can check whether y is a substring of x or find overlap(y, x) in time O(m)
using, e.g., the algorithm of Knuth, Morris, and Pratt [15], and we can construct
the table of the overlaps and their sizes in time O(n2m). Hence, for each X, the
values W (X,x, h) can be computed in time O(n2km log W ), as h ≤ � < km.
Therefore, the running time is O(2k · n2km log W ).

We proved that an optimal colorful solution can be found in time O(2k ·
n2km log W ). Using the standard color coding arguments (see [2]), we obtain
that it is sufficient to consider N = ek random colorings of S to claim that with
probability α > 0, where α is a constant that does not depend on the input
size and the parameter, we get a coloring for which k string of S that have
a superstring of length at most � and the total weight at least W are colored
by distinct colors if such a string exists. It implies that Partial Weighted

Superstring can be solved in time O((2e)k · kn2m log W ) by our randomized
algorithm.

To derandomize the algorithm, we apply the technique proposed by Alon,
Yuster and Zwick [2] using the k-perfect hash functions constructed by Naor,
Schulman and Srinivasan [18]. The random colorings are replaced by the family
of at most ekklog k log n hash functions c : S → {1, . . . , k} that have the following
property: there is a hash function c that colors k string of S that have a super-
string of length at most � and the total weight at least W by distinct colors if
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such a string exists. It implies that Partial Weighted Superstring can be
solved in time (2e)kkO(log k) · n2 log n · m log W deterministically. �
Because Partial Superstring is a special case of Partial Weighted Super-

string, Theorem 1 implies that this problem is FPT when parameterized by k.
We show that the same holds if we parameterize the problem by �.

Corollary 1. Partial Superstring is FPT when parameterized by �.

Proof. Consider an instance (S, k, �) of Partial Superstring. Recall that S
can contain several copies of the same string. We construct a set of weighted
strings S′ by replacing a string s that occurs r times in S by the single copy of
s of weight w(s) = r. Let W = k. Observe that there is a string s of length at
most � such that s is a superstring of a collection of at least k strings of S if
and only if there a string s of length at most � such that s is a superstring of a
set of strings of S′ of total weight at least W . A string of length at most � has
at most �(�−1)/2 distinct substrings. We consider the instances (S′, w, k′, �,W )
of Partial Weighted Superstring for k′ ∈ {1, . . . , �(� − 1)/2}. For each of
these instances, we solve the problem using Theorem 1. It remains to observe
that there is a string s of length at most � such that s is a superstring of a set
of strings of S′ of total weight at least W if and only if one of the instances
(S′, w, k′, �,W ) is a yes-instance of Partial Weighted Superstring. �
We complement the above algorithmic results by showing that we hardly can
expect that Partial Superstring has a polynomial kernel when parameterized
by k or �.

Theorem 2. Partial Superstring does not admit a polynomial kernel when
parameterized by k+m or �+m for strings of length at most m over the alphabet
Σ = {0, 1} unless NP ⊆ coNP /poly.

4 Shortest Superstring Below Guaranteed Values

In this section we discuss Shortest Superstring parameterized by the dif-
ference between upper bounds for the length of a shortest superstring and the
length of a solution superstring. For a collection of strings S, the length of
the shortest superstring is trivially upper bounded by

∑
x∈S |x|. We show that

Shortest Superstring admits a polynomial kernel when parameterized by
the compression measure of a solution.

Theorem 3. Shortest Superstring admits a kernel of size O(r4) when para-
meterized by r =

∑
x∈S |x| − �.

Proof. Let (S, �) be an instance of Shortest Superstring, r =
∑

x∈S |x| − �.
First, we apply the following reduction rules for the instance.

Rule 1. If there are distinct elements x and y of S such that x ⊆ y, then delete
x and set r = r − |x|. If r ≤ 0, then return a yes-answer and stop.
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Rule 2. If there is x ∈ S such that for any y ∈ S \ {x}, |overlap(x, y)| =
|overlap(y, x)| = 0, then delete x and set � = � − |x|. If S = ∅ and � ≥ 0, then
return a yes-answer and stop. If � < 0, then return a no-answer and stop.

Rule 3. If there are distinct elements x and y of S such that |overlap(x, y)| ≥ r,
then return a yes-answer and stop.

It is straightforward to verify that these rules are safe, i.e., by the application of
a rule we either solve the problem or obtain an equivalent instance. We exhaus-
tively apply Rules 1–3. To simplify notations, we assume that S is the obtained
set of strings and � and r are the obtained values of the parameters. Notice that
all strings in S are distinct and no string is a substring of another. Our next aim
is to bound the lengths of considered strings.

Rule 4. If there is x ∈ S with |x| > 2r, then set � = � − |x| + 2r and x =
prefixr(x)suffixr(x). If � < 0, then return a no-answer and stop.

To see that the rule is safe, recall that x is not a sub or superstring of any other
string of S, and |overlap(x, y)| < r and |overlap(y, x)| < r for any y ∈ S distinct
from x after the applications of Rule 3. As before, we apply Rule 4 exhaustively.

Now we construct an auxiliary graph G with the vertex set S such that
two distinct x, y ∈ S are adjacent in G if and only if |overlap(x, y)| > 0 or
|overlap(y, x)| > 0. We greedily select a maximal matching M in G and apply
the following rule.

Rule 5. If |M | ≥ r, then return a yes-answer and stop.

To show that the rule is safe, it is sufficient to observe that if M =
{x1, x

′
1}, . . . , {xh, x′

h}, |overlap(xi, x
′
i)| > 0 for i ∈ {1, . . . , h} and h ≥ r,

then the string s obtained by the consecutive concatenations with overlaps of
x1, x

′
1, . . . , xh, x′

h and then all the other strings of S in arbitrary order, then the
compression measure of s is at least r.

Assume from now that we do not stop here, i.e., |M | ≤ r − 1. Let X ⊆ S be
the set of end-vertices of the edges of M and Y = S \ X. Let X = {x1, . . . , xh}.
Clearly, h ≤ 2(r − 1). Observe that X is a vertex cover of G and Y is an
independent set of G.

For each ordered pair (i, j) of distinct i, j ∈ {1, . . . , h}, find an ordering
y1, . . . , yt of the elements of Y sorted by the decrease of |overlap(xi, yp)| +
|overlap(yp, xj)| for p ∈ {1, . . . , t}. We construct the set R(i,j) that contains
the first min{2h, t} elements of the sequence.

For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted
by the decrease of |overlap(yp, xi)| for p ∈ {1, . . . , t}. We construct the set Si

that contains the first min{2h, t} elements of the sequence.
For each i ∈ {1, . . . , h}, find an ordering y1, . . . , yt of the elements of Y sorted

by the decrease of |overlap(xi, yp)| for p ∈ {1, . . . , t}. We construct the set Ti

that contains the first min{2h, t} elements of the sequence.
Let

S′ = X ∪ ( ⋃

(i,j), i,j∈{1,...,h},i �=j

R(i,j)

) ∪ ( ⋃

i∈{1,...,h}
Si

) ∪ ( ⋃

i∈{1,...,h}
Ti

)
.
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Claim (∗). There is a superstring s of S with the compression measure at least r if
and only if there is a superstring s′ of S′ with the compression measure at least r.

Proof (of Claim (∗)). If s′ is a superstring of S′ with the compression measure
at least r, then the string s obtained from s′ by the concatenation of s′ and the
strings of S \ S′ (in any order) is a superstring of S with the same compression
measure as s′.

Suppose that s is a shortest superstring of S and the compression measure
at least r. By Lemma 1, s = s1 ◦ . . . ◦ sn, where S = {s1, . . . , sn}. Let

Z = {si | si ∈ Y, |overlap(si−1, si)| > 0 or |overlap(si, si+1)| > 0, 1 ≤ i ≤ n};

we assume that s0, sn+1 are empty strings.
We show that |Z| ≤ 2h. Suppose that si ∈ Z. If |overlap(si−1, si)| > 0, then

si−1 ∈ X, because si ∈ Y and any two strings of Y have the empty overlap. By
the same arguments, if |overlap(si, si+1)| > 0, then si+1 ∈ X. Because |X| = h,
we have that |Z| ≤ 2h.

Suppose that the shortest superstring s is chosen in such a way that |Z \S′| is
minimum. We prove that Z ⊆ S′ in this case. To obtain a contradiction, assume
that there is si ∈ Z \ S′. We consider three cases.

Case 1. |overlap(si−1, si)| > 0 and |overlap(si, si+1)| > 0. Recall that si−1, si+1

∈ X in this case. Since si /∈ S′, si /∈ R(p,q) for xp = si−1 and xq = si+1. In par-
ticular, it means that |R(p,q)| = 2h. As |Z| ≤ 2h and |R(p,q)| = 2h, there is sj ∈
R(p,q) such that sj /∈ Z, i.e., |overlap(sj−1, sj)| = |overlap(sj , sj+1)| = 0. By the
definition of R(p,q), |overlap(si−1, sj)|+ |overlap(sj , si+1)| ≥ |overlap(si−1, si)|+
|overlap(si, si+1)|. Consider s∗ = s1 ◦ . . . ◦ si−1 ◦ sj ◦ si+1 . . . ◦ sj−1 ◦ si ◦
sj ◦ . . . ◦ sn assuming that i < j (the other case is similar). Because
|overlap(si−1, sj)| + |overlap(sj , si+1)| ≥ |overlap(si−1, si)| + |overlap(si, si+1)|,
|s∗| ≤ |s|. Moreover, since s is a shortest superstring of S, |s| ≥ |s∗| and,
therefore, |overlap(sj−1, si)| = |overlap(si, sj+1)| = 0. But then for the set
Z∗ constructed for s∗ in the same way as the set Z for s, we obtain that
|Z∗ \ S′| < |Z \ S′|; a contradiction.

Case 2. |overlap(si−1, si)| = 0 and |overlap(si, si+1)| > 0. Then si+1 ∈ X. Since
si /∈ S′, si /∈ Sp for xp = si+1 and |Sp| = 2h. As |Z| ≤ 2h and |Sp| = 2h, there
is sj ∈ Sp such that sj /∈ Z, i.e., |overlap(sj−1, sj)| = |overlap(sj , sj+1)| = 0.
By the definition of Sp, |overlap(sj , si+1)| ≥ |overlap(si, si+1)|. As in Case 1,
consider s∗ obtained by the exchange of si and sj in the sequence of strings
that is used for the concatenations with overlaps. In the same way, we obtain a
contradiction with the choice of Z, because for the set Z∗ constructed for s∗ in
the same way as the set Z for s, we obtain that |Z∗ \ S′| < |Z \ S′|.
Case 3. |overlap(si−1, si)| > 0 and |overlap(si, si+1)| = 0. To obtain contra-
diction in this case, we use the same arguments as in Case 2 using symmetry.
Notice that we should consider Tp instead of Sp.

Now let s′ = si1 ◦ . . . ◦ sip , where si1 , . . . , sip is the sequence of string of S′

obtained from s1, . . . , sn by the deletion of the strings of S \S′. Because we have
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that Z ⊆ S′, the overlap of each deleted string with its neighbors is empty and,
therefore, s′ has the same compression measure as s
To finish the construction of the kernel, we define �′ = �−∑

x∈S\S′ |x| and apply
the following rule that is safe by Claim (∗).

Rule 6. If �′ < 0, then return a no-answer and stop. Otherwise, return the
instance (S′, �′) and stop.

Since |X| = h ≤ 2(r − 1), |S′| ≤ h+h2 · 2h+h · 2h+h · 2h = 2h3 +4h2 +h =
O(h3) = O(r3). Because each string of S′ has length at most 2r, the kernel has
size O(r4).

It is easy to see that Rules 1-3 can be applied in polynomial time. Then graph
G and M can be constructed in polynomial time and, trivially, Rule 5 demands
O(1) time. The sets X, Y , R(i,j), Si and Ti can be constructed in polynomial
time. Hence, S′ and �′ can be constructed in polynomial time. Because Rule 6 can
be applied in time O(1), we conclude that the kernel is constructed in polynomial
time. �
Now we consider another upper bound for the length of the shortest super-
string. Let S be a collection of strings. We construct an auxiliary weighted
graph G(S) with the vertex set S by assigning the weight w({x, y}) =
max{|overlap(x, y)|, |overlap(y, x)|} for any two distinct x, y ∈ S. Let μ(S) be
the size of a maximum weighted matching in G. Clearly, G can be constructed
in polynomial time and the computation of μ(G) is well known to be polyno-
mial [6]. If M = {x1, y1}, . . . , {xh, yh} and |overlap(xi, yi)| = w({xi, yi}) for
i ∈ {1, . . . , h}, then the string s obtained by the consecutive concatenations
with overlaps of x1, y1, . . . , xh, yh and then (possibly) the remaining string of
S has the compression measure at least μ(G). Hence,

∑
x∈S |x| − μ(G) is the

upper bound for the length of the shortest superstring of G. We show that it is
NP-hard to find a superstring that is shorter than this bound.

Theorem 4. Shortest Superstring is NP-complete for � =
∑

x∈S |x| −
μ(S) − 1 even if restricted to the alphabet Σ = {0, 1}.
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