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Abstract. Panorama stitching of sparsely structured scenes is an open
research problem. In this setting, feature-based image alignment methods
often fail due to shortage of distinct image features. Instead, direct image
alignment methods, such as those based on phase correlation, can be
applied. In this paper we investigate correlation-based image alignment
techniques for panorama stitching of sparsely structured scenes. We pro-
pose a novel image alignment approach based on discriminative correla-
tion filters (DCF), which has recently been successfully applied to visual
tracking. Two versions of the proposed DCF-based approach are evalu-
ated on two real and one synthetic panorama dataset of sparsely struc-
tured indoor environments. All three datasets consist of images taken on
a tripod rotating 360 degrees around the vertical axis through the opti-
cal center. We show that the proposed DCF-based methods outperform
phase correlation-based approaches on these datasets.

Keywords: Image alignment · Panorama stitching · Image registra-
tion · Phase correlation · Discriminative correlation filters

1 Introduction

Image stitching is the problem of constructing a single high resolution image
from a set of images taken from the same scene. We consider panorama stitch-
ing, merging images taken by a camera on a tripod that rotates about its vertical
axis through the optical center, Fig. 1 Left. A panorama stitching pipeline usually
contains three major steps: Camera calibration, estimation of the camera param-
eters; Image alignment, computation of the geometric transformation between
the images; Image stitching and blending, transformation of all the images to a
new coordinate system and their blending to eliminate visual artefacts.

Mobile applications and desktop software for panorama images are usually
designed to produce visually good results, focussing on the third step. However,
accurate estimation of the transformation is required in increasingly many fields,
including computer graphics (image-based rendering), computer vision (surveil-
lance applications, automatic quality control, vehicular systems applications)
and medical imaging (multi-modal MRI merging). In this paper, we therefore
investigate the problem of image alignment for panorama stitching.
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Fig. 1. Left: Visualization of an incorrect image alignment. The blue lines represents
the optical axis for each image and the green line represents the vertical axis around
which the camera is rotating. The top-most image is misaligned with respect to the
others, this will greatly reduce the visual quality of the panorama and generate errors
in the estimated transformation. Middle: Resulting image alignment using phase cor-
relation for an image pair in our Synthetic dataset. In this case the images are clearly
misaligned. Right: Image alignment result of the same image pair using the proposed
method. In this case, the alignment is correct.

Image alignment methods can be divided into two categories: feature-based
methods and direct (or global) methods [4,20,25]. Feature-based methods first
extract descriptors from a set of image features (e.g. points or edges). These
descriptors are then matched between pairs of images to estimate the relative
transformation. Direct methods instead estimate the transformation between
an image pair by directly comparing the whole images. Feature-based methods
often provide excellent performance in cases when there are sufficient reliable
features in the scene. However, these methods often fail in sparsely structured
scenes, when not enough distinct features can be detected. We find such cases, for
example, in indoors scenarios, where uniform walls, floors and ceilings are com-
mon, or in outdoor panoramas, where sky and sea can dominate. In this work, we
tackle the problem of image alignment for panorama stitching in sparsely struc-
tured scenes, and therefore turn to the direct image alignment methods. Since
our camera is rotating by small angles the transformation between two consecu-
tive images can be approximated as a translation in the image plane. Given this
assumption we restrict our investigation to phase correlation approaches [12,18].

Recently, Discriminative Correlation Filter (DCF) [3,8–10,15] based appro-
aches have successfully been applied to visual tracking. These methods have
shown robustness to many types of distortions and changes in the target appear-
ance, including illumination variations, in-plane rotations, scale changes and out-
of-plane rotations [9,10,15]. The multi-channel DCF approaches also provide a
consistent method based on several image features, instead of just relying on
grayscale values. We therefore investigate to what extent DCF-based methods
can be used for the image alignment problem in panorama stitching.
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1.1 Contributions

In this paper, we investigate the image alignment problem for panorama stitch-
ing in sparsely structured scenes. For this application, we evaluate four different
correlation-based techniques in an image alignment pipeline. Among phase corre-
lation approaches, we evaluate the standard phase correlation approach (POC)
method and a regularized version of phase correlation (RPOC) developed for
surveillance systems [12].

Inspired by the success of discriminative correlation filter based visual track-
ers, we propose an image alignment approach based on DCF. Two versions
are evaluated: the standard grayscale DCF [3] and a multi-channel extension
using color names (DCF-CN) for image representation , as suggested in [10].
Image alignment results for these four methods are presented on three panorama
stitching datasets taken in sparsely structured indoors environments. We provide
quantitative and qualitative comparisons on one synthetic and two real datasets.
Our results clearly suggest that both the proposed DCF-based image alignment
methods outperform the POC-based methods.

2 Background

Image alignment is a well-studied problem with applications in many fields.
Image stitching, target localization, automatic quality control, super-resolution
images and multi-modal MRI merging are some of many applications that use
registration between images. Many techniques have been proposed [4,20,25], and
they can be divided in two major categories.

2.1 Feature-Based Methods

The feature-based methods mostly differ in the way of extracting and matching
the features in an image pair. After the corresponding features have been found,
a process of outlier removal is used to improve robustness to false matching. The
estimation of the geometric transformation is usually computed from the cor-
responding features using Direct Linear Transformation and then refined using
bundle adjustment techniques. A classical example of a feature-based registra-
tion approach is Autostitch [5,6], a panorama stitching software.

Feature-based methods often fail to perform accurate image alignment in
sparsely structured scenarios or when the detected features are unevenly dis-
tributed. In such cases, direct methods are preferable since they utilize a global
similarity metric and do not depend on local features.

2.2 Direct Methods

Direct methods can be divided into intensity-based and correlation-based appro-
aches, depending on the kind of similarity measure (or error function). The sum
of square difference and the sum of absolute differences between the intensity
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values of the pixels of two images, are two intensity-based similarity metrics.
Normalized cross correlation, that computes the scalar product of two image win-
dows and divides it by the product of their norms, is instead a correlation-based
similarity metric. Given the error (or score) function, various techniques can be
applied to find the optimum, such as, exhaustive search of all possible align-
ments, which is prohibitively slow, hierarchical coarse-to-fine techniques based
on image pyramids, which suffer from the fact that image structures need not be
on the same scale as the displacement, and Fourier transform-based techniques.
The latter techniques are based on the shift theorem of the Fourier transform. If
two images, are related by a translation, standard phase correlation (or phase-
only correlation, POC) estimates the shift between them by looking for the peak
in the inverse Fourier transform of the normalized cross-power spectrum. The
normalization is introduced, since, it significantly improves the peak estimation
compare to using the cross-power spectrum [16]. For image alignment, this latter
technique is preferable, since it uses all the information available in the image.
Given two images that differ by a translation, phase correlation is a simple and
robust technique for retrieving the displacement between them. Therefore, we
consider this class of techniques to formulate a novel approach to image align-
ment based on the MOSSE [3] tracker and its color names extension [10].

2.3 Related Work

Phase correlation is a frequency domain technique usually applied in various
applications, since it is very accurate, simple and robust to illumination vari-
ation and noise in the images. Many versions have been proposed during the
years [4,20,25]. Phase correlation for image alignment was first introduced by
Kuglin and Hines [18], who compute the displacement as the maximum of the
inverse Fourier transform of the normalized cross-power spectrum between two
images. Subpixel precision techniques, were later introduced for improving the
peak estimation, using fitting functions [13,21], or finding approximate zeros
of the gradient of the inverse Fourier transform of the normalized cross-power
spectrum [1], which is more robust against border effect and multiple motions.
Foorosh [13] suggested to prefilter the phase difference matrix to remove aliased
components (generally at high spatial frequencies), but filtering must be adjusted
to each image and sensor. Phase correlation can also be used to estimate other
image transformations than pure translation, such as in-plane rotation and scale
between two images [11]. Other techniques are based on the Log-polar transfor-
mation, since it maps rotation and scaling to translation. Used in combination
with correlation, it can robustly estimate scale and in-plane rotations [23]. Chen
et al. [7] propose a solution for rotated and translated images that computes
Fourier-Mellin invariant descriptors. Eisenbach et al. [12] proposed a phase cor-
relation regularization based on the noise of the image.

Phase correlation does not lose the efficiency depending on the baseline
between the images (if they consistently overlap), moreover it is robust against
sparsely structured images where feature-based methods fail to detect features.
Among all the available phase correlation techniques, we choose the original
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Fig. 2. Representation of the geometrical relation between the angle α and the dis-
placement d.

phase correlation algorithm (POC) [18] and the regularized phase correlation
(RPOC) [12].

Recently, discriminative correlation filter based methods [3,8–10,15] have
successfully been applied to related field of visual tracking and have shown to
provide excellent results on benchmark datasets [17,24]. These methods work
by learning an optimal correlation filter from a set of training samples of the
target. Bolme et al. proposed the MOSSE tracker [3]. Like standard POC, it
only employs grayscale images to estimate the displacement of the target. This
method has however been extended to multi-channel features (e.g. RGB) [9,
10,15]. Danelljan et al. [10] performed an extensive evaluation of several color
representations for visual tracking in the DCF-based Adaptive Color Tracker.
In their evaluation it was shown that the Color Names (CN) representation
[22] provided the best performance. In this work, we therefore investigate two
DCF-based methods for the problem of image alignment. First, we evaluate the
standard grayscale DCF method (MOSSE) and second, we employ the color
name representation used in the adaptive color tracker.

3 Method

In this section we present the the evaluation pipeline for the image alignment and
the methods investigated. The images are assumed to have been taken from a
camera fixed on a tripod. Between each subsequent image, the camera is assumed
to have been rotated around the vertical axis through the optical center. The
rotations are further assumed to be small enough such that two subsequent
images have a significantly overlapping view of the scene, at least 50%. We also
assume known camera calibration and we, therefore, work on rectified images to
compensate for any lens distortion.

3.1 Image Alignment Pipeline

Our image alignment pipeline contains three basic steps that are performed in
an iterative scheme. Given a pair of subsequent images u and v, the following
procedure is used:
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1. Estimate the displacement d between the images u and v using an image
alignment method.

2. Using the displacement d, estimate the 3 × 3 homography matrix H, that
maps the image plane of v to the image plane of u.

3. Warp image v to the image plane of u using the homography H.
4. Iterate from 1. using the warped image as v.

Fig. 2 shows a geometrical illustration of the displacement estimation d. O is
the common optical center of images u and v, which is projected, respectively,
in Ou and Ov. Ouv consists in the intersection of the optical axis of u with
the image v. The translation between the images is identified as the distance
between Ouv and Ov. The evaluated image alignment methods used to estimate
this displacement, are described in Section 3.2 and 3.3. Given an estimate of
the displacement d between the image pair, we can calculate a homography
transformation H between the images using the geometry of the problem. Since
the camera rotates about the vertical axis through the optical center, the angle
α of rotation can be computed as:

α = tan−1

(
d

f

)
. (1)

Here, f is the focal length of the camera. The homography H between the two
images can then be computed as

H = KRαK−1. (2)

Here, K is the intrinsic parameter matrix and Rα is the rotation matrix corre-
sponding to the rotation α about the vertical axis

Rα =

⎛
⎜⎜⎜⎝

cos(α) 0 − sin(α)

0 1 0

sin(α) 0 cos(α)

⎞
⎟⎟⎟⎠ . (3)

The presented iteration scheme is employed for two reasons. First, it is
known that correlation-based methods are biased towards smaller translations
due to the fact that a windowing operation and circular correlation is performed.
Second, the initial estimate of the displacement is affected by the perspective
distortions, since the correlation-based methods assume a pure translation trans-
formation between the image pair. However, as the iterations converge, the trans-
lation model will be increasingly correct since the image v is warped according to
the current estimate of the displacement. Hence, the estimation of the rotation
angle is refined with each iteration. In practice, we noticed that the methods
converge already after two iterations in most cases. We therefore restrict the
maximum number of iterations to three.
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3.2 Phase-Only Correlation

The phase correlation is a frequency domain technique used to estimate the
delay or shift between two copies of the same signal. This technique is based on
the shift properties of the Fourier transform and determines the location of the
peak of the inverse Fourier transform of the normalized cross-power spectrum.
Consider two images u and v such that v is translated with a displacement
[x0, y0] relative to u:

v(x, y) = u(x + x0, y + y0) (4)

Given their corresponding Fourier transforms U and V , the shift theorem of the
Fourier transform states that U and V differ only by a linear phase factor

U(ωx, ωy) = V (ωx, ωy) · ei(ωxx0+ωyy0) (5)

where ωx and ωy are the frequency component of the columns and the row of
the image. The correlation response s of the normalized cross-power spectrum
of U and V is computed from its inverse Fourier transform:

s = F−1

{
U∗ · V

| U∗ · V |
}

(6)

where U∗ represents the complex conjugate of U and · denotes the point-wise
multiplication. The displacement is then computed as the maximum of the
response function. In the ideal case, the inverse Fourier transform of the nor-
malized cross-power spectrum is a delta function centered at the displacement
between the two images. A regularized phase correlation version can be found in
Eisenbach et al. [12], where the response is computed by regularizing the phase
correlation using a constant λ. This parameter should be in the order of mag-
nitude of the noise variance in the individual components of the cross spectrum
V · U∗:

s = F−1

{
U∗ · V

| U∗ · V | +λ

}
(7)

3.3 Discriminative Correlation Filters

Recently, Discriminative Correlation Filters (DCF) based approaches have
successfully been applied to visual tracking and have obtained state-of-the-art
performance on benchmark datasets [15,17]. The idea is to learn an optimal cor-
relation filter given a number of training samples of the target appearance. The
target is then localized in a new frame by maximizing the correlation response of
the learned filter. By considering circular correlation, the learning and detection
tasks can be performed efficiently using the Fast Fourier transform (FFT). The
tracker implemented by Bolme et al. [3], called MOSSE, uses grayscale patches
for learning and detection, and thus only considers luminance information. This
approach has been generalized to multidimensional feature maps (e.g. RGB)
[2,14], where the learned filter contains one set of coefficients for every feature
dimension.
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In the application of image alignment, we are only interested in finding the
translation between a pair of images. The first image is set as the reference train-
ing image used for learning the correlation filter. We consider the D-dimensional
feature map with components uj , j ∈ {1, . . . , D}. The goal is to learn an optimal
correlation filter fj per feature dimension that minimizes the following cost:

ε =

∥∥∥∥∥
D∑

j=1

fj � uj − g

∥∥∥∥∥
2

+ λ

D∑
j=1

∥∥fj

∥∥2
. (8)

Here, the star � denotes circular correlation. The first term is the L2-error of
the actual correlation output on the training image compared to the desired
correlation output g. In this case, g is a Gaussian function with the peak on
the displacement. The second term is a regularization with a weight λ. The
considered signals fj , uj and g are all of the same size, corresponding to the
image size in our case. The filter that minimizes the cost (8) is given by

Fj =
G∗ · Uj∑D

k=1 U∗
k · Uk + λ

. (9)

Here, capital letters denote the discrete Fourier transform (DFT) of the corre-
sponding signals.

To estimate the displacement, the correlation filter is applied to the feature
map v extracted from the second image. The correlation response is computed
in the Fourier domain as:

s = F−1

⎧⎨
⎩

D∑
j=1

F ∗
j · Vj

⎫⎬
⎭ = F−1

{
G ·

∑D
j=1 U∗

j · Vj∑D
j=1 U∗

j · Uj + λ

}
(10)

The displacement can then be found by maximizing s.
The multi-channel DCF provides a general framework for incorporating any

kind of pixel-dense features. Danelljan et al. [10] recently performed an evalua-
tion of several color features in a DCF-based framework for visual tracking. In
their work it was shown that the Color Names (CN) [22] representation concate-
nated with the grayscale channel provides the best result compared to several
other color features. We therefore evaluate this feature combination in the pre-
sented DCF approach. We refer to this method as DCF-CN.

Eq. 10 resembles the procedure (6) used for computing the POC response.
However, two major distinctions exist. First, DCF employs the desired correla-
tion output g, which is usually set to a Gaussian function with a narrow and
centered peak. In standard POC the desired response is implicitly considered
to be the Dirac function. In the DCF approach g acts as a lowpass filter, pro-
viding a smoother correlation response. The second difference is that the cross-
correlation is divided by the cross power spectrum in the POC approach. In the
DCF method, the cross-correlation is instead divided by the power spectrum
of the reference image. For this reason, DCF is not symmetric but depends on
which image that is considered the reference.
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Fig. 3. Left: Sample image from the Synthetic dataset. Middle: Sample images from
the Lunch Room Blue dataset. Right: Sample image from the Lunch Room dataset.

4 Experiments

In this section we present the datasets and the evaluation methodology for the
image alignment methods.

4.1 Datasets

To the best of our knowledge, no dataset with sparsely structured scenes were
publicly available, before we acquired and published the following three datasets1.
Synthetic dataset: consists of 72 images of a room rendered with Blender2 with
a resolution of 1280× 1920 px. Intrinsic parameters were retrieved from Blender
and the camera is rotating by 5 degrees between consecutive images. This dataset
depicts a sparsely structured scene.
Lunch Room Blue: consists of 72 images acquired with a Canon DS50 and
perspective lenses with a resolution of 1280 × 1920 px at poor light condition.
Lunch Room: consists of 72 images acquired with a Canon DS70 and wide
angle lenses Samyang 2.8/10mm (about 105 degree of field of view), with a res-
olution of 5740 × 3780 px.
For the image acquisition of the real datasets, a panorama head was used to
approximate a fixed rotation of 5 degrees around the vertical axis about the
optical center of the camera. These datasets were acquired in the same room
with different light conditions. They naturally contain more structure than the
synthetic images. We have tested all methods on rectified images to remove lense
distortion effects. Fig. 3 shows sample images for the three datasets.
1 http://www.cvl.isy.liu.se/research/datasets/passta/
2 http://www.blender.org/

http://www.cvl.isy.liu.se/research/datasets/passta/
http://www.blender.org/
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4.2 Results and Discussion

We compare four different correlation-based methods: phase correlation (POC)
[18], regularized phase correlation (RPOC) [12] and discriminative correlation
filter (DCF-CN) with and without (DCF) the color names [3,10]. For reference,
a state-of-the-art feature-based approach for panoramic image stitching has been
included [19].

The results are shown using three different evaluation metrics. Table 1 (I)
shows the standard deviation of the estimated angles compared to the reference
angle of 5 degrees. Table 1 (II) shows the success rate of the four methods on the
three datasets. An estimated angle is considered to be an inlier (and therefore
a success) if the error is smaller than a threshold. The value for the threshold
has been computed as the 95th percentile of the absolute error on each dataset
for all four methods, or 2 degrees, whether is lower. Finally, Table 1 (III) shows
the average estimated angle in the three datasets when only considering the
successful estimates (inliers).

Table 1. Results of each method for all three datasets. I: Standard Deviation of the
estimated angles from the reference angle (degrees). II: Inlier rate for the four methods
(threshold set at 95 percentile). III: Average inter-frame rotation in degrees (successful
cases).

Synthetic Lunch Room Blue Lunch Room

I II III I II III I II III

Feature-based 0.95 98.63% 4.97 4.68 84.93% 5.04 0.86 94.52% 4.70

POC 2.52 31.94% 5.20 1.41 90.41% 5.41 0.56 97.22% 5.29

RPOC 2.47 41.67% 4.98 1.44 91.78% 5.19 1.57 87.50% 5.08

DCF 0.06 100.00% 5.00 0.62 98.63% 5.18 0.51 97.22% 4.97

DCF-CN 0.07 100.00% 4.99 0.61 98.63% 5.17 0.50 97.22% 4.98

We observe that the proposed DCF-based methods outperform the POC
methods in all three datasets. The achieved success rates, (Table 1 (II)), in
the synthetic dataset clearly demonstrate that POC-based methods fail on the
majority of cases. In the same scenario, both DCF-based methods provide a 100%
inlier rate and below 0.07 degrees in standard deviation. Among the successful
estimates on the synthetic dataset, the DCF-based approaches still outperform
the evaluated POC methods. The average angle, (Table 1 (III)), is correct within
0.01 degrees for the DCF methods. For the Lunch Room Blue dataset DCF and
DCF-CN achieve significantly lower standard deviations of 0.61 and 0.62 degrees
respectively compared to 1.41 for POC and 1.44 degrees for RPOC. Similarly,
there is a clear difference in the inlier rate. On the Lunch Room dataset, the
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standard DCF and DCF-CN achieve a slight improvement over normal POC,
while RPOC provides inferior results. Table 1 (II) shows that the DCF-based
methods provide the same inlier rate as POC. However, they perform better in
terms of accuracy both in standard deviation, (Table 1 (I)), and mean angle
estimation, (Table 1 (III)). Table 1 (II) and (III) show that the feature-based
method performs well when it is able to retrieve reliable features. Nevertheless,
we notice that it is inferior to both the DCF-based methods.

The success of the DCF-based approaches is likely due to their robustness to
geometric distortions, which has previously been demonstrated in the application
of visual tracking. This property is largely attributed to the desired correlation
output g, which regularizes the correlation response as discussed in Section 3.3.
Moreover, our results indicate an improvement in precision and robustness when
using the color names representation instead of only grayscale images in our
DCF-based framework. Fig. 1 Middle and Right show a comparison between the
standard POC and the DCF using color names representation on an image pair.

5 Conclusions

In this paper, we tackle the problem of image alignment for panorama stitching
in sparsely structured scenes. We propose an image alignment pipeline based on
discriminative correlation filters. Two DCF-based versions are evaluated on three
panorama datasets of sparsely structured indoor environments. We show that
the proposed methods are able to perform robust and accurate image alignment
in this scenario. Additionally, both DCF-based methods are shown to outperform
the standard and the regularized phase-correlation approaches.

Future work will consider extending our evaluation with other panorama
datasets of even more challenging scenarios. We will also look into generalizing
our image alignment pipeline for more general image mosaicking problems.
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