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Abstract. Image and video processing algorithms present a necessary
tool for various domains related to computer vision such as medical ap-
plications, pattern recognition and real time video processing methods.
The performance of these algorithms have been severely hampered by
their high intensive computation since the new video standards, espe-
cially those in high definitions require more resources and memory to
achieve their computations. In this paper, we propose a new framework
for multimedia (single image, multiple images, multiple videos, video in
real time) processing that exploits the full computing power of heteroge-
neous machines. This framework enables to select firstly the computing
units (CPU or/and GPU) for processing, and secondly the methods to
be applied depending on the type of media to process and the algorithm
complexity. The framework exploits efficient scheduling strategies, and
allows to reduce significantly data transfer times thanks to an efficient
management of GPU memories and to the overlapping of data copies
by kernels executions. Otherwise, the framework includes several GPU-
based image and video primitive functions, such as silhouette extraction,
corners detection, contours extraction, sparse and dense optical flow es-
timation. These primitives are exploited in different applications such
as vertebra segmentation in X-ray and MR images, videos indexation,
event detection and localization in multi-user scenarios. Experimental
results have been obtained by applying the framework on different com-
puter vision methods showing a global speedup ranging from 5 to 100,
by comparison with sequential CPU implementations.

Keywords: GPU · Heterogeneous architectures · Image and video
processing · Medical imaging · Motion tracking

1 Introduction

During the last years, the architecture of central processing units (CPUs) has
so evolved that the number of integrated computing units has been multiplied.
This evolution is reflected in both general (CPU) and graphic (GPU) processors
which present a large number of computing units, their power has far exceeded
the CPUs ones. In this context, image and video processing algorithms are well
adapted for acceleration on the GPU by exploiting its processing units in parallel,
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since they consist mainly of a common computation over many pixels. Several
GPU computing approaches have recently been proposed. Although they present
a great potential of GPU platform, hardly any is able to process high definition
image and video efficiently and accordingly to the type of Medias (single image,
multiple image, multiple videos and video in real time). Thus, there was a need
to develop a framework capable of addressing the outlined problem.

In literature, one can categorize two types of related works based on the
exploitation of parallel and heterogeneous platforms for multimedia process-
ing: one related to image processing on GPU such as presented in [19], [12]
which proposed CUDA1 implementations of classic image processing and medical
imaging algorithms. A performance evaluation of GPU-based image processing
algorithms is presented in [15]. These implementations offered high improve-
ment of performance thanks to the exploitation of the GPU’s computing units
in parallel. However, these accelerations are so reduced when processing image
databases with different resolutions. Indeed, an efficient exploitation of parallel
and heterogeneous (Multi-CPU/Multi-GPU) platforms is required with an ef-
fective management of both CPU and GPU memories. Moreover, the treatment
of low-resolution images cannot exploit effectively the high power of GPUs since
few computations will be launched. This implies an analysis of the spatial and
temporal complexities of algorithms before their parallelization.

On the other hand, video processing algorithms require generally a real-time
treatment. We may find several methods in this category, such as understanding
human behavior, event detection, camera motion estimation, etc. These meth-
ods are generally based on motion tracking algorithms that can exploit several
techniques such as optical flow estimation [6], block matching technique [20], and
scale-invariant feature transform (SIFT) [9] descriptors. In this case also, several
GPU implementations have been proposed for sparse [11] and dense [14] optical
flow, Kanade-Lucas-Tomasi (KLT) feature tracker and SIFT feature extraction
algorithm [17]. Despite their high speedups, none of the above-mentioned im-
plementations can provide real-time processing of high definition videos. Our
contribution consists on proposing a new framework that allows an effective and
adapted processing of different type of Medias (single image, multiple images,
multiple videos, video in real time) exploiting parallel and heterogeneous plat-
forms. This framework offers:

1. Smart selection of resources (CPU or/and GPU) based on the estimated
complexity and the type of media to process. In fact, additional computing
units are exploited only in case of intensive and parallelizable tasks.

2. Several GPU-based image and video primitive functions ;
3. Efficient scheduling of tasks and management of GPU memories in case of

Multi-CPU/Multi-GPU computations ;
4. Acceleration of several real-time image and video processing applications.

The remainder of the paper is organized as follows: section 2 presents our
GPU-based image and video processing functions. The third section is devoted

1 CUDA. https://developer.nvidia.com/cuda-zone

https://developer.nvidia.com/cuda-zone
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to describe the proposed framework for multimedia processing on parallel and
heterogeneous platforms. Experimental results are given in section 4. Finally,
conclusions and future works are discussed in the last section.

2 GPU-Based Primitive Functions

This section presents our image and video primitive functions that could be
exploited by our framework for accelerating several computer vision methods.

2.1 Image Processing Primitive Functions

2.1.1 Noise Elimination we proposed the GPU implementation of noise
elimination methods using the smoothing (or blurring) approach. The latter con-
sists on applying a 2-D convolution operator to blur images and remove noise.
We developed GPU version of linear, median and Gaussian filtering which repre-
sent the most used techniques for noise elimination. This GPU implementation
consists of selecting the same number of CUDA threads as the number of image
pixels. This allows for each CUDA thread to apply the multiplication of one
pixel value with filter values. All the CUDA threads are launched in parallel.
More details about this implementation are presented in [12].

2.1.2 Edges detection we proposed a GPU implementation of the recursive
contours detection method using Deriche technique [3]. The noise truncature
immunity and the reduced number of required operations make this method
very efficient. Our GPU implementation of this method is described in [12],
based on the parallelization of its four steps on GPU. Fig. 3(c) illustrates an
example of edges detection.

2.1.3 Corners detection we developed the GPU implementation of Bouguets
corners extraction method [2], based on Harris detector [5]. This method is effi-
cient thanks to its invariance to rotation, scale, brightness, noise, etc. Our GPU
implementation of this method is described in [16], based on parallelizing its four
steps on GPU. Fig. 3(b) illustrates an example of corners detection.

Moreover, we have integrated the GPU module of the OpenCV 2 library that
disposes of many GPU-based image processing algorithms such as FFT, Tem-
plate Matching, histogram computation and equalization, etc.

2.2 Video Processing Primitive Functions

2.2.1 Silhouette extraction the computation of difference between frames
presents a simple and efficient method for detecting the silhouettes of moving
objects, we propose a GPU implementation of this method using three steps.

2 OpenCV GPU Module. www.opencv.org

www.opencv.org
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First, we load the two first frames on GPU in order to compute the difference
between them within CUDA in parallel. Once the first image displayed, we re-
place it by the next video frame in order to apply the same treatment. Fig.
1(a) presents the obtained result of silhouette extraction. This figure shows two
silhouettes extracted, that present two moving persons. In order to improve the
quality of results, a threshold of 200 was used for noise elimination.

2.2.2 Sparse optical flow estimation the sparse optical flow method con-
sists of both features detection and tracking algorithms. The first one enables
to detect features that are good to track, i.e. corners. To achieve this, we have
exploited our corners extraction method (section 2.1.3). The second step enables
to track the features previously detected using the optical flow method, which
presents a distribution of apparent velocities of movement of brightness pattern
in an image. It enables to compute the spatial displacements of images pixels
based on the assumption of constant light hypothesis which supposes that the
properties of consecutive images are similar in a small region. Our GPU imple-
mentation is detailed in [11]. Fig. 1(b) presents an example of sparse optical flow
estimation using a Full HD video frame with characteristic points detected with
the Harris corner detector and then tracked with the Lucas-Kanade method.
Displacements are marked with arrows. Note that the arrows located on the
static objects like trees or a building are there as a result of moving camera.

(a) GPU based silhouette extraction (b) GPU based sparse optical flow estimation

Fig. 1. GPU based video processing primitive functions

2.2.3 Dense optical flow estimation the GPU implementation of dense
optical flow is based on the same process of sparse optical flow estimation. The
only difference (compared to sparse) is that the tracking step is applied on all
frames pixels. Thus, the number of selected CUDA threads is equal to the number
of images pixels which requires more computation.
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Notice that the image processing primitive functions have been adapted for
treating videos also. Moreover, we have integrated the GPU based video pro-
cessing algorithms of the OpenCV library such as frames interpolation, MOG
(Mixture Of Gaussian) model, morphological operations, etc.

3 The Proposed Framework

The presented results and tests within sections 3 and 4 were run with Linux 64
bits on the following hardware:

– CPU: Intel Core (TM) i7, 980 3.33GHz, RAM : 8GB;
– GPU: 4 x NVIDIA GeForce GTX 580, RAM : 1.5GB.

The GPU-based primitive functions are exploited within our framework for
processing different types of Medias: single image, multiple images, multiple
videos and video in real time. The framework allows to select in an efficient way
the adapted resources (CPU or/and GPU) in order to reduce the computation
times with an optimal exploitation of computing units.

3.1 Single Image Processing on GPU

This kind of methods is applied on single images, which are displayed on screen at
the end of processing. These algorithms are well adapted for GPU parallelization
since they consist on common computations over many pixels. However, the
use of graphics processing units offers high acceleration when processing high
resolution images only. Indeed, performance can be either reduced with GPUs
when treating low resolution images since we cannot benefit enough from the
GPU. Therefore, we propose a treatment based on the estimated complexity of
algorithms. The proposed treatment for single images is summarized in three
steps: complexity estimation, resources selection, adapted processing.

3.1.1 Complexity estimation we propose to estimate the algorithm com-
plexity fcusing the equation 1.

fc = f × comp pix × size (1)

where :

1. f (Parallel fraction) : Amdahl’s law [4] proposed an estimation of the
theoretical speedup using N processors. This law supposes that f is the part
of program that can be parallelized and (1-f) is the part that can’t be made
in parallel (data transfers, dependent tasks, etc.). Indeed, high values of f
can provide better performance and vice versa.
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2. comp pix (computation per-image): graphic processors enable to accel-
erate image processing algorithms thanks to the exploitation of the GPU’s
computing units in parallel. These accelerations become more significant
when we apply intensive treatments since the GPU is specialized for highly
parallel computation. The number of operations per pixel presents a relevant
factor to estimate the computation intensity.

3. size : represents the resolution of input image.

3.1.2 Resources selection based on the estimated complexity fc, we can
have a good guidance for selecting the adapted resource (CPU or GPU) for
computation. In fact, we launched for execution several GPU classic image pro-
cessing (edge detection, corners detection. . .) algorithms using different image
resolutions. These experiments allowed to define the value of fc from which the
GPU starts offering better performance than the CPU. This value is called the
threshold S. Once the threshold defined, we compare the estimated complexity
fc for each input algorithm with the threshold S.

If fc > S, the treatment is applied on GPU, else the CPU is used for pro-
cessing. Notice that within our above-mentioned materiel, we have obtained a
threshold S of 800000, that correspond to an algorithm with these parameters:

1. parallel fraction: 0.5 ;

2. number of operations per pixel comp pixel: 10 ;

3. image resolution: 400 × 400.

We note also that the threshold value can change with other material config-
urations, since the number of GPUs computing units and the size of memories is
not the same. Therefore, we propose to compute the threshold at each change-
ment of material.

3.1.3 Adapted processing after selecting the adapted resource, CPU treat-
ments are launched in case of low intensive algorithms (fc < S). The OpenCV
library is employed for this aim. Otherwise, in case of high intensive algorithms
(fc > S), we apply GPU treatment with three steps:

1. Loading of input images on GPU : first, the input images are loaded
on GPU memory.

2. CUDA parallel processing : before launching the parallel processing of
the current frame, the number of GPU threads in the so called blocks and
grid has to be defined, so that each thread can perform its processing on
one or a group of pixels in parallel. This enables the program to process
the image pixels in parallel. Note that the number of threads depends on
the number of pixels. Once the number and the layout of threads is defined,
different CUDA functions (kernels) are executed sequentially, but each of
them in parallel using multiple CUDA threads.
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3. OpenGL Visualization : the output image is directly visualized on screen
through the video output of GPU. Therefore, we propose to exploit the
graphic library OpenGL enabling fast visualization, since it works with
buffers already existing on GPU.

3.2 Multi-CPU/Multi-GPU Based Processing of Multiple Images

In case of multiple images treatment, performance can be less improved for two
reasons: the first one is the inability to visualize many output images using only
one video output that requires a transfer of results from GPU to CPU mem-
ory. The second constraint is the high computation intensity due to treatment
of large sets of images. In order to overcome these constraints, we propose an
implementation exploiting both CPUs and GPUs that offers a faster solution for
multiple images processing. This implementation is based on the executive sup-
port StarPU [1] which offers a runtime for heterogeneous multicore platforms.
For more detail, we refer authors to [8]. The employed scheduling strategy has
been improved by taking into account the complexity factor fc described in
section 3.1.1. Indeed, high intensive tasks have higher priority for GPU com-
putation. The low intensive tasks will be affected with a low priority for GPU.
This allows to maximize the exploitation of available resources. As result, the
repartition of tasks depends mainly on their computational intensity.

3.3 Multi-CPU/Multi-GPU Based Processing of Multiple Videos

This kind in methods is applied on a group of video sequences in order to extract
some significant features. The latter can be exploited in several applications such
as similarity computation between videos, videos indexation and classification.
The real time processing is not required in this case. The treatment of a set
of videos can be presented by the treatment of a set of images since a video is
always represented by a succession of frames. Therefore, we propose a Multi-
CPU/Multi-GPU treatment for multiple videos as shown in section 3.2.

3.4 Real Time Videos Processing on Multiple GPUs

In this case, we propose to exploit GPUs only since the video frames should
be processed in order. This excludes the possibility of using heterogeneous plat-
forms, which defines an order based on the employed scheduling strategy. Our
approach of video processing on single or multiple GPUs consists of three steps:

1. GPUs selection : the program, once launched, first detects the number of
GPUs in the system, and initializes all of them. Then, the input image frame
is first uploaded to each GPU. This frame is virtually divided into equally
sized subframes along y dimension and once the image data is available, each
GPU is responsible for treating its part of the frame (subframe).
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2. Multi-GPU computation : in this step, each GPU can apply the required
GPU treatment (exp. optical flow computation). The related algorithm can
be selected from our GPU primitive functions, or introduced by the frame-
work user. We note also that the number of CUDA threads depends on the
number of pixels within each subframe.

3. OpenGL visualization : at the end of computations for each frame (the
subframes). The results can be displayed on screen using the OpenGL graph-
ics library that allows for fast visualization, as it can operate on the already
existing buffers on GPU, and thus requires less data transfer between host
and device memories. In case of Multi-GPU treatments, each GPU result
(subframe) need to be copied to the GPU which is charged of displaying.
This, however, is a fast operation since contiguous memory space is always
transferred. Once the visualization of the current image is completed, the
program goes back to the first step to load and process the next video frames.

Otherwise, the framework can be used for processing multiple videos simultane-
ously using multiple GPUs. Indeed, each video stream is loaded and processed
with one GPU. At the end of computations for each GPU (actual frame), the
result is copied to the GPU which is charged for displaying. Each GPU result
is visualized in a separated window in the same screen. Fig. 3.4 summarizes our
framework showing the selected resources for each type of media. The figure
shows also the primitive functions that could be exploited within the frame-
work for accelerating different computer vision examples that require intensive
computations.

Fig. 2. Multi-CPU/Multi-GPU based Framework for Multimedia Processing
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4 Experimental Results

The proposed framework has been exploited in several high intensive applications
related to image and video processing such as image pre-processing, vertebra
segmentation, videos indexation, event detection and localization.

4.1 CPU/GPU Based Image Pre-processing

Most of image processing methods apply a pre-processing step that allows to
prepare the image for treatment. We can cite edges and corners detection meth-
ods which are so exploited for this aim. Based on our framework, we propose to
accelerate these methods using CPU or GPU since the treatments are applied on
single image. As presented in our framework, a complexity estimation is applied
to select the convenient resource (CPU or GPU). Table 1 presents the selected
resources and performance of corners and edges for different image resolutions.
For each one, the complexity is evaluated using the above-mentioned metrics
(section 3.1.1). The parallel fraction f presents the percentage of parallelizable
computing part relative to total time, while the remaining part (1 - f) is pre-
sented by transfer (loading, visualization) operations. The computation per pixel
is presented by the average of operations number between the steps of contours
and corners detection. As result, the CPU is selected for treating low intensive
methods, while the GPU is selected for high intensive ones. This allows to obtain
fast results with a reduced energy consumption. In order to validate our results,
we have calculated the ratio of acceleration (ACC) with GPU compared to CPU.

(a) Input image (b) Corners (c) Edges

Fig. 3. Edges and corners detection within our framework

Table 1. CPU/GPU based processing of single image processing (edges and corners
detection), S = 8.0 ∗ 105

Images f comppix fc fc > S CPU/GPU ? Acc

256 × 256 0.55 6.1 2.2 ∗ 105 No CPU 00.87 ↘
512 × 512 0.81 6.1 1.3 ∗ 106 Yes GPU 05.88 ↗
1024 × 1024 0.86 6.1 5.5 ∗ 106 Yes GPU 12.01 ↗
3936 × 3936 0.90 6.1 8.5 ∗ 107 Yes GPU 19.85 ↗



Multi-CPU/Multi-GPU Based Framework for Multimedia Processing 63

As shown in Table 1, the GPU is selected only in case of methods that can ben-
efit from the GPU’s power. Otherwise, the CPU is selected. Fig. 3 presents an
example of edges and corners detection within our framework.

4.2 Multi-CPU/Multi-GPU Based Vertebra Segmentation

The context of this application is the cervical vertebra mobility analysis on
X-Ray or MR images. The main objective is to detect vertebra automatically.
The computation time presents one of the most important requirements for this
application. Based on our framework, we propose a hybrid implementation of the
most intensive steps, which have been defined with our complexity factor fc. Our
solution for vertebra detection on Multi-CPU/Multi-GPU platforms is detailed
in [8] for X-Ray images, and in [7] for MR images. Fig. 4(a) presents the results
of vertebra detection in X-ray images, while Fig. 4(b) is related to present the
detected vertebra in MR images. Notice that the use of heterogeneous platforms
allowed to improve performance with a speedup of 30 × for vertebra detection
within 200 high resolution (1472×1760) X-ray images, and a speedup of 98 ×
when detecting vertebra in a set of 200 MR images (1024 × 1024).

(a) Vertebra detection in X-ray images (b) Vertebra detection in MR images

Fig. 4. Vertebra detection in X-ray images

4.3 Multi-CPU/Multi-GPU Based Videos Indexation

The aim of this application is to provide a novel browsing environment for multi-
media (images, videos) databases. It consists on computing similarities between
videos sequences, based on extracting features of images (frames) composing
videos [18]. The main disadvantage of this method is the high increase of com-
puting time when enlarging videos sets and resolutions. Based on our framework,
we propose a heterogeneous implementation of the most intensive step of fea-
tures extraction in this application. This step, detected within our complexity
estimation equation, is presented by the edge detection algorithm which provides
relevant information for detecting motions areas. This implementation is detailed
in [13] showing a total gain of 60% (3 min) compared to the total time of the
application (about 5 min) treating 800 frames of a video sequence (1080x720).



64 S. Ahmed Mahmoudi and P. Manneback

4.4 Multi-GPU Based Event Detection and Localization in Real
Time

This application is used for event detection and localization in real time. It con-
sists of modeling normal behaviors, and then estimating the difference between
the normal behavior model and the observed behaviors. These variations can
be labeled as emergency events, and the deviations from examples of normal
behavior are used to characterize abnormality. Once the event detected, we lo-
calize the areas in video frames where motion behavior is surprising compared
to the rest of motion in the same frame. Based on our framework, we propose a
Multi-GPU implementation of the most intensive steps of the application. The
latter are also defined within the above-mentioned complexity factor fc. This
implementation is detailed in [10]. Notice that performed tests show that our
application can turn in multi-user scenarios, and in real time even when pro-
cessing high definition videos such as Full HD or 4K standards. Moreover, the
scalability of our results is achieved thanks to the efficient exploitation of mul-
tiple graphic cards. A demonstration of GPU based features detection, features
tracking, and event detection in crowd video is shown in this video sequence:
https://www.youtube.com/watch?v=PwJRUTdQWg8..

5 Conclusion

We proposed in this paper a new framework that allows an adapted and effective
exploitation of Multi-CPU/Multi-GPU platforms accordingly to the type of mul-
timedia (single image, multiple images, multiple videos, video in real time) ob-
jects. The framework enables to select firstly the computing units (CPU or/and
GPU) for processing, and secondly the methods to be applied depending on the
type of media to process and the algorithm complexity. Experimental results
showed different use case applications that have been improved thanks to our
framework. Each application has been integrated in an adapted way for exploit-
ing resources in order to reduce both computing time and energy consumption.
As future work, we plan to improve our complexity estimation by taking into ac-
count more parameters such as tasks dependency, GPU generation, etc. we plan
also to include primitive functions related to 3D image processing within our
framework. The latter will be exploited for several medical imaging applications
that could be applied larger sets of images and videos.
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