Conciliating Model-Driven Engineering
with Technical Debt Using a Quality Framework

Faber D. Giraldo'2®) | Sergio Espaiia?, Manuel A. Pineda!,
William J. Giraldo!, and Oscar Pastor?

! System and Computer Engineering, University of Quindio, Quindio, Colombia
{fdgiraldo,mapineda,wjgiraldo}@uniquindio.edu.co
2 PROS Research Centre, Universitat Politécnica de Valéncia, Valencia, Spain
{fdgiraldo,sergio.espana,opastor}@pros.upv.es

Abstract. The main goal of this work is to evaluate the feasibility to
calculate the technical debt (a traditional software quality approach) in
a model-driven context through the same tools used by software devel-
opers at work. The SonarQube tool was used, so that the quality check
was performed directly on projects created with Eclipse Modeling Frame-
work (EMF) instead of traditionals source code projects. In this work,
XML was used as the model specification language to verify in Sonar-
Qube due to the creation of EMF metamodels in XMI (XML Metadata
Interchange) and that SonarQube offers a plugin to assess the XML lan-
guage. After this, our work focused on the definition of model rules as
an XSD schema (XML Schema Definition) and the integration between
EMF-SonarQube in order that these metrics were directly validated by
SonarQube; and subsequently, this tool determined the technical debt
that the analyzed EMF models could contain.

Keywords: Model-driven engineering -+ Technical debt - EMF -
SonarQube

1 Introduction

Two representative trends for the software development industry that appeared
in the nineties were the model-driven initiative and the technical debt metaphor.
Both trends promote software quality each in its own way: high abstract levels
(models) and software process management (technical debt). However, despite
the wide exposition of these trends in the literature, there are not more indica-
tions about the combination of them into software development scenarios; each
initiative is implemented in a separated way.

More than 20 years ago, the technical debt term was introduced as a way
to describe the long-term costs associated with problems of software design and
implementation. Some typical examples of technical debt exposed in [17] include:
glue code, code done and fixing it after release, hundreds of customer-specific
branches on same code base, friendly additions to interfaces, multiple codes for

© Springer International Publishing Switzerland 2015
S. Nurcan and E. Pimenidis (Eds.): CAiSE Forum 2014, LNBIP 204, pp. 199-214, 2015.
DOI: 10.1007/978-3-319-19270-3_13

200 F.D. Giraldo et al.

the same problem, and so on. The technical debt approach has been used as a
control mechanism for projects to lower maintenance costs and reduce defects.

In traditional software development projects (those involving manual pro-
gramming), technical debt is mainly focused in quality assurance processes over
source code and related services (e.g., common quality metrics are defined over
source code). However, model-driven engineering (MDE) promotes for modelling
instead of programming [3]. A review of the literature reveals that there is cur-
rently no application of the technical debt concept to environments outside the
traditional software development. There exist approaches to the measurement
of model quality [11,13,15,18], but these do not include technical debt calculus.
Therefore, we claim that dealing with technical debt in MDE projects is an open
problem.

Two issues pose challenges to the inclusion of technical debt into MDE.
(i) Different authors provide conflicting conceptions of quality in model man-
agement within MDE environments [7]. (i) The MDE literature often neglects
techniques for source code analysis and quality control'. Therefore, in model-
driven developments it is difficult to perform an analysis of the state of the
project that is important for technical debt management: establishing what has
been done, what remains to be done, how much work has been left undone. Also,
other specific issues that belong to model theory such as: number of elements in
the metamodel, coverage for the views, complexity of the models, the relation-
ship between the abstract syntax and the concrete syntax of a language, quantity
of OCL verification code, among others, contribute to increase the technical debt
in model-driven projects.

Similar to software projects, model-driven projects could be affected by
events that impact the quality of the conceptual models and its derived arti-
facts. The technical debt incidents for model-driven contexts come mainly from
the software development inherent practices and model specific issues. Also, the
lack of a standardized definition about quality in models increase the complexity
of modelling tasks, so that, the bad modelling practices become specific accord-
ing to the kind of modelling project that is performed.

The main contributions of this paper are the following:

1. A discussion about the importance of considering the technical debt calculus
in model-driven projects, as part of a model quality initiative.

2. A demonstration of a integration between model-driven and technical debt
tools for supporting a technical debt calculus process performed over concep-
tual models.

3. The operationalization of a recognized framework for evaluating models.

In this work, we used the principles of research in quality over models to generate
quality metrics that can be useful to validate these models with a technical debt
focus. This work is organized as follows: Sect.2 introduces the motivation of

! Neglecting the code would seem sensible, since MDE advocates that the model_is_ the
code [4]. However, few MDE tools provide full code generation and manual additions
of code and tweakings are often necessary.

Conciliating MDE with Technical Debt Using a Quality Framework 201

our idea, Sect. 3 presents the technical solution implemented, Sect.4 exposes a
preliminary validation process around of our proposal, Sect. 5 presents the state
of the art; and finally, the conclusions and further works derived of our proposal
are presented.

2 Motivations

The technical debt definition was originally focused on source code; but as shown
in [12], this concept could be extended to other activities and artifacts belonging
to the software construction process. Technical debt focuses on the management
of the consequences of anything that was not done intentionally or uninten-
tionally, and subsequently, it is materialized as bugs or anormal situations that
affect a software project or product. Currently, it is possible to evidence how
software companies have assimilated the importance of technical debt control
in its software projects, highlighting the use of tools like SonarQube?, responsi-
ble for assessing the presence of technical debt through evidence of malpractices
embodied on software artifacts like source code. Also from a technical viewpoint,
these kind of tools support project management very close to code and low-level
artifacts.

The technical debt practice has become an important strategy in current
quality assurance software processes. Its application can help to identify prob-
lems over the artifacts quantifying the consequences of all the work that was not
done in order to contrast it regarding the budgetary constraints of the project.

Despite the several particular approaches involved in software quality
assurance, it has certain maturity levels due to the effort of software quality
practitioners for encompassing these approaches around the fulfillment of expec-
tations, requirements, customer needs, and value provisions [9]. It is supported by
descriptive models and standards that define the main issues of software quality.
In this way, activities such as defect detection and correction, metric definition
and application, artifact evolution management, audits, testing, and others, are
framed into these software quality definitions. Software quality involves a strat-
egy towards the production of software that ensures user satisfaction, absence
of defects, compliance with budget and time constraints, and the application of
standards and best practices for the software development.

Instead, it is possible to identify a proliferation of model quality definitions
in the model-driven context with multiple divergences, different motivations and
additional considerations due to the nature of the model artifacts. Quality in
the MDE context is particularly defined according to the specific proposals or
research areas developed by the MDE practitioners. In [7], authors note that the
quality in models term does not have a consistent definition and it is defined,
conceptualized, and operationalized in different ways depending on the discourse
of the previous research proposals. The lack of consensus for the model quality
definition produce empirical efforts for verifying quality over specific features of
models.

2 http://www.sonarqube.org/.

http://www.sonarqube.org/

202 F.D. Giraldo et al.

Within the MDE literature is possible to find proposals which extrapolate
particular approaches for evaluating software quality at model levels (supported
by the fact that the MDE is a particular focus to the software engineering), such
as the use of metrics, defect detection over models, application of software quality
taxonomies (in terms of characteristic, sub-characteristic and quality attributes),
best practices for implementing high quality models and model transformations;
and even, it is possible to see a research area oriented to the usability evaluation
of modelling languages [23], where the usability is prioritized as the main quality
attribute.

Most of the model quality frameworks proposed act over specific model arti-
facts, generally evaluation of notations or diagrams. These frameworks do not
consider the implications around the performed activities over models in terms
of the consequences of the good practices that were not made. This is a critical
issue because the model-driven projects have the same project constraints with
respect to software projects. The only difference is the high abstract level of the
project artifacts and the new roles with respect to domain experts and languages
users.

Notations and diagrams are the main way of interaction for the final users of a
language, and in this sense, most of the model quality proposals are around spe-
cific attributes of interaction, cognition, readability, usage and comprehensibil-
ity. The evaluation of the global quality of a conceptual model is a very complex
task. A first important attempt is the quality evaluation based on notations used
by the model, avoiding the incorrect combinations of conceptual constructs and
ambiguous situations that could violate the principles and rules of the language
and its associated constructs. Notations in a key aspect for the evaluation of
model quality. However, we claim that model-driven activities can contribute to
establishing a technical debt for modelling projects beyond a notation perspec-
tive, because it considers both modelling issues and software practices involved.
The technical debt for model-driven projects could be more complex than soft-
ware technical debt. Also, the use of technical debt at the model-driven context
could help to manage and evaluate the employed process over a model-driven
specific context.

The main concern of the technical debt is the consequence of poor software
development [27]. This is a critical issue not covered in model-driven processes
whose focus is specific operation over models such as model management or
model transformations. A landscape for technical debt in software is proposed
in [12] in terms of evolvability challenges and external/internal quality issues;
we think that model-driven iniatives cover all the elements of these landscapes
taking into account that authors like [20] suggest models as elements of internal
quality software due to its intermediate nature in a software development process.
Integration between model-driven and technical debt have not been considered
by practicioners of each area despite the enormous potential and benefits for
software development processes.

Conciliating MDE with Technical Debt Using a Quality Framework 203

3 Owur Proposal

3.1 Proposal in a Nutshell

In order to demonstrate the feasibility to calculate technical debt over models
in a model-driven working environment, we performed the following steps:

1. We operationalized a quality framework for models to derive technical debt
evidences w.r.t. a previous quality reference (Sect. 3.2).

2. An integration of a MDE working environment with an instance of a Sonar-
Qube server (the selected technical debt tool) was implemented. This was
made through a plugin that automatically invokes the SonarQube tool
(Sect. 3.3).

3. A technical debt verification process is performed over a model sample. Since
the models workspace the Sonarqube instance is invoked. This instance uses
the operationalization of the quality framework to find technical debt over the
model sample under evaluation (Sect. 3.4).

3.2 Definition of an XSD for SonarQube

One of the most critical issues in a technical debt program is the definition of
metrics or procedures for deducting technical debt calculations; in works like
[6,10] it is highlighted the absence of technical debt values (established and
accepted), and features such as the kinds of technical debt. Most of the techni-
cal debt calculation works are focused on software projects without an applied
model-driven approach; some similar works report the use of high level artifacts
as software architectures [22], but they are not model-driven oriented. Emerging
frameworks for defining and managing technical debt [24] are appearing, but
they focus on specific tasks of the software development (not all the process
itself).

From one technical perspective, the SonarQube tool demands an XSD (XML
Scheme Document) configuration file that contains the specific rules for vali-
dating the code; or in this case, a model. Without this file, the model could
be evaluated like a source code by default. In order to define these rules, we
chose one of the most popular proposals for validating models (Physics of nota-
tions - PoN - of Moody [21]) due to its relative easiness to implement some of
its postulates in terms of XSD sentences.

In the case of this work, visual notation was taken as the textual information
managed by XMI entities from EMF models (text are perceptual elements to0o),
focusing that each item meets syntactic rules to display each information field
regardless about what is recorded as a result of the EMF model validation. The
analysis does not consider the semantic meaning of the model elements to be
analyzed.

The operationalization of Moody principles over the XSD file posteriorly
loaded in SonarQube was defined as follows:

204 F.D. Giraldo et al.

— Visual syntax - perceptual configuration: in the XSD file, it is ensured that all
elements and/or attributes of the modelled elements are defined according to
the appropriate type (the consistence between the values of attributes and its
associated type is validated).

— Visual syntax - attention management: a validation order of the elements is
specified by the usage of order indicadors belonging to XML schemes.

— Semiotic clarity - redundant symbology: a node in the model can only be
checked by an XSD element.

— Semiotic clarity - overload symbology: an XSD element type only validates a
single model node type.

— Semiotic clarity - excess symbolism: a metric to validate that there are no
blank items was implemented (for example, we could create several elements
of Seller type, but its data does not appear).

— Semiotic clarity - symbology deficit: a validation that indicates the presence of
incomplete information was made (e.g., we could have the data of a Customer
but we don’t have his/her name or identification number). For this rule, we
made constraints with occurrence indicators to each attribute.

— Perceptual discriminability: in the XML model, nodes must be organized in a
way that they can be differentiated, e.g., one Seller element does not appear
like a Location element. This is ensured by reviewing in the XSD that it does
not contain elements exactly alike, and in the same order.

— Semantic transparency: this was done by putting restrictions on the names
of the tags, so that the tags correspond to what they must have, e.g., a data
label must be of data type.

— Complexity management: this was done by the minOccurs and maxOccurs
occurrence indicators. With these indicators it is possible to define how many
children one node can have.

— Cognitive integration: this was done using namespaces in the XSD file, so that
it is possible to ensure the structure for the nodes independent from changes
in the model design.

— Dual codification: this was done by measuring the quantity of commented code
lines with respect to the XML lines that define the elements of the model.

— Graphic economy: we established a limit for different items that can be handled
in the XSD, and reporting when different elements are found marking the
mistake when these data types are not found in the schema.

— Cognitive fit: this was done by creating several XSD files where each one is
responsible for reviewing a specific view model.

Figure 1 exposes a portion of the XSD code implemented for some Moody prin-
ciples.
3.3 Implementation of a Technical Debt Plugin for EMF

We implemented an Eclipse plugin for integrating the EMF environment with
SonarQube; so that, results of the technical debt can be shown directly on the
Eclipse work area instead of changing the context and opening a browser with

Conciliating MDE with Technical Debt Using a Quality Framework 205

<xs:simpleType name= "idSeller">
<xs:restriction base="xs:integer">
Complexity management H <x5:m\n\nclusi\v/e value ="0" />
<xs:maxinclusive value ="10" />
<Ixs:restriction>
<Ixs:simpleType>

<xs:element name="Foundation">
<xs:complexType>
<xs:sequence>
<xs:element ref="Location" maxOccurs="10"/>
<xs:element ref="Seller" maxOccurs="10"/>
Com plexity management } D <xs:element ref="HostingOrder" maxOccurs="10"/>
<xs:element ref="Payment" maxOccurs="10"/>
<xs:element ref="Hosting" maxOccurs="10"/>
<xs:element ref="Customer" maxOccurs="10"/>

</xs:sequence>
</xs:complexType>
</xs:element>

<xs:simpleType Name="NoNullString">
<restriction base="String’>
<minLength value="1'/>
<Irestriction>

Semiotic clarity —
symbology deficit

b 4

<IsimpleType>

Fig. 1. Mapping between some Moody principles to XSD code.

the SonarQube report. Figure 2 exposes main issues of the developed plugin. We
used configuration options belonging to EMF XMIResource objects to export
the XMI file as an XML without the specific XMI information tags (Fig. 2, part
C). Also, the integration with the Eclipse IDE was done by a button and a menu
as it can be seen in part A and B of the same figure.

3.4 Verification of Technical Debt from EMF Models

In order to demonstrate the integration of both tools (EMF-SonarQube), a sam-
ple metamodel (Fig. 3) was made in EMF. This model is extracted from the case
study formulated in [8], and it is complemented with data patterns exposed in [2]
such as Location, Client, Payment and Master/Detaill. Regarding to the rules
specified in the Sect.3.2 we introduce some errors like no wvalid options, date
format and specific quantity of elements, to evidence abnormalities not covered
with model conceptual validation approaches like OCL.

Once the validation option had been chosen (by the SonarQube button or
menu), we obtain a report similar to Fig. 4. Part A indicates the number of lines
of code that have been tested, comment lines, and duplicate lines, blocks or files.
Also, part B of this figure reports the total of errors that contain the project
(in this case the EMF model), as well as the technical debt graph (part C),
which shows the percentage of technical debt, the cost of repair, and the number
of men needed to fix errors per day (this information was not configured for
this case).

206 F.D. Giraldo et al.

Navigate
oY
Quickhcesss || 9 | B Resource [ETava]

BPacka. X = B * SonarQube Web jeciModelWizard java &2 = m
IR | ?
» 2 proi . EObj TootObj = createInitialModel();

25 >E
L &
g t
?; p::;:;_edlt gg; if (rootObject 1= numll) { ‘@
b 5 Project.editor %ES resource. gechcen:s () .add (rootObject) ; =3
» 12 Project.tests . =2
=]
Map<Object, Object> cptions = new HashMap<Object, Object>():
options.put (XMLResource.OPTION ENCODING, initialObjectCreationPage.getEncoding()):
options.put (XMIResource.OPTION SUPPRESS XMI, Boolean.TRUE);
] esource.save (options);
| ¥
ggf catch (Exception &
ggf PrﬂjectEdltorPlugl’\ INSTANCE.log (exception) ;
|
finally {
] progressMonitor.done();
|
|
Fig. 2. Supressing XMI tags to analyze the EMF model as a XML document.
PP e P
Factory &
;! -4
e I
Location
&address - String
&zipCode : String
&city - String e
&street - String N
&house - Integer HostingOrder Customer
o &orderNumber : Integer &>customerNumber - Integer
&total : Float name - String
2 * 5
Seller & date - String
Sname - String = & paymentMethod : String
&id - Integer &taxTotal - Float
tax - Float
&totalLetters : String
Payment
&amount : Float
type : String HostingDetail Hosting
&amount - Integer &description - String
&price - Float &nightsValue - Float

Fig. 3. Sample metamodel implemented over EMF.

SonarQube offers an issues report where it indicates the number of errors
found; and consequently, the error list distributed in order of importance from
highest to lowest:

— Blocker: they are the most serious errors; they should have the highest priority
to review.
Critical: they are design errors which affect quality or performance of the
project (model errors can be classified in this category).

— Magjor: although these errors do not affect performance, they require to be
fixed for quality concerns.

Conciliating MDE with Technical Debt Using a Quality Framework 207

X
File Edit Refactor Navigate Search Project Run SonarMenu Window Help
et e e T E% BN rdi -0 - ®5 v~ | Quick Access ‘j]JEf,|rl;},Rasource & Java |
HPacka. 8 = O) SonarQube Web Browser 3 o
[=] Ep\ ¥ Dashboards Projects v Measul ues Quality Profiles Quality Gates Login [EElG > =
b 52 Project = 5 @
» 12 Projectedit 1 HotelProject K;\
b T .
> & Projectieditge Dashboard Version 1.5 - Lun, 08 de Sep de 2014 a las 09:57-19 COT | Time changlis =
b 52 Projecttests
Hotspots =
e Lines of code Files Issues © Blocker 20
© Critical 0)
Time Machine 59~ 1 207 @ Major 0
59 lines A 1 directories Technical Debt @ Minor 0
TOOLS 0 @ Info 0
Companeity Duplications
Issues Drilldown 0.0% .
Libraries 0 lines Technical Debt @
Compare 0 blocks 23.3%
o 0 files 5125
sonarqube 0 man days
Events = ANl -
Violations
08/09/2014 Version A
31/07/2014 Version Na information available on coverage ‘
No information avafiable on design
Key: Sinfoci
Profile: Sonar way {(version 2)
Fig. 4. SonarQube screen report loaded into EMF work area
%
File Edit Refactor Navigate Search Project Run SonarMenu Window Help
N - > " S
BRG] % NI GO T/ ®E v Quick Access | B | & Resource [GTiava
5 ProjectExplorer 82 = B | SonarQube Web Browser 3 O | s
- BBl ¥ Dashboards ~ Projects» Measures es Quality Profiles Quality Gates ~ |8
b 52 Project @
3 Project.edit B
- 2
o 5 Project.editor
b 5 Projecttests Issues | Newsearch =]
:=|
Project: All Severity: All Status: All Assignee: All Resolution: Unresolved + More Criteria
S — HotelProject
wﬂ—\u“ [files/test.xml A
,0 o <2xml version="1.0" encoding="UTF-8"2>
Blocker C0pen 7 houl A <Foundation xmIns:xsi = "http://www.w3.org/2001/XMLSche
cvc-enumeration-valid: El valor ‘New Jersey'._. <Location 23.15 - 45" zipCode="056" {

18 52 - 56" zipCode="052" «
12 52 - 87" zipCode="018"

<Location
<Location
<Lo.

HotelProject
files/testxml
Osio 7 hours

cvc-enumeration-valid: El valor 'Debit_Card' n

5 12 - 89" zipCode="028" O
2 2 - 35 " zipCode="031" ci

HotelProject Gl
files/testxml Ot
<Location address="Street 12 03 - 74" zipCode="074" ¢
@siocker OOpen 7 hours <seller name="Alexander" i " Iocation="//@Locatior
4 : <Seller name="Abigail" i
cve-datatype-valid.1.2.1: 2014-22.07" no es u <Seller name="Camelia" id="3" Location="//@Location.(
HotelProject <Seller name="Ellen" id="4" Location="//@Location.2" ,
files/test xml v <Seller name="Frederic" id="9" Locatimf'://@Loca:ion

< >

Fig. 5. Example of error (issue) detected by SonarQube over the EMF model.

— Minor: they are minor errors that do not affect the operation of the project.
— Info: they are reporting errors, not dangerous.

Figure 5 present the reports about technical debt errors detected over the sample
model. In the first place, an error category was chosen. For the respective category,

208 F.D. Giraldo et al.

the error list associated is show in detail posteriorly. Intentionally, we introduced
errors over the XML information of the model to test the respective detection by
SonarQube according with the rules defined in the XSD file from the Moody pro-
posal.

4 Validation

A first validation of our proposal was performed using some basic usability test-
ing procedures. The main goal of these validation was to identify interaction
issues associated to the Eclipse EMF-SonarQube integration. Also, the utility
of this integration (from a model-driven practioners perspective) was checked.
The participant population were students from software engineering courses that
work with conceptual models and structural data models in Eclipse EMF, and
software engineering researchers (experts) who work with EMF in real software
projects using the model-driven paradigm. The chosen public was invited by
their previous knowledges in EMF and data productions with EMF. The total
population was 17 participants.

4.1 Test Design and Procedure

In first instance we defined a data production for the model exposed in the Fig. 3.
Intentionally we have introduced ten defects over the data of the generated EMF
model production. These defects are related to rules configured in a XML schema
previously defined and associated to SonarQube instance server. These rules are
derived from some Moody PoN principles (Sect.3.2). The employed rules over
the model were the following:

— Accepted payment types are Cash, Credit_Card and Bank_Check.

— Cities that are permitted for the data model are London, Medellin, SaoPaulo,
NewYork, Washington, Valencia, Madrid, Paris, Bogota.

— Seller ID must be a number between 0 to 10.

— Valid date format is YYYY-MM-DD.

— In the production, the maximum number of elements type Location, Seller,
HostingOrder, Payment, Hosting and Customer are ten elements for each one.

These rules were accesible for all participants during the test execution.

For the usability test a Tobii X2-30 Eye Tracker? device was employed in
order to precisely capture and determine where the participants are looking
when we shown them the Eclipse enviroment with the EMF-SonarQube inte-
gration mechanisms. Figure 6 presents the test scenario with the hardware and
software used with each participant. Figure 7 presents the software testing sce-
nario (supported by the Tobii Studio Eye Tracking Software).

This test was split into three parts or momentums as follows:

3 http://www.tobii.com/en/eye-tracking-research /global /products/hardware/tobii-
x2-30-eye-tracker/.

http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x2-30-eye-tracker/
http://www.tobii.com/en/eye-tracking-research/global/products/hardware/tobii-x2-30-eye-tracker/

Conciliating MDE with Technical Debt Using a Quality Framework 209

Traces capture from
eyes movement
detected

by Tobii Eye Tracker

Tobii X2-30 Eye
Tracker

Fig. 6. Test enviroment used for the validation.

— Momentum 01: for each participant he/she was asked about evidenciable
defects over the EMF production directly. The main goal of this part is to
check if the participant can detect the defects intentionally introduced in the
production using the information given by EMF.

— Momentum 02: in this section of the test researchers request to each par-
ticipant to validate the model in SonarQube using the provided mechanism
(button or menu). The main goal of this was detect if the participants could
recognize the graphical elements (plugin) that link the EMF with SonarQube.

— Momentum 03: each participant was asked about how to access to the defects
reported by SonarQube using the user interface provided for this tool and loaded
into Eclipse.

Finally, a Retrospective Think Aloud (RTA) procedure was performed with each
participant. Using the recordings of the previous usability test researchers asked
to the participants about their actions during the usability test. The RTA activity
considered these issues:

Model under Eclipse EMF

analysis ¥ wquspace

(loaded in (with
SonarQube)

Rational Rose) |-

Traces capture from
eyes movement
detected

by Tobii Eye Tracker

Participant

Fig. 7. Test software environment supported by the usability testing tool.

210 F.D. Giraldo et al.

— The identification of defects over the EMF production directly.

— The easiness for identifying defects directly from the EMF production.

— The easiness to invoce the SonarQube validation over the EMF model.

— The sufficiency of the information provided by SonarQube in order to find
defects in the EMF production.

— The usefulness of the EMF-SonarQube integration.

4.2 Results

Results of the usability test are exposed in Tablel. It is splited in the three
momentums described above. For the momentum 01 - the participant detected
defects over the production - the percentage of participants that report defects
directly over the EMF production is high but the defects reported (in average)
is too low with respect to the total of defects intentionally introduced (15 % in
average). This reflects that finding defects directly over the EMF production is
a hard task, and the probability of accidently discard defects are representative.

Table 1. Results of the usability test over the EMF-SonarQube integration.

Momentum 01 Momentum 02 Momentum 03

No Yes Def. |Button |Menu No Yes Time
Av. Av.
Experts 16,67 % (83,33% |1,80 66,67 % 33,33% |16,67% 83,33% |83,00
Students 18,18% |81,82% {1,33 /90,91% 19,09% |45,45% 54,55% |89,83
Participants|17,65 % 82,35 % (1,50 (82,35 % | 17,65 % | 35,29 % | 64,71 % 86,73

For the momentum 02 - Can the user validate the model in SonarQube from
Eclipse EMF?- all the participant reports that they did this, mainly through
the button exposed in the Fig.2-A. EMF experts users have found the new
graphical elements associated with SonarQube so that they access directly to
these elements to make the validation. However, in the case of the students,
45,45 % of them request an additional explanation to researchers in order to
identify the elements and make the validation. It’s due to the low contact of the
students with quality platforms in their software engineering courses.

Finally, in the momentum 03 - Do the participant access to the reported
defects in SonarQube? - we found a representative percentage of participants
who reported no access to the defects of the model reported by SonarQube. This
is consequence of the native navigation model of SonarQube (no considered in
the scope of our validation process as such).

Main findings from the RTA procedure were: (i) The relative big size of
the proposed button proportional to the Eclipse tools area. This in particularly
important due that this feature let to users (mainly experts) to identify the new
proposed tool. (i) The image icon used in the SonarQube button does not asso-
ciate it to the model validation process itself. Most of the users request a new

Conciliating MDE with Technical Debt Using a Quality Framework 211

icon that express the model validation more natively from Eclipse EMF. (iii) A
new requirement from the participants that exist a doble via navigation between
the defects of the model reported in SonarQube and the EMF model/production
in order that the context of the validation does not disappear when the Sonar-
Qube browser is invoked. All these findings promote a second version of our
proposal.

5 State of the Art

There are not major reports about the integration of technical debt with model-
driven works; it is evident the works where technical debt is applied jointly with
specific methods of software quality [14]. A closer work is reported in [16] where
a technical debt evaluation framework was proposed, and it was applied over the
EMF project for determining the technical debt of this Eclipse project based on
all the versions of it. EMF was chosen because it contains some features expected
by the framework (popularity, maturity, proficiency and open source), but the
quality assessment was made with a tool different to SonarQube.

The main challenge of this kind of work is the derivation of quality metrics or
rules from model quality frameworks. High abstraction and specific model issues
influence the operationalization of model quality frameworks, so that quality
rules or procedures could no be full implemented by operational mechanisms
such as XSD schemas. Authors in [26] expose an attempt to make operational
the Physics of notations evaluation framework, but this operationalization (and
any similar proposal) could be ambiguous as consequence of the lack of precision
and detail of the framework itself. Also, they suggest the need of a guideline for
the evaluation framework prior to the production of its associated metrics.

Regarding the usage of the SonarQube platform to evaluate models a similar
work is exposed in [25] where a SonarQube plugin was implement in order to
support the evaluation of business process models described in the event-driven
process chains language. This plugin uses the software quality model ISO 9126 (in
terms of characteristics and subcharacteristics) and other measures previously
formulated.

An example of model quality assurance tools as reported in [1] where it is
presented an operational process for assessing the quality through static model
analysis to check model features like consistency (with respect of language syn-
tax), conceptual integrity, and the conformity with modelling conventions. Instead
of having an operational model quality framework, we can see how a quality
framework like 6C [19] has been used as a conceptual basis for derivating a
quality assurance tool.

6 Conclusions

In this work we show the technical feasibility to integrate a technical debt tool
like SonarQube with a model-driven development enviroment such as the Eclipse
modelling framework. We present an example of technical debt validation applied

212 F.D. Giraldo et al.

over a sample metamodel implemented for testing purposes. Thereby, we demon-
strate the technical feasibility for measuring any artefact used in an model-
driven engineering process [5]. However, the main challenge is the definition
of the model quality metrics and the operationalization of the model quality
frameworks reported in terms of expressions that can generate metrics, and its
association with a model-driven development process.

A plethora of model quality frameworks are proposed, but their operationa-
lization is very incipient and these are used as reference frameworks. A metric/
rules derivation process from quality frameworks is needed taking into account
its operationalization in order to support a model quality assurance process
by tools. An important further work is the applicability of technical debt to
the visual quality of diagrams because these are the most representative quality
proposals for models; it means, evaluting the quality of diagrams in a similar way
as SonarQube evaluates quality at the source code. Also, the implementation of
automatic checks over the OCL code could be an important strategy to verify
quality issues over models.

From a technical perspective, as another further work, we propose to use
SonarQube plugins that offer technical debt evaluation through specific
approaches like the SQALE Methodology (software quality assessment based
on lifecycle expectations)* [14]. The main challenge of this proposed work is
the extrapolation of the particular technical debt method to the model-driven
context; this could be supported by the quality taxonomy of characteristics/sub-
characteristics/metrics or quality attributes common employed in model quality
proposals.

Acknowledgments. F.G, thanks to Colciencias (Colombia) for funding this work
through the Colciencias Grant call 512-2010. F.G. and M.P. thanks to David Racodon
(david.racodon@sonarsource.com) and Nicla Donno (nicla.donno@sonarsource.com)
for their suppport with the SQALE plugin for SonarQube. This work has been sup-
ported by the Spanish MICINN PROS-Req (TIN2010-19130-C02-02), the Generalitat
Valenciana Project ORCA (PROMETEO/2009/015), the European Commission FP7
Project CaaS (611351), and ERDF structural funds.

References

1. Arendt, T., Taentzer, G.: A tool environment for quality assurance based on the
eclipse modeling framework. Autom. Softw. Engg. 20(2), 141-184 (2013)

2. Blaha, M.: Patterns of Data Modeling. CRC Press, Boca Raton (2010). ISBN
1439819890

3. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in
Practice. Synthesis Lectures on Software Engineering. Morgan & Claypool Pub-
lishers, San Rafael (2012)

* http://www.sonarsource.com/products/plugins/governance/sqale/installation-and-
usage/.

http://www.sonarsource.com/products/plugins/governance/sqale/installation-and-usage/
http://www.sonarsource.com/products/plugins/governance/sqale/installation-and-usage/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Conciliating MDE with Technical Debt Using a Quality Framework 213

Embley, D.W., Liddle, S.W., Pastor, O.: Conceptual-model programming a man-
ifesto. In: Embley, D.W., Thalheim, B. (eds.) Handbook of Conceptual Modeling,
pp. 3-16. Springer, Heidelberg (2011). ISBN 978-3-642-15864-3

Bertoa, M.F., Antonio, V.: Quality attributes for software metamodels. In: Pro-
ceedings of 13th TOOLS Workshop on Quantitatives Approaches in Object-
oriented Software Engineering, QAAOSE 2010, 2 July, Malaga, Spain, February
2010

Falessi, D., Shaw, M.A., Shull, F., Mullen, K., Keymind, M.S.: Practical consider-
ations, challenges, and requirements of tool-support for managing technical debt.
In: 2013 4th International Workshop on Managing Technical Debt (MTD), pp.
16-19 (2013)

Fettke, P., Houy, C., Vella, A.-L., Loos, P.: Towards the reconstruction and evalu-
ation of conceptual model quality discourses — methodical framework and applica-
tion in the context of model understandability. In: Bider, 1., Halpin, T., Krogstie,
J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Wrycza, S. (eds.) EMMSAD 2012
and BPMDS 2012. LNBIP, vol. 113, pp. 406-421. Springer, Heidelberg (2012)
Giraldo, W.J.: Framework for the development of interactive groupware systems
based on the integration of process and notations. Ph.D. thesis (2010)

ISO/TEC. ISO/IEC 9126. Software engineering - Product quality. ISO/IEC (2001)

. Izurieta, C., Griffith, I., Reimanis, D., Luhr, R.: On the uncertainty of technical

debt measurements. In: 2013 International Conference on Information Science and
Applications (ICISA), pp. 1-4 (2013)

Krogstie, J.: Quality of models. In: Krogstie, J. (ed.) Model-Based Development
and Evolution of Information Systems, pp. 205-247. Springer, London (2012). ISBN
978-1-4471-2935-6

Kruchten, P., Nord, R.L., Ozkaya, I.: Technical debt: from metaphor to theory and
practice. IEEE Softw. 290(6), 18-21 (2012)

Lange, C.F.J., Chaudron, M.R.V.: Managing model quality in UML-based software
development. In: 2005 13th IEEE International Workshop on Software Technology
and Engineering Practice, pp. 7-16 (2005). LCCN 0029

Letouzey, J., llkiewicz, M.: Managing technical debt with the sqale method. IEEE
Softw. 29(6), 44-51 (2012)

Marin, B., Giachetti, G., Pastor, O., Abran, A.: A quality model for conceptual
models of mdd environments. Adv. Soft. Eng. 2010, 1:1-1:17 (2010)

Marinescu, R.: Assessing technical debt by identifying design flaws in software
systems. IBM J. Res. Dev. 56(5), 9:1-9:13 (2012)

McConnell, S.: Managing technical debt. In: Fourth International Workshop on
Managing Technical Debt in conjunction with ICSE 2013 (2013)

Mohagheghi, P., Dehlen, V.: Developing a quality framework for model-driven engi-
neering. In: Giese, H. (ed.) MODELS 2008. LNCS, vol. 5002, pp. 275-286. Springer,
Heidelberg (2008)

Mohagheghi, P., Dehlen, V., Neple, T.: Definitions and approaches to model quality
in model-based software development - a review of literature. Inf. Softw. Technol.
51(12), 1646-1669 (2009)

Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data Knowl. Eng. 55(3), 243-276
(2005)

Moody, D.L.: The ‘physics’ of notations: Toward a scientific basis for constructing
visual notations in software engineering. IEEE Trans. Softw. Eng. 35(6), 756-779
(2009)

214

22.

23.

24.

25.

26.

27.

F.D. Giraldo et al.

Nord, R.L., Ozkaya, 1., Kruchten, P., Gonzalez-Rojas, M.: In search of a metric for
managing architectural technical debt. In: 2012 Joint Working IEEE/IFIP Con-
ference on Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), pp. 91-100 (2012)

Schalles, C.: Usability Evaluation of Modeling Languages: An Empirical Research
Study, vol. 1, p. 197. Springer Gabler, Heidelberg (2013). ISBN 978-3-658-00051-6
Seaman, C., Guo, Y.: Chapter 2 - Measuring and Monitoring Technical Debt.
Advances in Computers, vol. 82. Elsevier, London (2011)

Storch, A., Laue, R., Gruhn, V.: Measuring and visualising the quality of models.
In: 2013 IEEE 1st International Workshop on Communicating Business Process
and Software Models Quality, Understandability, and Maintainability (CPSM),
pp- 1-8, September 2013

Storrle, H., Fish, A.: Towards an operationalization of the “physics of notations” for
the analysis of visual languages. In: Moreira, A., Schatz, B., Gray, J., Vallecillo,
A., Clarke, P. (eds.) MODELS 2013. LNCS, vol. 8107, pp. 104-120. Springer,
Heidelberg (2013)

Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. J. Syst. Softw.
86(6), 1498-1516 (2013)

	Conciliating Model-Driven Engineering with Technical Debt Using a Quality Framework
	1 Introduction
	2 Motivations
	3 Our Proposal
	3.1 Proposal in a Nutshell
	3.2 Definition of an XSD for SonarQube
	3.3 Implementation of a Technical Debt Plugin for EMF
	3.4 Verification of Technical Debt from EMF Models

	4 Validation
	4.1 Test Design and Procedure
	4.2 Results

	5 State of the Art
	6 Conclusions
	References

