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Abstract. LVQ classifiers are particularly intuitive and simple to under-
stand because they are based on the notion of class representatives (i.e.,
prototypes). Several approaches for improving the performance of LVQ in
batch-learning scenarios are found in the literature. However, all of them
assume a fixed number of prototypes in the learning process; we claim that
the quantized approximation to the distribution of the input data using
a finite number of prototypes, should not be fixed. Thus, in this paper we
propose an improved learning algorithm for batch and on-line variants
in LVQ. The proposed algorithm is based on a modified LVQ rule and
granular computing, a simple and low cost computational process of clus-
tering. All this, increases the dynamics in the learning process, proposing
new prototypes which have a better covering of the distribution of classes,
rather than using a fixed number of them. Similarly, in order to avoid an
exponential growth in the number of prototypes, an automatic pruning
step is implemented, respecting the desired reduction rate.
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1 Introduction

Learning Vector Quantization (LVQ) is an effective technique used for super-
vised learning, mainly for classification purposes. The learning targets are called
“prototypes”, which can be understood as class representatives and yields class
regions defined by hyperplanes between prototypes of the existing classes, this
regions are known as Voronoi partitions [4,6].

LVQ induces efficient classifiers, i.e., they are simple and fast, as calculations
are made over prototypes and not over all the neighbourhood of instances. This
feature provides a great reduction in the computational cost and processing time
(at least for homogeneous data sets). Usually, a fixed number of prototypes is con-
sidered during the learning process. However this is not necessarily a good way
to achieve a better accuracy or faster convergence to desired theoretical values,
as the Bayesian border. LVQ2.1, LVQ3 are improvements over the standard LVQ
technique (also called LVQ1.0) with higher convergence speed and better approxi-
mation capabilities (related to the Bayesian borders) [7]. In general, these improve-
ments over LVQ1.0 correct drawbacks such as: bad initialization, sensitivity to
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overlapping classes distribution and, instabilities due to overly pronounced elimi-
nation of dimensions in the feature space.

In this paper, based on the rule of the LVQ1.0 algorithm, we propose an
improved learning algorithm for batch and on-line learning processes, where the
prototypes used per each class are not fixed. Several prototypes can be produced
iteratively, increasing the accuracy power of the classifier and at the same time,
respecting the desired data compression rate. Also, a pruning step is proposed,
based on a simple idea of a usage-frequency variable for each one of the actual
prototypes; then, at each one of the iteration steps, only prototypes with more
usage are kept, avoiding the excessive computational load. The proposed algo-
rithm has some kind of memory because the usage-frequency takes into account
training samples in previous samples/iterations. This is particularly important
when one tries to extend the LVQ method to work on an online setting.

Two variants are proposed, “LVQ based on Granular Computing for Batch-
Learning” (LVQ-GC-BL) and, “LVQ based on Granular Computing for on-line-
Learning” (LVQ-GC-OL).Bothmethods try to overcomedeficiencies of traditional
LVQ-1.0 algorithm, correcting bad initialization states by means of granular com-
puting, a simple algorithm to find centroids; and working alongside the dynamism
of incremental learning, letting the algorithm not to be fixed in the number of class
representatives during the learning stage. Based on this, LVQ-GC-OL is evalu-
ated in a simulated scenario of on-line learning. It is expected that combining by
the dynamic production of new instances plus the pruning step, keeping the win-
ner prototypes per class during the online training, the algorithm will produce an
acceptable trade-off between accuracy and the reduction performances, as a typi-
cal characteristic of a vector quantization algorithm.

The remainder of this paper is organized as follows: In Sect. 2, a description of
the proposed algorithms for batch learning is presented. Section 3 describes the
advantages of the on-line version (LVQ-GC-OL). Section 4 presents the exper-
imental framework and reports the results obtained. Finally, Sect. 5 outlines
conclusions and future work directions.

2 Improved Rule for Batch LVQ

This section introduces the proposed extension to LVQ for batch mode.

2.1 Learning Vector Quantization

Let X =
{
(xi, yi) ⊂ R

D × {1, ..., C} | i = 1, ..., N
}

be a training data set, where
x = (x1, ..., xD) ∈ R

D are D-dimensional input samples, with cardinality |X| =
N ; yi ∈ {1, ..., C} i = 1, ..., N are the sample labels, and C is the number of
classes. The learning structure of LVQ consists of a number of prototypes, which
are characterized by vectors wi ∈ R

D, for i = 1, ...,M, and their class labels
c (wi) ∈ {1, ..., C} with Y = {c (wj) ∈ {1, ..., C} | j = 1, ...,M} . The classifica-
tion scheme is based on the best matching unit (winner-takes-all strategy), which
defines the class representatives (prototypes or codebook vectors), so that the
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training data samples are mapped to their corresponding labels. Now, according
to [8], for LVQ1: with several labeled-prototypes wi of each class, the class regions
in the x space are defined by simple nearest-neighbour comparison between x
and the existing wi; the label of the closest wi is the label of x. The learning
process consists in defining the optimal placement of wi iteratively.

The LVQ learning tries to pull the prototypes away from the decision surfaces
to demarcate the class borders more accurately. Iteratively, all of the N training
instances are processed according the following rules to update the prototypes
(which initially are randomly selected samples):

wc (t + 1) = wc (t) + α (t) [x (t) − wc (t)] if x(t) is correctly classified,

wc (t + 1) = wc (t) − α (t) [x (t) − wc (t)] if the classification of x(t) is incorrect,

wi (t + 1) = wi (t) for i �= c for prototypes of other classes (1)

where wc(t) is the closest prototype to x(t) at iteration t in the Euclidean metric,
α(t) is a scalar gain (0 < α < 1), decreasing monotonically in time.

2.2 Granular Computing

In this paper, granules play the role of prototypes. The idea of granular com-
puting, has been developed in previous works [1,2]. In these works, the granular
computing generates surrogate models in expensive fitness functions of optimiza-
tion problems; then, not only the core of information is drastically reduced, but
also, a basic knowledge of the structure of the model is obtained [3]. In the fol-
lowing we detail the granule generation process. The algorithm starts by selecting
random a training sample as the center of the granule for each one of the classes.
Each one of these granule-prototypes are represented by density functions. Next,
for each one of the elements of the data set (xi, yi) , a measure of “similarity” to the
existing prototypes is computed using the following Gaussian similarity measure:

μk (xj) = exp

(
− (

xi
j − wi

k

)2

σ2
k

)

(2)

where wk is the center of the kth granule or the prototype, for k = 1, 2, ..., l
number of granules, and xj is the jth input of the training set, that belongs to
the ith class. The radius σk of each granule is used to control the area of similarity
degree between inputs, determining the decision boundary of inclusion into the
granules. In this work, this radious σk is formulated as the mean value of the
Euclidean distance between a granule and all the inputs,

σki
=

1
n

n∑

j=1

√
(xj − wk)

2 (3)

where n is the number of inputs of the training set.
Now, let

c = arg max {μk (xj)} (4)

which defines the nearest wi granule to x, denoted by wc. Initially we have a
granule for each one of the classes of the training set.
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2.3 Improved Batch-Learning Rule

The proposed algorithm is designed to create new granules or prototypes and
update the existing ones according to the measure of similarity mentioned above
and a threshold θ. The following equations define our improved LVQ-1.0 process:

R1 : wc (t + 1) = wc (t) + α
[
xi
j (t) − wc (t)

]

if xi
j and wc belongto the same class and c ≥ θ, (5)

R2 : wc (t + 1) = wc (t) − α
[
xi
j (t) − wc (t)

]

if xi
j and wc belong to different classes (6)

R3 : Add a new wi of the same class of xi
j

if xi
j and wc belong to the same class, but c < θ (7)

where wc represents the nearest prototype to the actual input sample xi
j , α

represents the learning rate, and 0 < α < 1, also α will decrease monotonically
with time by each iterative step. When each one of the sample input xi

j of the
data set arrives, it is measured by (2) to each one of the wi elements, then,
it is obtained the closer one, wc. The algorithm will perform the conventional
LVQ-1.0 rule (R1, R2), if the measure of similarity exceeds θ, that is, the sample
input xi

j is not only near to any one of the prototypes and has the same class,
but also, is within the receptive field of the granule. If x is out of this receptive
field, that is, μk

(
xi
j

)
< θ, a new prototype will be added to the existing ones. In

order to avoid increasing the number of number of prototypes without control,
a pruning step will be developed in each iteration step. A better explanation of
this pruning step is given in the next subsection.

Now, considering the threshold value θ, by which new prototypes are added
to the pool of the existing ones Wk, we proceed as follows. First, note that all
the process is performed in the hypercube [0, 1] . Then, since the measure of
closeness between the input values xi

j and the existing prototypes is given by a
Gaussian measure of similarity (2), the nearest prototype wc has a value close
to 1 and, as the prototype is further away, the value will be near of 0. We want
a dynamically process which gives the algorithm the possibility to create new
prototypes every iteration, then, this value is near 1; that is, the receptive field
of wc is too small in the hypercube [0, 1] .

2.4 Pruning Step

Avoiding an exponential growth in the number of prototypes, each one of the
prototypes of all classes will compete for their survival through a life index
Lk. The pruning step of prototypes will be done in each iteration step. The
prototypes that have the highest Lk-value for each one of the existing classes C
will survive, and the others will be eliminated, according to a desired reduction
rate. Hence, Lk is initially set at 1 for each one of the initial prototypes and
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subsequently updated as below:

Li
k =

{
Li
k + 1 If k = K
Li
k Otherwise (8)

where the constant 1 is the life reward for the winning prototype wc and K is
the index of this selected prototype, according to (2) and (4).

With this, the life index Lk attached to each granule that was not pruned,
past information is maintained for the next iterative steps from the last ones.
The flow chart of the LVQ-GC-BL algorithm is shown in Fig. 1.
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Fig. 1. LVQ-GC-BL algorithm.

3 On-line Algorithm

The online version (LVQ-GC-OL), generates a model from the training set, seeing
each sample point once. That is the LVQ process the N training samples a single
time. The improved LVQ not only updates granules but also allows the creation of
new ones, also it is equipped with memory and punning mechanisms. Therefore,
we can say that the advantages of the on-line version of our proposal are:

1. The learning process is done on-line, during every incoming sample, and the
algorithm does not require of the storage of certain number of instances to
perform the learning process.
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2. Each prototype used and newly created, due to the attached life index to
it, contains a kind of “memory” or “weight” associated to each prototype
during the learning process. Once the learning process has finished (in a single
iteration), the more used class representatives prototypes will be kept.

3. At every incoming sample, due to the receptive field of the prototype and the
proposed threshold, not only the actual prototypes will be updated, but also
the algorithm can “propose” new ones. With this, the quantized approxima-
tion to the real density distribution of classes has more “proposed” elements
to cover it.

4 Experimental Framework

The experimental part of the proposed method is developed using the suite of
data sets introduced in [18]. This benchmark consists of 59 data sets associated
to different classification problems. The results are reported separately for small
(data sets with less than 2, 000 instances) and large (data sets with at least 2, 000
instances) data sets. The evaluation methodology adopted consists of applying
Prototype Generation (PG) methods to each data set in a 10-fold cross valida-
tion scheme. For the evaluation process, a 1NN rule is used by the generated
prototypes. The following experimental settings, also used in [18], are defined to
assess the proposed approach: 1 initial prototype per class; Iterations = 100;
θ = 0.9;α = 0.1.

Now we report experimental results to show the effectiveness of the proposed
method LVQ-GC-BL. The performance of LVQ-GC-BL is compared against
other techniques for PG mentioned in [18], evaluated with the same benchmark
conditions.

4.1 Classification Performance of Prototypes

Table 1 shows the average classification performance obtained by the LVQ-GC-
BL algorithm for small and large data sets, and is compared against LVQ3 and
GENN, the last one is the method that obtained the highest accuracy in [18].

Comparisons from Table 1, shows the effectiveness of our LVQ-GC-BL method
in terms of classification performance. We have to remember that LVQ3 algorithm
is an improvement over LVQ1.0 algorithm (by which we are basing our proposal).
In this work we are improving the LVQ1.0 algorithm by making it variable in the
number of class representatives. Which results in improved performance of LVQ.

Table 1. Average classification accuracy for LVQ-GC-BL and reference methods

LVQ-GC-BL LVQ3 GENN

Small 0.7038 ± 0.0755 0.6930 ± 0.1560 0.756 ± 0.05

Large 0.7517 ± 0.2068 0.7318 ± 0.2093 0.813 ± 0.217
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GENN obtained better values in classification performance, but its reduction per-
formance is among the worst (see below). One should note that not only a high
classification performance is desired, also the data compression rate is of main
concern. Next, we show results in this important parameter.

4.2 Reduction Performance of Prototypes

Table 2 shows the average instance-reduction rates comparing our algorithm
LVQ-GC-BL against LVQ3 and GENN algorithms. In this paper, we consider a
percentage of reduction with respect to the data set size of at least 95%, this is
according to similar reduction rates for the best algorithms in [18].

Table 2. Average reduction rates for LVQ-GC-BL and reference methods

LVQ-GC-BL LVQ3 GENN

Small 0.9542 ± 0.0154 0.9488 ± 0.0083 0.1862 ± 0.1206

Large 0.9688 ± 0.0180 0.9799 ± 0.0008 0.1576 ± 0.1992

We can see that our algorithm LVQ-GC-BL is highly competitive in compres-
sion of the data set. For small data sets, presents the better results and here, we
can verify that, although GENN is better in classification performance, is the
worst for data compression rate.

4.3 Execution Time

Next, the execution time of simulation comparing LVQ3, GENN and our algo-
rithm is shown in Table 3. This Table shows that our algorithm has the better
execution time for large data sets, and is slightly improved in execution speed by
the LVQ-3 algorithm for small data sets. Our algorithm, due to the pruning step
at each iteration, avoids excessive computational load in the training process.

Table 3. Execution time for LVQ-GC-BL and reference methods

LVQ-GC-BL LVQ3 GENN

Small 0.373 0.2316 1.4285

Large 0.541 1.7037 167.4849

4.4 On-line Learning

For the online version of the algorithm (LVQ-GC-OL), the learning process will
be developed in just one iteration step (i.e., Iterations = 1), the learning rate
is fixed and does not decrease, the rest of the parameters remained the same as
above. Results of the classification performance are shown in Table 4.
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Table 4. Average classification accuracy and execution time for LVQ-GC-OL

Avg. classification accuracy Avg. execution time

Small 0.67257 ± 0.16036 0.05017

Large 0.72264 ± 0.19731 0.06857

Although, in general the average of classification accuracy is better for batch
learning rather than the online approach, in many cases, and for particular data
sets, the accuracy was better in the on-line learning. This improvement in the
accuracy for such particular data sets could be done due to the dynamism of
the proposed algorithm. That is, every time an instance is evaluated against the
existing prototypes, according to the proposed algorithm, not only the learning
process can update these prototypes, but also can create new ones if the recep-
tive field does not cover the distribution area of the corresponding class. Then,
increasing the number of prototypes provides a better coverage in the class-
distribution area, rather than just move a non incremental and limited number
of initial prototypes according to the traditional rules. At the same time, the
pruning step prevents a non-controlled increase of these class representatives.

4.5 Visualizing Learned Prototypes for a 2-D Case

The visualization of learned prototypes gives a better understanding of proto-
types distribution in the training set space. For a 2-Dimensional case, the banana
data set provides this possibility for visualization purposes. This data set con-
tains 5300 instances described by 2 attributes, and for classification purposes
only has 2 classes. Figure 2 shows the results of the learned prototypes for our
LVQ-GC-BL (left) algorithm and the comparative LVQ-3 method (right). For
comparison purposes, the training parameters are: 20 initial prototypes per class;
Iterations = 100; θ = 0.7;α = 0.1.
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Fig. 2. Banana data set and prototypes
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From Fig. 2 it can be seen that Prototypes produced by the LVQ-GC-BL
algorithm, have better classes distribution than those of LVQ3, prototypes in
LVQ-GC-BL, are not to close between them (i.e., they are spread through the
input space), and prototypes generated by LVQ-GC-BL are covering areas that
the LVQ 3 algorithm does not. These advantages are due to the dynamism in the
production of new prototypes and the pruning step at every iteration. According
to the proposed threshold and the life index attached to each prototype, the
algorithm will only update prototypes which are more useful and will produce
new ones in order to cover different zones than the existing ones by the actual
prototypes. With this, a better approximation to the correct class distribution
of classes is achieved.

5 Conclusion

This work presents an improved version of the classical LVQ-1.0 algorithm. The
algorithm is compared against relevant classifiers such as LVQ-3 and GENN,
showing acceptable values of accuracy and data compression rate. The main
contributions of the algorithm can be stated as follows: (1) based on granu-
lar computing, we have a better initialization of the prototypes; which avoids
the use of other algorithms like k-means clustering or SOM, (2) The proposed
improvement is able to generate new prototypes at every iterative step, then, not
only the actual prototypes are updated but also the new ones can have a better
covering of the density distribution class, (3) the proposed life index, attached
to every prototype, helps to keep the better class representatives during each
iterative step and, this is a measure of “memory” persisting during the learning
cycle. With all these steps, the algorithm is able to find the best location for
the prototypes and, provides of a better approximation to the correct density
distribution classes.

For the on-line version of the algorithm, due to the dynamism in the pro-
duction of new prototypes and the update of the existing ones at every sample
point, we can see that the algorithm produces an acceptable level of accuracy.
The speed of the algorithm and the pruning step, makes it ideal to work in
environments of on-line data sets, where information is constantly flowing.

Future work is mainly oriented to propose an adaptive receptive field and
threshold value, which will generate prototypes according to the specific data
features presented.
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