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Abstract. Process mining is concerned with the extraction of knowledge
about business processes from information system logs. Process discovery
algorithms are process mining techniques focused on discovering process
models starting from event logs. The applicability and effectiveness of
process discovery algorithms rely on features of event logs and process
characteristics. Selecting a suitable algorithm for an event log is a tough
task due to the variety of variables involved in this process. The traditional
approaches use empirical assessment in order to recommend a suitable dis-
covery algorithm. This is a time consuming and computationally expen-
sive approach. The present paper evaluates the usefulness of an approach
based on classification to recommend discovery algorithms. A knowledge
base was constructed, based on features of event logs and process char-
acteristics, in order to train the classifiers. Experimental results obtained
with the classifiers evidence the usefulness of the proposal for recommen-
dation of discovery algorithms.
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1 Introduction

The execution of business processes on information systems is recorded on event
logs. Process mining involves discovery, conformance and enhancement of process
starting from event logs. A process discovery algorithm is a function that maps
an event log onto a process model, such that the model is “representative” for
the behavior seen in the event log [1]. Several algorithms have been developed
for discovering process models that reflect the actual execution of processes.
These models allow business analysts to make performance evaluations, anomaly
identification, compliance checking, among others analysis.

Noise, duplicate tasks, hidden tasks, non-free choice constructs and loops
are typical problems for discovery algorithms [2]. These problems are related
to unstructured processes, commonly present in real environments [3] Thus,
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algorithms performance depends on event log characteristics and their associated
process.

Several executions of different discovery algorithms could be required trying
to obtain a quality model, thus becoming a time consuming and error-prone
task. Selecting the right algorithms is a hard task due to the variety of vari-
ables involved. Several techniques execute different discovery algorithms for an
event log and evaluate their resulting models using quality metrics [4]. Neverthe-
less, this empirical evaluation approach is computationally expensive and time
consuming.

On the other hand, a recommendation technique is based on regression, but
it requires reference models [5]. Reference models are not commonly available in
contexts where process discovery is required. If there are reference models, it is
unwise to assume that they reflect the actual execution of processes.

Studies that attempt to establish the algorithms with better performance
under certain conditions have been published using the aforementioned empirical
evaluation techniques [6]. However, the impact of each condition on model quality
is not clearly defined yet. Therefore, the actual use of these studies remains
limited.

The aim of this paper is to evaluate the usefulness of an approach based
on classification to recommend discovery algorithms [7]. A knowledge base is
constructed considering event log features such as: control-flow patterns, invisible
tasks and infrequent behavior (noise). The recommendation procedure based on
classification is tested over the knowledge base with different classifiers.

The paper is structured as follows: in the next section concepts and approaches
related to process discovery and recommendation of discovery algorithms are
presented. In Sect. 3, phases of the recommendation procedure, followed by a
description of the creation process of the knowledge base are presented. In Sect. 4,
experimental results of the classification based recommendation and their respec-
tive analysis are provided. A set of current techniques and approaches to assess
and recommend discovery algorithms are discussed in Sect.5. Finally, the last
section is devoted to conclusions and outlines for future work.

2 Recommendation of Process Discovery Algorithms

A process discovery algorithm constructs a process model starting from an event
log. An event is the occurrence of an activity of a process and a trace is a non-
empty finite sequence of events recorded during one execution of such process.
So, an event log is a multi-set of traces belonging to different executions of the
same process.

Obtaining a quality model is the main goal of a process discovery algorithm.
There are various metrics and approaches for estimating process model quality,
though there is a consensus on the following quality criteria [1]:

— Fitness: The model should allow the behavior present in the event log.
— Precision: The model should not allow a behavior unrelated to the one stored
in the log.
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— Generalization: The model should generalize the behavior present in the log.
— Simplicity: The model should be as simple as possible. Also referred as struc-
ture, is influenced by the vocabulary of modeling language.

These criterion compete among them due to the inverse relationship between
generalization and precision. A too general model could lead to allow much more
behavior than the one presents in the log, it is also known as underfitting model.
On the contrary, a too precise or overfitting model is undesirable. The right
balance between overfitting and underfitting is called behavioral appropriateness.
The structural appropriateness of a model refers to its ability to clearly reflect the
performance recorded with the minimal possible structure [8]. A quality model
requires both, behavioral appropriateness and structural appropriateness [9].

In order to obtain a quality model, a discovery algorithm should tackle several
challenges related to event logs characteristics. Heterogeneity of data sources
from real environments, can lead to difficult cases for discovery algorithms [10].
Infrequent traces and data recorded incompletely and/or incorrectly can induce
wrong interpretations of process behavior. Moreover, data provided by parallel
branches and ad-hoc changed instances generate complex sequences on event
logs, this creates traces that are harder to mine.

Process structure is another source of challenges for discovery algorithms.
Presence of control-flow patterns like non-free choices, loops and parallelism
affect the discovery algorithms. For example, algorithms such as a, o™, a# and
o do not support non-free choices [11]. On the other hand, DWS Mining and
a™* can deal with non-free choice but cannot support loops [2].

In order to identify which discovery algorithm allows obtaining suitable mod-
els for particular situations, a set of techniques for algorithms evaluation have
been developed. Performance of these algorithms is determined through evalu-
ation of quality of obtained models. Defined quality metrics are grouped under
two main methods [12]. One method compares the discovered model with respect
to the event log and is called model-log. The other method, called model-model,
assesses similarity between discovered model and a reference model of process.

Evaluation frameworks allow end users to compare the performance of
discovery algorithms through empirical evaluation with quality metrics [4,13].
Moreover, recommending a discovery algorithm for a given event log, based on
empirical evaluation, involves time and resource consumption for each of the algo-
rithms chosen as a possible solution. So, alternative approaches, based on classi-
fication, have been proposed to recommend process discovery algorithms [5,7].

3 Classification of Event Logs for Recommendation
of Process Discovery Algorithms

In this section we evaluate the usefulness of an approach based on classification
to recommend discovery algorithms [7]. Classification is the problem concerning
the construction of a procedure that will be applied to a continuing sequence of
cases, in which each new case must be assigned to one of a set of pre-defined
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classes on the basis of observed attributes or features [14]. An event log on which
is necessary to recommend a discovery algorithm is considered as a new case to
be classified. The recommended algorithm is the pre-defined class to be assigned
to an event log based on its observed features.

Taking into account the challenges for discovery algorithms the classification
mechanism for recommendation of discovery algorithms consider the following
factors:

1. The event log is the main information source that is available in all environ-
ments for process characterization.

2. The peculiarities of event log. must be considered in addition to process char-
acteristics.

3. The results obtained by quality metrics on discovered models provide infor-
mation about performance of process discovery algorithm facing event logs
and process characteristics.

- Publications related to discovery algorithms
- Artificial process models
- Artificial event logs
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Fig. 1. Recommendation of discovery algorithms through event log classification

The stages for classification of event logs in order to recommend process
discovery algorithms can be observed in Fig. 1. It shows that staring point is the
new case to be classified. This new case is composed of event log and the process
features that affect discovery algorithms and desired values for quality metrics
on each quality criterion. The discovery algorithm that could discover a model
for that log with the desired values on quality metrics is the class. The classifiers
are trained in a knowledge base composed by cases with the same structure of
aforementioned case, but labeled with the corresponding discovery algorithm.
The discovery algorithm selected as the class for the new case is recommended
to be applied on the new event log in order to obtain a process model with the
specified quality values.
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Fig. 2. Generation of artificial cases for the knowledge base

3.1 Building the Knowledge Base

A major challenge for this classification problem is the building of a knowledge
base. In order to construct the knowledge base for this problem the following
features were selected to build the cases:

1. The event log features.

2. The process characteristics.

3. The discovery algorithm used to obtain the process model.

4. The quality metrics obtained values based on the discovered model.

The sequence of phases followed to generate the artificial cases for the knowledge
base is presented in Fig.2. The outcome of each phase is used as input to the
following.

The goal of the first and second phases is to obtain the event log and process
features that affect discovery algorithms. In these two phases was used the
Process log generator tool [15]. Using this tool several process models were gen-
erated in a random way. 67 of these process models that combine loops, non-free
choice and invisible tasks were selected for the second phase. These process fea-
tures were considered due to their impact on process discovery algorithms [6].

In order to generate the event logs a factorial complete experimental design
was performed. For this factorial design five classes were considered: noise (C),
noise interval (Cs), loops (Cs), parallelism (Cy) and invisible tasks (C5). Noise
could appear on different proportion of traces on event logs, on this cases 5
different proportions were used: 0, 25, 50, 75, 100. The same stand for noise
interval: 0, 25, 50, 75 and 100 were the distribution used. Control flow patterns
(C5, C4) and invisible tasks (Cs) were considered on a boolean manner. For-
mula 1 was used to calculate the required number of event logs to combine the
aforementioned criteria.

Ficl*CQ*Cg*C4*C5

B _ (1)
F=5%5%2%x2%2=200

Considering results from Formula 1, 201 event logs were generated combining the
five features already stated. One third of these event logs has 500 traces each
one. The second third has 1000 traces on each event log, while the last third has
1500 traces on each one.

On the third phase, discovery algorithms are applied on the generated event
logs. Even there are several discovery algorithms, only five where selected for
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this knowledge base. First criterion used on the selection was that the algorithm
could discover a model on Petri net notation, or another notation that could
be translated to a Petri net. This requirement is related to available quality
metrics, that could be applied only on Petri net models. Performance of discovery
algorithms on real and artificial event logs are considered too.

Therefore, published results about assessment of discovery algorithms
[2,4,6,11] lead us to select the Heuristic Miner [16], ILP Miner [17], Inductive
Miner [18], Genetic Miner [19] and Alpha Miner [20]. All these algorithms are avail-
able as plug-ins on the process mining framework ProM [21]. So, ProM 6.3 was used
to obtain five process model from each event log using every selected algorithm.

The main goal of the last phase in the generation of artificial cases for the
knowledge base is to evaluate the performance of discovery algorithms. One qual-
ity metric was selected for each quality dimension or criterion. So, were selected
fitness [22], ETC [23], ARC Average [22] and Behavioral Generalization [24]. All
these metrics belong to model-log method and are implemented in CoBeFra [25],
a benchmarking tool. Therefore, using the generated event logs and the discovered
models, the values for these quality metrics were obtained using CoBeFra.

Once all the phases were executed the information obtained were used to
create the cases. One case was created for each discovered model. Each case is
represented as a vector ¢; = {at;, aa;, and;, xor;, l;, it;, nd;, ni;, fi, pi, i, Si, DA}
In this vector 7 refers to the ordinal number of the discovered model. The at; and
aa; variables stand for amount of traces and amount of activities in the event
log used to discover the ¢ model. Moreover, and;, xor;, l; and it; refers to the
amount of parallelism, exclusive choice, loops and invisible tasks respectively, in
the process related to the 7 model. The noise distribution and interval on the
event log used to discover the ¢ model are represented as nd; and ni;. Variables
fi, pi, g; and s; express the values of the quality metrics obtained on the 7 model,
related to fitness, precision, generalization and simplicity, respectively. Last but
not least, DA is the discovery algorithm used to create the ¢ model and this is
the class that labeled the case.

Following the aforementioned description, a knowledge base was constructed
with 795 cases. A ProM plug-in was developed to visualize and manage the
knowledge base. This plug-in allows integration with other techniques in ProM.

4 Testing Classifiers

In order to find suitable classifiers for the knowledge base built, a set of well-
known classifiers were trained and assessed. Before training, the data set was
normalized to values between 0 and 1. Results for each classifier training are
presented in Table 1, expressed in terms of Incorrectly Classified Instances (ICI)
and Mean Absolute Error (MAE). Classifiers implementation on WEKA [26]
where used in all cases, with default configuration values.

Based on the results presented on Table 1, seven classifiers were selected:
Classification Via Regression, Multilayer Perceptron, Simple Logistic, Logistic,
J48, Filtered Classifier and MultiClass Classifier. A ProM plug-in was developed
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Table 1. Results of classifiers training

Classifiers Cross-validation | Use training set | Percentage split
ICC | MAE ICC | MAE ICC | MAE
Classification via regression | 231 | 0.2956 175 | 0.2644 80 |0.3042
Multilayer perceptron 259 10.3329 196 |0.2822 89 |0.332
Simple logistic 264 |0.3547 257 0.3421 87 10.3529
Logistic 286 |0.3411 266 | 0.3314 103 10.348
PART 309 |0.357 216 | 0.3282 136 | 0.3761
J48 317 10.3475 273 10.3278 103 |0.359
OneR 325 |0.4521 289 | 0.4263 103 | 0.4389
Bayes net 334 |0.3724 334 10.3671 97 |0.3454
Filtered classifier 343 10.3631 201 | 0.3508 135 10.3612
MultiClass classifier 343 |0.3797 334 |0.3752 126 |0.3813
IBK 452 | 0.5317 280 | 0.4186 158 |0.5389
Naive bayes 452 10.4234 474 10.4135 168 |0.4254
K* 495 |0.4329 525 |0.4329 208 |0.4334

Table 2. Execution times for empirical evaluation and classification of new event logs

Event log | Case vector Empirical Classification
evaluation

1 c1 = {500,26,2,4,1,0,0,50,1,1,1,1,?} | 12h 22m 43s| 10s

2 o = {1000,17,1,2,1,2,25,75,1,1,1,1,7} | 1h 30m 8s | 9s

3 cs = {1500,18,2,1,2,2,0,75,1,1,1,1,?} | 25h 26m 53s| 15s

4 ca = {500,25,4,1,0,0,100,25,1,1,1,1,7} | 37h 10m 23s| 40s

5 cs = {500,25,6,9,2,2,25,25,1,1,1,1,?} | 14h 24m 48s| 10s

to integrate the WEKA implementation of these classifiers into ProM. Using this
classification plug-in, the classifiers could be trained in ProM with the previously
mentioned knowledge base. With the trained classifiers, the plug-in enables the
recommendation of discovery algorithms through classification of new cases.

Five new event logs were generated to assess the recommendation provided by
the classification plug-in developed. Empirical evaluation of discovery algorithms
on these event logs were used as reference for this assessment. Starting from the
features of these event logs, five new cases were prepared (Table2). Each case
has the structure ¢; = {at;, aa;, and;, xor;, l;, it;,nd;, ni;, f;, i, gi, 8i, DA}.

Recommendation through classification means a significant time improve-
ment with respect to empirical evaluation, as can be seen in Table 2. Besides,
for each event log (with the exception of event log 4) the class proposed by six
of the seven classifiers match with the discovery algorithm with best results on
empirical evaluation.
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Heuristics Miner was the only algorithm with quality values distinct from 0
in empirical evaluation of event log 4. This result only matches with the class
obtained by three classifiers, because other four proposed Alpha Miner and the
remaining propose Inductive Miner. Discovery algorithms were impacted by the
high level of noise distribution in this event log (ndy = 100). Models obtained
from this kind of logs are incomprehensible and have very low values on quality
metrics. This situation could be the explanation for mismatching of classifiers
with event log 4. Nevertheless, further experimentation with highly noisy event
logs is required to prove this hypothesis.

5 Related Work

Evaluation frameworks allow end users to compare the performance of discov-
ery algorithms through empirical evaluation [13]. But, using this framework as a
recommendation mechanism is not suitable due to the cost involved on empirical
assessments of discovery algorithms. Following the model-log method, another
evaluation framework, that includes a parameter optimization step, has been
proposed [4]. Nevertheless, the negative examples generation created serious per-
formance problems in the experiments with complex event logs [4].

Other proposed solution is based on selecting reference models of high qual-
ity and building from these a regression model to estimate the similarity of other
process models [5]. Created serious performance problems However, this app-
roach needs reference models for the evaluation and prediction, a requirement
that severely limits its application. In multiple real-world environments, where
discovery algorithms need to be applied, the process models are not described or
are inconsistent and/or incomplete. Besides, this solution assumes that the actual
execution of the processes keeps a close relationship with their reference models.
But, inexact results can be expected in contexts where features of the actual logs
differ from logs artificially generated by the reference models. Furthermore, the
construction of a regression model from process model features discards issues
such as noise and lack of information on event logs. These issues have a signifi-
cant impact on the performance of discovery algorithms.

6 Conclusions and Future Work

Event logs features and process characteristics affect the performance of process
discovery algorithms. Classical approaches that select discovery algorithms based
on empirical assessments are computationally expensive and time consuming.

This paper evaluates the recommendation of discovery algorithms as a classi-
fication problem. For this purpose, a knowledge base, with artificially generated
cases was built. Cases combine features of event logs and process characteristics
with impact on performance of discovery algorithms. Besides, each case contains
the values of one quality metric from each quality criterion.

Two ProM plug-ins developed allow to train seven well known classifiers over
the knowledge base built. Recommendation of these classifiers match entirely, on
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four from five event logs, with the discovery algorithm with best quality values
on empirical evaluation. In all cases recommendation through classification was
obtained in a significant lower time than through empirical evaluation.

Experimentation with highly noisy logs and multiple classifier systems is

suggested as future work. Besides, research is required to apply the proposed
approach on event logs from real environments. In this context, low level patterns
such as indirect successions and repeated events could be used to extract process
characteristics from real event logs.
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