Skip to main content

Digital Elevation Models to Improve Soil Mapping in Mountainous Areas: Case Study in Colombia

  • Chapter
Geopedology

Abstract

The demand for more detailed soil and relief information is steadily increasing. However, many countries have only general soil maps at 1:100,000 scale that do not satisfy the requirements needed for applications. This paper shows how geomorphometric analysis from digital elevation models (DEM) can contribute to improve information detail and accuracy and, thus, strengthen soil survey. The study was carried out in a mountainous area of Colombia where various geomorphometric parameters were calculated and a classification of landforms was created. The results can be useful to supplement existing soil studies and meet the information requirements of environmental spatial models, agriculture development, hydrology, land use and conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci 24(1):43–69

    Google Scholar 

  • Böhner J, Conrad O (2012) System for automated geoscientific analyses. Available at: http://www.saga-gis.org/en/index.html

  • Chaplot V, Walter C, Curmi P (2000) Improving soil hydromorphy prediction according to DEM resolution and available pedological data. Geoderma 97(3–4):405–422

    Article  Google Scholar 

  • Daly C, Halbleib M, Smith J, Wayne P, Doggett M, Taylor G, Curtis J, Pasteris P (2008) Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int J Climatol 28:2031–2064

    Article  Google Scholar 

  • Dobos E, Montanarella L (2007) The development of a quantitative procedure for soilscape delineation using digital elevation data for Europe. In: Lagacherie P, McBratney AB, Voltz M (eds) Developments in soil science, vol 31. Elsevier, Amsterdam, pp 107–118

    Google Scholar 

  • Dobos E, Micheli E, Baumgardner M, Biehl L, Helt T (2000) Use of combined digital elevation model and satellite radiometric data for regional soil mapping. Geoderma 97(3–4):367–391

    Article  Google Scholar 

  • FAO (2007) Land evaluation. Towards a revised framework. Land and water discussion paper 6. FAO, Rome

    Google Scholar 

  • Florinsky IV (2012) Digital terrain analysis in soil science and geology. Elsevier, Amsterdam

    Google Scholar 

  • Gessler PE, Moore ID, McKenzie NJ, Ryan PJ (1995) Soil-landscape modeling and spatial prediction of soil attributes. Int J GIS 9(4):421–432

    Google Scholar 

  • Holdridge LR (1982) Life zone ecology. Tropical Science Center, San José

    Google Scholar 

  • IGAC (2009) Estudio general de suelos y zonificación de tierras del departamento del Cauca. Instituto Geográfico Agustin Codazzi, Bogotá

    Google Scholar 

  • Jacobsen K (2007) Manual of program system BLUH. Institute of Photogrammetry and Geoinformation, Leibniz University, Hannover

    Google Scholar 

  • Jenny H (1994) Factors of soil formation: a system of quantitative pedology. Dover Publications, Toronto

    Google Scholar 

  • Jiangui L, Patteya E, Nolin M, Miller JR, Kab O (2008) Mapping within-field soil drainage using remote sensing, DEM and apparent soil electrical conductivity. Geoderma 143(3–4):261–272

    Google Scholar 

  • Kirkby MJ, Chorley RJ (1976) Through flow, overland flow and erosion. Bull Int Assoc Sci Hydrol 12:5–21

    Article  Google Scholar 

  • Köthe R, Gehrt E, Böhner J (1996) Automatische Reliefanalyse für geowissenschaftliche Anwendungen. Derzeitiger Stand und Weiterentwicklungen des Programms SARA. Arbeitshefte Geol 1:31–37

    Google Scholar 

  • Martínez LJ (2006) Modelo para evaluar la calidad de tierras: caso del cultivo de papa. Agron Colomb 24(1):96–110

    Google Scholar 

  • Martínez LJ, Munar O (2010) Digital elevation models as data source for land suitability analysis in Colombia. In: Reuter R (ed) Remote sensing for science, education, and natural and cultural heritage. EARSeL- European Association of Remote Sensing Laboratories, Paris, pp 641–647

    Google Scholar 

  • Munar OJ, Martínez LJ (2014) Relief parameters and fuzzy logic for land evaluation of mango crops (Mangifera indica L.) in Colombia. Agron Colomb 32(2):246–254

    Article  Google Scholar 

  • Olaya V, Conrad O (2009) Geomorphometry with SAGA. In: Hengl T, Reuter H (eds) Geomorphometry: concepts, software, applications. Elsevier, Amsterdam, pp 293–308

    Chapter  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11:1633–1644

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry – diversity in quantitative surface analysis. Prog Phys Geogr 24:1–20

    Google Scholar 

  • Pike RJ, Evans IS, Hengl T (2008) Geomorphometry: a brief guide. In: Hengl T, Reuter H (eds) Geomorphometry: concepts, software, applications. Elsevier, Amsterdam, pp 1–28

    Google Scholar 

  • Quinn PF, Beven K, Chevallier P, Planchon O (1991) The prediction of hillslope paths for distributed hydrological modeling using digital terrain model. Hydrol Process 5:59–79

    Article  Google Scholar 

  • Romstad B, Etzelmüller B (2012) Mean-curvature watersheds: a simple method for segmentation of a digital elevation model into terrain units. Geomorphology 139:293–302

    Article  Google Scholar 

  • Ruiz Arias JA, Tovar J, Pozo D, Alsamamra H (2009) A comparative analysis of DEM-based models to estimate the solar radiation in mountainous terrain. Int J Geogr Inf Sci 23(8):1049–1076

    Article  Google Scholar 

  • Smith M, Zhu A, Burt J, Stiles C (2006) The effects of DEM resolution and neighborhood size on digital soil survey. Geoderma 137(1–2):58–69

    Article  Google Scholar 

  • Su H, Kanemasu E, Ransom M, Yang S (1990) Separability of soils in a tallgrasss prairie using SPOT and DEM data. Remote Sens Environ 33(3):157–163

    Article  Google Scholar 

  • US Geological Survey (1993) Digital elevation models – data users guide, 5th edn. Reston, Virginia

    Google Scholar 

  • Valbuena C, Martínez LJ, Henao R (2008) Variabilidad espacial del suelo y su relación con el rendimiento de mango (Mangifera indica L.). Rev Bras Frutic 30(4):1146–1151

    Article  Google Scholar 

  • Venables WN, Ripley B (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Wu S, Lib J, Huang GH (2008) A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Appl Geogr 28:210–223

    Article  Google Scholar 

  • Zhou Q, Liu X (2004) Analysis of errors of derived slope and aspect related to DEM data properties. Comput Geosci 30(4):369–378

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to the Research Division (DIB) of the Universidad Nacional de Colombia for financial support to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. J. Martinez Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez Martinez, L.J., Muñoz, N.A.C. (2016). Digital Elevation Models to Improve Soil Mapping in Mountainous Areas: Case Study in Colombia. In: Zinck, J.A., Metternicht, G., Bocco, G., Del Valle, H.F. (eds) Geopedology. Springer, Cham. https://doi.org/10.1007/978-3-319-19159-1_22

Download citation

Publish with us

Policies and ethics