
A Novel Top-Down Approach
for Clustering Traces

Yaguang Sun(B) and Bernhard Bauer

Programming Distributed Systems Lab, University of Augsburg,
Augsburg, Germany

{yaguang.sun,bernhard.bauer}@informatik.uni-augsburg.de

Abstract. In the last years workflow discovery has become an impor-
tant research topic in the business process mining area. However, existing
workflow discovery techniques encounter challenges while dealing with
event logs stemming from highly flexible environments because such logs
contain many different behaviors. As a result, inaccurate and complex
process models might be obtained. In this paper we propose a new tech-
nique which searches for the optimal way for clustering traces among
all of the possible solutions. By applying the existing workflow discovery
techniques on the traces for each discovered cluster by our method, more
accurate and simpler sub-models can be obtained.

Keywords: Business process mining · Trace clustering · Greedy
algorithm · Business process extension

1 Introduction

Business process mining techniques aim at discovering, monitoring and improv-
ing real processes by extracting knowledge from event logs recorded by enterprise
information systems [1]. In general, current process mining techniques mainly
consider three perspectives: workflow discovery, conformance checking and pro-
cess extension [2]. The starting point of these analyses is usually an event log
which is a set of cases, where each case is an instance of a business process.
Every case in an event log has an attribute trace which is a set of ordered
events. Cases and events are uniquely identified in the event log by case id and
event id respectively. Additionally, typical event logs may contain much more
process information, e.g., the performer and cost of each event.

However, in the real world many business processes are often executed in
highly flexible environments, e.g., healthcare, customer relationship manage-
ment (CRM) and product development [3]. As a result, the existing business
process mining techniques might generate inaccurate and impalpable analysis
results while dealing with event logs (real-life logs) stemming from such flexible
environments. The problem is largely due to the dense distribution of cases with
a high variety of behaviors in the real-life event log.

As one of the most crucial learning task in the business process mining area,
the current workflow discovery techniques also encounter great challenges in the
c© Springer International Publishing Switzerland 2015
J. Zdravkovic et al. (Eds.): CAiSE 2015, LNCS 9097, pp. 331–345, 2015.
DOI: 10.1007/978-3-319-19069-3 21

332 Y. Sun and B. Bauer

Fig. 1. Illustration of the basic trace clustering procedure in process mining

scenario of real-life event logs. For instance, “spaghetti-like“ business process
models might be generated by existing process discovery algorithms with an
input of real-life event log [2]. Such models are often inaccurate and too com-
plex to be well interpreted. Accordingly, some pioneering approaches have been
developed to solve this problem. One efficient technique is trace clustering [3–7]
which mines the structural behaviors1 of traces (trace behaviors) in an event log
and then groups the traces with similar behaviors into the same sub-log. After-
wards, by applying workflow discovery algorithms on each simpler sub-log, more
accurate and comprehensible process models can be obtained. Figure 1 shows
the basic procedure for trace clustering.

Nevertheless, most currently available trace clustering techniques treat all of
the trace behaviors captured in the event log equally. As a result, the impacts of
some important trace behaviors are reduced. Moreover, these techniques focus
mainly on the discovery of various kinds of trace behaviors while the qual-
ity of the underlying process model for each cluster learned is not taken into
account [3]. Hence, high-quality sub-process models from these trace cluster-
ing techniques can not be guaranteed. A promising method called Active Trace
Clustering (ATC) was put forward in [3] which directly optimises the accuracy
of each cluster’s underlying process model. However, ATC only considers model
accuracy metrics while the complexity of process models is neglected during
trace clustering. The complexity of process models is also a very important met-
ric and should not be ignored for trace clustering. Because a highly accurate
process model can still be very complicated.

1 Most trace clustering techniques only consider the structural behaviors of traces,
while some consider the behaviors from both traces and other case attributes.

A Novel Top-Down Approach for Clustering Traces 333

In this paper, the trace clustering problem is surveyed from a new perspective
and redefined as an issue of searching for a global optimal solution in a solution
space. The proposed technique employs a greedy strategy for searching for the
optimal way to cluster the traces in an event log based on a specific model eval-
uation schema that considers both the accuracy and complexity of the potential
sub-process models during the run time:

- The problem addressed by this paper is discussed in Section 2.
- Section 3.2 formalises definitions related to trace behaviors firstly. After-

wards, four different kinds of trace behaviors are defined for helping cluster
the traces.

- In Section 3.3, a top-down approach is put forward which identifies the opti-
mal solution for the trace clustering problem.

- To test the efficiency of our method, we carry out a case study in Section 4
by applying our approach to a real-life event log of the loan and overdraft
approvals process from Business Process Intelligence Challenge 2012 (BPIC
2012).

2 Problem Description

Under certain conditions, an inaccurate and complex business process can be
divided into several simpler and more accurate sub-processes where each sub-
process performs some unique functions reflected by certain specific sub-process
constructional behaviors. These behaviors can be recorded in the event log after
the execution of the sub-process and expressed through the structural behav-
iors of traces (trace behaviors). In this paper, the trace behaviors that adhere
to a more accurate and simpler sub-process model compared with the original
model (generated by using the original event log) are called significant behaviors
(defined in Section 3.2). Discovering these significant trace behaviors from the
event log will assist in mining better sub-process models by clustering the traces
based on these behaviors. However, due to the lack of domain knowledge about
the significant trace behaviors, capturing them directly from the event log seems
to be a difficult task.

In this paper, we transform the traditional trace clustering problem into the
problem of finding the optimal way for clustering the traces among all possible
solutions. As shown in Figure 2, each element in the solution space represents
one strategy for clustering the traces from an event log into several subsets
of traces. A best solution is defined as a solution which is able to divide the
traces in the original event log into several subsets where the overall quality of
the underlying sub-models for these subsets is optimal. Given a process model
evaluation schema, how to find the optimal solution for clustering the traces
from an event log is the main problem that this paper is going to solve.

In this paper, we propose a new technique which inherits the basic ideas of
traditional trace clustering techniques and ATC for discovering the optimal way
of clustering the traces. This technique considers both the behaviors of traces
and the accuracy and complexity of each potential sub-process model during the
mining procedure for the optimal solution.

334 Y. Sun and B. Bauer

Fig. 2. The process for searching for the optimal solution for clustering traces

3 Approach Design

In this section we propose a new trace clustering technique which differs from
existing correlative techniques because it searches for an optimal way for cluster-
ing the traces among all of the possible solutions. Four kinds of trace behaviors
defined in Section 3.2 provide a basis for this technique to carry out the searching
process.

3.1 Notation

Before introducing our method, we discuss some of the important basic concepts
and notations. Let I be the set of all items, S be the set of all finite sequences
over I. A sequence Sj ∈ S of length n is denoted <ij1, ij2, . . . , ijn>, where each
item ijk represents an item from I. For any two sequences α =< a1, a2, . . . , al >
and β =< b1, b2, . . . , bq > from S, α is a subsequence of β, denoted as α � β,
if 1 ≤ p1 < p2 < · · · < pl ≤ q such that a1 = bp1 , a2 = bp2 , . . . , al = bpl

.
Let SC be the set of event logs, ST be the set of all sets of traces from SC,

Ω : ST → SΥ be a workflow discovery algorithm, where SΥ is the set of process
models. Σ : (SΥ, ST) → SV represents a process model evaluation schema with
an input of process model and a set of traces and an output of assessed value
from SV (the set of all possible values output by Σ).

Let D be a database of sequences, for a given minimum support min sup
(0 < min sup < 1), a sequence λ is called a sequential pattern if support(λ) ≥
min sup · |D|, where support(λ) is the number of sequences in D which contain
λ and |D| represents the total number of sequences in D. The set of sequen-
tial patterns, SP , contains all of the subsequences from D whose support values
are no less than min sup. The set of closed sequential patterns is defined as
CSP = {α|α ∈ SP and �β ∈ SP such that α � β and support(α) = support(β)}.

Γ : SD
smin sup−→ SCSP represents a closed sequential pattern mining algorithm,

where SD is the set of all databases of sequences, SCSP is the set of all sets
of closed sequential patterns and smin sup is the set of all possible minimum

A Novel Top-Down Approach for Clustering Traces 335

supports. CSP effectively decreases the total number of sequential patterns gen-
erated but in the meantime preserves the complete information about all the
sequential patterns. Additional information related to sequential pattern mining
techniques can be found in [8,9].

In [10], the authors make some pioneering researches on identifying the factors
that influence the comprehensibility of a business process model expressed as
Petri net [11]. These factors primarily include the number of control-flows and
the number of components (such as and-joins, and-splits, xor-joins, xor-splits,
arcs, places and transitions, etc.) in the process model. Based on this previous
research the authors of [3] develop an effective metric called Place/Transition
Connection Degree (PT-CD) for quantifying the complexity of a Petri net. Let
|a| be the total number of arcs in the process model, |P | be the number of places
and |T | be the number of transitions, the PT-CD is defined as [3]:

PT −CD =
1
2

|a|
|P | +

1
2

|a|
|T | (1)

The greater the PT-CD is, the more complicated the model will be. In this
paper we employ the Heuristics Miner (HM) [12] for generating the process
models because HM is well designed to deal with real-life event logs and also
has a good computational performance. Then the Heuristic Net to Petri Net
plugin in ProM2 is used for transforming the heuristic net output by the HM
into a Petri Net. Afterwards, the PT-CD is used for evaluating the complexity
of the Petri Net obtained.

3.2 Concepts Related to Trace Behaviors

Traces are generated performing a specific category of functions determined by
business process-based domain criterion. Such criteria can be very diverse, e.g.,
presence or absence of activities, presence or absence of combinations of activi-
ties [3]. These underlying criteria are recorded in the event log and reflected by
certain compositional behaviors of traces (trace behaviors). In the first step our
technique searches for the structural behaviors of traces in an event log, then
according to the identified trace behaviors the optimal solution searching process
is carried out.

Trace Behaviors and Significant Trace Behaviors. Given a closed sequen-
tial pattern mining algorithm Γ and a minimum support min sup, the set of
trace behaviors TB from an event log C is defined as:

Definition 1. TB = {tb|tb ∈ Γ (TC , min sup)}, where TC is the set of traces
from C.

According to Definition 1, a trace behavior tb is equivalent to a frequent
pattern mined from TC . In our opinion, certain frequently appeared subsequences
2 http://www.promtools.org.

http://www.promtools.org.

336 Y. Sun and B. Bauer

among traces in an event log are able to reveal some particularly important
criteria of business processes and can help distinguish sub-process models with
different functions hidden in the event log. Another benefit of utilising sequential
patterns is that they can not only represent consecutive structural behaviors of
traces, but inconsecutive trace behaviors as well. For instance, given an event
log Ce that contains a set of traces TCe

= {<A, C, D, E >,<A, C >,<A, E >}
and a minimum support min sup = 0.4, the set of trace behaviors TB = {<A>,
< A, C >,< A, E >} can be discovered, the sequential pattern < A, C > is a
consecutive trace behavior because activity C always appears right next to A
in a trace, and < A, E > is an inconsecutive trace behavior because activity A
and E may appear in a trace discretely. However, most existing pattern-based
trace clustering techniques are only able to capture consecutive trace behaviors
in an event log. Moreover, employing frequent patterns is also in accordance with
the main idea of most advanced process discovery techniques: only the frequent
structures should be considered in the process mining procedure [2].

Additionally, we classify the behaviors of traces from a real-life event log into
significant behaviors and nonsignificant behaviors. Let TC be a set of traces from
the event log C, tb is a trace behavior discovered from C, C1 ⊆ C is the sub-log
of C, where TC1 consists of all of the traces with a subsequence tb, C2 ⊆ C
is the sub-log of C where TC2 contains all of the traces without a subsequence
tb, VC = Σ(Ω(TC)), VC1 = Σ(Ω(TC1)) and VC2 = Σ(Ω(TC2)) are the assessed
values obtained by performing the process model evaluation schema Σ on the
process models for TC , TC1 and TC2 . The significant behavior is conveyed by the
following definition:

Definition 2. For a given minimum threshold μ, the trace behavior tb ∈ TB
is called a significant trace behavior (STB) if ((VC1 + VC2)/2 − VC)/VC � μ,
otherwise tb is called an insignificant behavior.

As stated in Definition 2, a STB is able to divide the original set of traces
into two subsets that lead to two process models of which the average quality
should be increased by at least μ (a minimum threshold) compared with the
quality of the model generated by utilising the original set of traces.

Sub-Model Improvement for STB. According to Definition 2, the start-
ing point for identifying a STB is a process model evaluation schema Σ. As
mentioned in Section 2, while evaluating a process model both the accuracy
and complexity should be taken into account. Accordingly, the model evaluation
schema Σ should contain two parts: the fitness3 [2] computing schema Σf and
the complexity evaluation schema Σc. Let Ω be a process model mining algo-
rithm, TC be a set of traces from the event log C, a trace behavior tb discovered
from C separates TC into TC1 and TC2 , where C1 and C2 stand for the sub-logs
of C, the sub-model improvement SMI is defined as:

3 Fitness is an important metric for calculating the accuracy of a process model which
quantifies how good the behaviors in the event log can be expressed by the model.

A Novel Top-Down Approach for Clustering Traces 337

SMI(TC1 , TC2 , TC) = α × SMIF (TC1 , TC2 , TC) + β × SMIC(TC1 , TC2 , TC) (2)

SMIF (TC1 , TC2 , TC) =
1
2 (Σf (Ω(TC1)) + Σf (Ω(TC2))) − Σf (Ω(TC))

Σf (Ω(TC))
(3)

SMIC(TC1 , TC2 , TC) =
Σc(Ω(TC)) − 1

2 (Σc(Ω(TC1)) + Σc(Ω(TC2)))
Σc(Ω(TC))

(4)

According to Equation 2, the SMI is composed by two parts. The first part
is related to the model accuracy and the second part is related to the model
complexity. Our technique utilises the ICS fitness [13] and PT-CD for the evalu-
ation of process models. The main reason for using the ICS fitness is that it has
a computationally efficient calculative process and also includes a punishment
schema for an underfitting process model (such models allow for many additional
behaviors that are not registered in the event logs). In Equation 2, α and β rep-
resent the weights for the two parts and meet the condition of α+β = 1. The
values of α and β should be set upon the conditions of accuracy and complexity
of the original model. For instance, if the original model has a good accuracy
but suffers from a bad complexity then the value of β should be set higher than
α and vice versa. According to Definition 2, given a minimum threshold μ, the
trace behavior tb is a STB if SMI(TC1 , TC2 , TC)≥μ.

Strict STB and Conditional Strict STB. The sub-model improvement cri-
terion SMI considers both the fitness and complexity of the process models at
the same time. However, in reality the fitness and complexity of a model are
not associated with each other. The increment of fitness is not always accom-
panied by a decrement of the model complexity and vice versa. For example,
let tb be a trace behavior from the event log C which divides the original set
of traces TC into TC1 and TC2 , pretend that μ = 0.15, α = 0.5, β = 0.5,
SMIF (TC1 , TC2 , TC) = −0.1, SMIC(TC1 , TC2 , TC) = 0.4, according to Equation
2 and Definition 2, the SMI(TC1 , TC2 , TC) = 0.15 is equal to the value of μ so
tb is judged to be a STB. Even though the average fitness of the sub-models for
TC1 and TC2 is decreased, the value of SMI(TC1 , TC2 , TC) augments because the
average complexity of the sub-models is greatly reduced.

To avoid this situation, a stricter definition for STB needs to be developed.
Let stb be a STB mined from a log C which divides the set of traces TC into
TC1 and TC2 , the strict significant trace behavior is defined as follows:

Definition 3. The stb is called a strict significant trace behavior (SSTB) if
SMIF (TC1 , TC2 , TC)≥μf and SMIC(TC1 , TC2 , TC)≥μc, where μf is a minimum
threshold for the average fitness increment of the models for TC1 and TC2 com-
pared with the original model and μc is a minimum threshold for the average
complexity decrement of the models for TC1 and TC2 .

Based on Definition 3, a SSTB satisfies all the conditions for STB, in the
meantime some additional conditions should be fulfilled: both the average fitness
and average complexity of the related sub-models need to be improved to a
certain extent.

338 Y. Sun and B. Bauer

Let Σf be a fitness computing schema, Σc be a complexity computing schema,
Ω be a process model mining algorithm, given a minimum threshold ϕf and a
maximum threshold ϕc:

Definition 4. The trace behavior tb is called a fitness-based conditional strict
STB (FCSTB) if (Σf (Ω(TC1)) + Σf (Ω(TC2)))/2 ≥ ϕf , (SMIC(TC1 , TC2 , TC) ≥
μc ∨ (Σc(Ω(TC1)) + Σc(Ω(TC2)))/2≤ϕc) and SMI(TC1 , TC2 , TC)≥μ.

Definition 5. The trace behavior tb is called a complexity-based conditional
strict STB (CCSTB) if (Σc(Ω(TC1))+Σc(Ω(TC2)))/2≤ϕc, (SMIf (TC1 , TC2 , TC)≥
μf ∨ (Σf (Ω(TC1)) + Σf (Ω(TC2)))/2≥ϕf) and SMI(TC1 , TC2 , TC)≥μ.

The FCSTB is defined to deal with an event log of which the potential model
has a high fitness but an inferior complexity. For instance, let tb be a trace
behavior from the event log C which divides the original set of traces TC into
TC1 and TC2 , pretend that μ = 0.15, α = 0.5, β = 0.5, SMIF (TC1 , TC2 , TC) =
−0.1, SMIC(TC1 , TC) = 0.4, ϕf = 0.9, (Σf (Ω(TC1)) + Σf (Ω(TC2)))/2 = 0.93,
according to Definition 2 and Definition 3, tb is a STB but not a SSTB. However,
even though the average fitness of the sub-models decreases compared to the
original model, it still remains a large value and greater than ϕf . In such a
situation, the effect of tb should not be neglected. A corresponding definition to
FCSTB is complexity-based conditional strict STB (CCSTB) which is defined
in Definition 5. It should also be noticed that a tb can be both the FCSTB and
the CCSTB at the same time.

3.3 A Top-Down Algorithm for Clustering Traces

In this section an algorithm is put forward for finding the optimal way to cluster
the traces in an event log based on the definitions elaborated in Section 3.2.
This algorithm applies a greedy strategy which discovers the best trace behavior
(that is either a SSTB or a FCSTB or a CCSTB) for splitting the original set
of traces for each stage according to the value of SMI. Let Π(TB, T, θ) be a
trace behavior removing method, TB represents a set of trace behaviors mined
from the set of traces T , a trace behavior tb ∈ TB is able to divide T into two
subsets: T1 (contains the traces with a subsequence tb) and T2 (contains the
traces without a subsequence tb), if |T1| ≤ θ or |T2| ≤ θ then tb is removed from
TB. In our technique θ stands for a minimum number of traces for each cluster.
A trace behavior that leads to a cluster with a number of traces less than θ will
not be considered. Given a workflow discovery algorithm Ω, a closed sequential
pattern mining algorithm Γ , a process model fitness evaluation schema Σf and
a process model complexity evaluation schema Σc, the details of our method is
described in Algorithm 1.

To prevent the tendency of our technique to generate the clusters containing
too few traces (too few traces means a very simple model), a minimum size θ
of each potential cluster is requested to be set before starting the algorithm.
Steps 4−9 in Algorithm 1 check the number of traces in the original trace set
and if there is no way to divide the trace set so that the sizes of both the subsets

A Novel Top-Down Approach for Clustering Traces 339

Algorithm 1. Discovering the best solution for clustering traces (DBSCT)
Input: a set of traces TC from event log C, the set of closed sequential patterns

CSP ← Γ (TC , min sup) mined from TC with a minimum threshold min sup, the
fitness weight α and complexity weight β for SMI, the minimum threshold μ for
STB, the minimum thresholds μf and μc for SSTB, the minimum threshold ϕf

for FCSTB, the maximum threshold ϕc for CCSTB, the minimum size θ for each
cluster.
Let N , Nleft and Nright be the nodes for a binary tree.
Let TB be a set of trace behaviors.
Let l be an array and length(l) = 4.
Let Φ be an algorithm which searches for the best trace behavior for splitting the
original set of traces, the details about Φ is shown in Algorithm 2.

1: N ← Null # create a node N
2: Nleft ← Null # Nleft is the left child node of N
3: Nright ← Null # Nright is the right child node of N
4: l ← Null
5: if |TC | ≥ 2θ then
6: TB = TB ∪ Π(CSP, TC , θ)
7: else
8: return N ← (TC , Ω(TC), Σf (Ω(TC)), Σc(Ω(TC))

label node N with a set of traces T , a process model Ω(T) and
the quality information Σf (Ω(T)) and Σc(Ω(T))

9: end if
10: l ← Φ(TB, TC , α, β, μ, μf , μc, ϕf , ϕc)
11: if l[trace behavior] = Null then
12: return N ← (TC , Ω(TC), Σf (Ω(TC)), Σc(Ω(TC)))
13: else
14: Nleft ← DBSCT (l[trace set1], CSP, α, β, μ, μf , μc, ϕf , ϕc, θ)
15: Nright ← DBSCT (l[trace set2], CSP, α, β, μ, μf , μc, ϕf , ϕc, θ)
16: end if
17: return N ← (TC , Ω(TC), Σf (Ω(TC)), Σc(Ω(TC)))
Output: a binary tree bt with a root node N

generated are larger than or equal to θ then the algorithm stops. Afterwards, the
trace behaviors discovered in step 6 are filtered and all the trace behaviors that
can’t lead to a valid division of the original trace set according to the minimum
size rule are removed. Step 10 searches for the best trace behavior among all of
the behaviors found in step 6 through the algorithm Φ depicted in Algorithm 2.
A best trace behavior is defined as a behavior (either a SSTB or a FCSTB or a
CCSTB) which can help generate a maximum sub-model improvement SMI as
shown in the steps 12−13 in Algorithm 2. The main reason to set the parameter
SMI is: if the average quality of the sub-models can’t be improved to a certain
extent based on the division procedure compared with the quality of the original
model, then it is not worth making the division (this requirement stems from
the consideration for the balance between the integrity and the quality of the
process model). Algorithm 1 takes a greedy strategy for clustering the traces
step by step, the same procedure continues on the subsets of traces generated by

340 Y. Sun and B. Bauer

Algorithm 2. Searching for the best trace behavior (Φ)
Input: a set of trace behaviors TB, a set of traces T , the fitness weight α and complex-

ity weight β for SMI, the minimum threshold μ for STB, the minimum thresholds
μf and μc for SSTB, the minimum threshold ϕf for FCSTB, the maximum thresh-
old ϕc for CCSTB.
Let T1, T2 be two sets of traces.
Let p be an array and length(p) = 4.
Let SSTB FCSTB CCSTB be an algorithm which judges if a trace behavior tb
is either a SSTB or a FCSTB or a CCSTB.

1: T1, T2 ← ∅
2: p[trace behavior] ← Null; p[smi] ← −∞; p[trace set1], p[trace set2] ← ∅
3: for each trace behavior tb ∈ TB do
4: for each trace t ∈ T do
5: if tb � t then
6: T1 = T1 ∪ {t} # tb is a subsequence of t
7: else
8: T2 = T2 ∪ {t} # tb is not a subsequence of t
9: end if

10: end for
11: if SSTB FCSTB CCSTB(T1, T2, T, α, β, μ, μf , μc, ϕf , ϕc) then
12: if p[smi] ≤ SMI(T1, T2, T, α, β) then
13: p[smi] ← SMI(T1, T2, T, α, β)
14: p[trace set1] ← T1

15: p[trace set2] ← T2

16: p[trace behavior] ← tb
17: end if
18: end if
19: end for
20: return p
Output: an array p which contains the information about the found trace behavior tb

the present stage as shown in the steps 11−15 in Algorithm 1. Finally, a binary
tree bt is output by Algorithm 1 where each leaf node in bt represents a found
cluster of traces.

3.4 Assumptions

In this paper we assume that the inaccurate and complex business process sub-
jected to our method is able to be divided into several simpler and more accurate
sub-processes where each sub-process carries out some specific functions. These
functions are identified by certain behaviors of traces recorded in the event log.

4 Case Study

We tested the effectiveness of our technique on a real-life event log of the loan and
overdraft approvals process from Business Process Intelligence Challenge 2012

A Novel Top-Down Approach for Clustering Traces 341

(BPIC 2012). This log contains 13087 traces and 36 event classes. A process
model (as shown in Figure 3) which has an ICS fitness equal to 0.9268 and a
Place/Transition Connection Degree (PT-CD) equal to 3.939 is generated by
using the Heuristics Miner on this log.

Fig. 3. Business process model of the loan and overdraft approvals process

Though this mined model has a good fitness, the whole model looks very
complicated because it has a high complexity. So we set the fitness weight α = 0.4
and the complexity weight β = 0.6 for calculating the SMI. The minimum
support min sup for the closed sequential pattern mining algorithm is set to 0.3,
the minimum threshold μ for SMI is set to 0.04, both the minimum thresholds
μf and μc for SSTB are set to 0.02, the minimum threshold ϕf for FCSTB is set
to 0.84, the maximum threshold ϕc is set to 2.5 and the minimum size θ for each
cluster is set to 655 (5% of the total number of traces in the event log). With
these parameters set above, five clusters are generated by our technique. The
weighted average ICS fitness4, the weighted average control flows, the weighted
average PT-CD and the weighted average number of and/xor join/splits for
the process models mined from the traces clustered are calculated and shown in
Table 1. The value on the right of the backslash in Table 1 is for the model mined
by employing the original event log. Through the evaluation results exhibited
in Table 1, we can see that the weighted average fitness of the sub-models from
our technique is higher than the fitness of the original model, in the meantime
the average complexity of these models has been greatly reduced. Such a result
benefits from the thought of a trade-off between the accuracy and complexity in
our technique.

We also compared our technique (OT) to other six trace clustering techniques
which are 3-gram [6], MR and MRA [5], ATC [3], GED [4] and sequence clus-
tering (SCT) [7]. Except for the original event log, four random sub-logs that
contain 60%, 70%, 80% and 90% of the instances from the original log have been
chosen for analysis. The number of clusters for the six trace clustering techniques

4 Let j be the number of clusters, mi denotes the number of traces in cluster i , where
1 ≤ i ≤ j. Let ICS−Fi represents the ICS fitness of the process model for cluster i,

the weighted average ICS fitness is defined as: WAICS−F =
∑j

i=1 mi×ICS−Fi
∑j

i=1 mi
.

342 Y. Sun and B. Bauer

Table 1. Evaluation results for the sub-models from the traces clustered by using our
technique

Weighted average Weighted average Weighted average Weighted Average Time
ICS fitness control flows PT-CD and/xor join/splits (Min)

0.9371/0.9268(raw model) 279/1635 2.87/3.94 55/147 6.8

is set to equal to the number of clusters discovered by our technique. Figure 4
shows the results for the comparison.

(a) W-average ICS Fitness (b) W-average Control Flow

(c) W-average and/xor join/splits (d) W-average PT-CD

Fig. 4. Comparison among different trace clustering techniques

For the entire accuracy of the sub-process models discovered, our technique
and the ATC perform better than other trace clustering techniques. The main
reason is that both our technique and the ATC try to optimise the accuracy
of the potential model for each cluster during the run time. However the ATC
doesn’t consider the complexity of process models during the clustering proce-
dure. As a result, the entire complexity of the sub-process models discovered by
ATC is much higher. The models discovered by utilising our technique are less
complicated than the models mined by other techniques. The sequence cluster-
ing technique performs better than our technique on the evaluation related to
weighted average control flow. Nevertheless, the accuracy of the models mined

A Novel Top-Down Approach for Clustering Traces 343

by the sequence clustering technique is not as good as the accuracy of models
discovered by our technique.

5 Related Work

In the literature, different trace clustering approaches have been put forward
to overcome the negative impacts from high variety of behaviors stored in event
logs. The basic idea is to transform the traces into vectors, then a distance metric
can be defined among traces.

In [6] the authors propose an approach for expressing the traces by profiles so
that a suitable environment can be built for clustering the traces. Each profile is
a set of items that describe the trace from a specific perspective. Five profiles are
recommended in [6] which are activity profile, transition profile, case attributes
profile, event attributes profile and performance profile. By converting the pro-
files defined into an aggregate vector the distance between any two traces can
be measured. One advantage of this technique is that it provides a full range of
metrics for clustering traces.

In [14] the authors point out that a fully complete model (with high fitness)
discovered may support a high variety of behaviors that are not registered in
event log, as a result some significant structural features may be concealed in
the mined model. Such a problem can be dealt with by considering the metric
soundness [2] which measures the percentage of behaviors of the mined model
that are recorded in the log among all of the behaviors supported by the model.
An efficient technique is proposed in [14] which divides the whole process into
a set of distinct sub-processes based on a greedy strategy which makes sure the
further division of a process will lead to another increasingly sound sub-process.
This method can also help solve the problem of high complexity of the initial
model.

Context-aware trace clustering techniques are proposed in [5] and [4]. In [5]
the authors indicate that the feature sets based on sub-sequences of different
lengths are context-aware for the vector space model and can reveal some set
of common functions. Two traces that have a lot of conserved features in com-
mon should be gathered in the same cluster. In [4] the authors present an edit
distance-based approach for distributing traces into clusters such that each clus-
ter consists of traces with similar structural behaviors. The cost of edit operations
is associated with the contexts of activities so that the calculated edit distance
between traces is more accurate.

The sequence clustering technique based on first-order Markov chains is pre-
sented in [7]. This technique learns a potential first-order Markov model for each
cluster through an expectation-maximization algorithm. A sequence is assigned
to a cluster which is able to generate it with higher probability. The technique
proposed in this paper also inherits the idea from sequence clustering, the dif-
ference is our technique represents each cluster with a set of separate sequences
(significant trace behaviors).

In [3] a novel technique for trace clustering is presented which directly opti-
mises the fitness of each cluster’s underlying process model during the run time.

344 Y. Sun and B. Bauer

This method doesn’t consider the vector space model for trace clustering, it sim-
ply discovers the suitable traces for each cluster so that the combined accuracy
of the related models for these clusters is maximised. This method sufficiently
resolves the gap between the clustering bias and the evaluation bias.

6 Conclusion

In this paper we proposed a new trace clustering technique which is able to search
for an optimal solution for clustering the traces from an event log among all of the
possible solutions. This technique considers both the accuracy and complexity of
the potential model for each cluster during the clustering procedure. Through the
results from the experiment we demonstrated the effectiveness of our technique
by comparing it with other six classical trace clustering techniques.

However, the technique presented in this paper encounters challenges on per-
formance while dealing with event logs generated by totally unstructured busi-
ness processes because such processes contain a tremendous number of behaviors.
Our next main research task will be to focus on filtering the trival trace behav-
iors in the event logs so that the performance of our technique can be improved.
In the meantime, we will also validate our methods on some other real-life cases.

References

1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering 47(2), 237–267 (2003)

2. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

3. Weerdt, J.D., vanden Broucke, S., Vanthienen, J., Baesens, B.: Active Trace Clus-
tering for Improved Process Discovery. IEEE Transactions on Knowledge and Data
Engineering 25(12), 2708–2720 (2013)

4. Bose, R.P.J.C., van der Aalst, W.M.P.: Context aware trace clustering: towards
improving process mining results. In: SIAM International Conference on Data Min-
ing, pp. 401–402 (2009)

5. Bose, R.P.J.C., van der Aalst, W.M.P.: Trace clustering based on conserved pat-
terns: towards achieving better process models. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 170–181. Springer, Heidelberg
(2010)

6. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace clustering in process min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) Business Process Management
Workshops. LNBIP, vol. 17, pp. 109–120. Springer, Heidelberg (2009)

7. Ferreira, D., Zacarias, M., Malheiros, M., Ferreira, P.: Approaching process mining
with sequence clustering: experiments and findings. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 360–374. Springer,
Heidelberg (2007)

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
(August 2000)

A Novel Top-Down Approach for Clustering Traces 345

9. Shengnan, C., Han, J., David, P.: Parallel mining of closed sequential patterns. In:
KDD 2005 Proceedings of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery in Data Mining, pp. 562–567. ACM, New York

10. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: BIS, pp. 142–153 (2008)

11. van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management.
The J. Circuits, Systems and Computers 8(1), 21–66 (1998)

12. Weijters, A.J.M.M., van der Aalst, W.M.P., Alves de Medeiros, A.K.: Process
Mining with the Heuristics Algorithm. TU Eindhoven, BETA Working Paper Series
166 (2006)

13. de Medeiros, A.A.: Genetic Process Mining. Ph.D. thesis, Eindhoven University of
Technology (2006)

14. Greco, G., Guzzo, A., Pontieri, L.: Discovering Expressive Process Models by Clus-
tering Log Traces. IEEE Transactions on Knowledge and Data Engineering 18(8),
1010–1027 (2006)

	A Novel Top-Down Approach for Clustering Traces
	1 Introduction
	2 Problem Description
	3 Approach Design
	3.1 Notation
	3.2 Concepts Related to Trace Behaviors
	3.3 A Top-Down Algorithm for Clustering Traces
	3.4 Assumptions

	4 Case Study
	5 Related Work
	6 Conclusion
	References

