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Abstract. A major challenge in information management today is the
integration of huge amounts of data distributed across multiple data
sources. A suggested approach to this problem is ontology-based data
integration where legacy data systems are integrated via a common ontol-
ogy that represents a unified global view over all data sources. However,
data is often not natively born using these ontologies. Instead, much data
resides in legacy relational databases. Therefore, mappings that relate
the legacy relational data sources to the ontology need to be constructed.
Recent techniques and systems that automatically construct such map-
pings have been developed. The quality metrics of these systems are,
however, often only based on self-designed benchmarks. This paper intro-
duces a new publicly available benchmarking suite called RODI , which
is designed to cover a wide range of mapping challenges in Relational-
to-Ontology Data Integration scenarios. RODI provides a set of differ-
ent relational data sources and ontologies (representing a wide range of
mapping challenges) as well as a scoring function with which the perfor-
mance of relational-to-ontology mapping construction systems may be
evaluated.
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1 Introduction

Data integration is a big challenge in industry, life sciences, and the web, where
data has not only reached large volumes, but also comes in a variety of formats.
Integration increases the utility of data, it provides a unified access point to
several databases and allows to analyse them, e.g., by correlating their data and
identifying important patterns [3,5].

One of the major challenges in the integration task is to address the het-
erogeneity of data. A promising recent approach to address this challenge is
to use ontologies, semantically rich conceptual models [12], to provide a con-
ceptual integration and access layer on top of databases [27]. The ontology is
‘connected’ to databases with the help of mappings that are declarative specifi-
cations describing the relationship between the ontological vocabulary and the
elements of the database schema.

Ontologies are already available in many domains, and many of them can
naturally be employed to support integration scenarios. For example, in biology
there is the Gene Ontology and in medicine [7] there is the International Clas-
sification of Diseases (ICD) ontology. Another recent example is schema.org, an
ontology to mark up data on the web with schema information. Industrial exam-
ples include NPD FactPages ontology [17,30] created for petroleum domain and
Siemens ontology [15] created for the energy sector.

Mappings, however, cannot easily be reused since they are typically specific
for each source database. Thus, they usually need to be developed from scratch.
Creating and curating relational-to-ontology mappings manually is a process
that often involves an immense amount of human effort [25]. In order to address
this challenge, a number of techniques and systems [10,13,18,22,24,28,32] have
been recently developed to assist in the relational-to-ontology data integration
problem, either in a semi-automatic fashion or by bootstrapping initial map-
pings. However, claims about the quality of the created mappings are only
based on self-designed benchmarks, which make comparisons difficult. While
there already exist some standardized benchmarks or testbeds for data inte-
gration scenarios in data warehousing [26] or for ontology alignment [21], these
benchmarks do not include the mapping challenges that arise from relational-
to-ontology mappings.

In this paper we present a systematic overview of different types of mapping
challenges that arise in relational-to-ontology data integration scenarios. Based
on these types of mapping challenges, we selected existing ontologies and created
corresponding relational databases for our benchmark to have a good coverage
of all types. Moreover, the benchmark queries have been designed such that each
query targets different mapping challenges. That way, the results of the scoring
function for the individual queries can be used to draw inferences on how good
different types of structural heterogeneity are supported by a certain integration
system.
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As the main contribution this paper introduces a new publicly available
benchmarking suite1 called RODI which is designed for Relational-to-Ontology
Data Integration Scenarios. RODI provides researchers with a set of different
relational data sources (schema and data) and ontologies (only schema) that
model data of research conferences (e.g., sessions, talks, authors, etc.). The chal-
lenge of the benchmark is to map the schema elements of the relational database
to the schema elements of the ontology in order to instantiate the ontology. In
addition, the benchmark provides a set of query pairs (i.e., a query over parts
of the database and an equivalent query over the ontology). The idea is that
each of the query pairs targets schema elements that represent different types of
mapping challenges. Moreover, the benchmark also provides a scoring function
to evaluate the quality of the mappings created by a certain tool. For covering
other forms of heterogeneity, our benchmark provides extension points that allow
users to integrate other relational databases, ontologies and test queries.

Thus, RODI is an end-to-end integration benchmark to test different map-
ping challenges. We decided to design an end-to-end integration benchmark
instead of evaluating individual artifacts of the data integration process (i.e.,
correspondences, mappings, ...) since existing systems implement a wide range
of different integration approaches that do not allow a good way of compari-
son. For example, a major difference is that some integration systems directly
map relational databases to ontologies (e.g., IncMap [24]) while other tools first
translate the relational database into an ontology and then apply an ontology
alignment technique (e.g., BootOX [10]) resulting in different artifacts during
the integration process.

The outline of our paper is the following. Section 2 provides a classification
of the different types of mapping challenges. Section 3 gives an overview of our
benchmark and describes the details about the ontologies and relational data-
bases as well as the benchmarking queries and the evaluation procedure. Section 4
illustrates the initial use of our benchmark suite by evaluating four mapping gen-
eration systems. Finally, Sect. 5 summarizes related work and Sect. 6 concludes
the paper.

2 Mapping Challenges

In the following we present our classification of different types of mapping chal-
lenges in relational-to-ontology mapping. As top level of the classification, we
use the standard classification for data integration described by Batini et al. [2]:
naming conflicts, structural heterogeneity, and semantic heterogeneity.

2.1 Naming Conflicts

Typically, relational database schemata and ontologies use different conventions
to name their artifacts even when they model the same domain and thus should

1 Download at: http://www.fluidops.com/downloads/collateral/rodi1.0-2.zip.

http://www.fluidops.com/downloads/collateral/rodi1.0-2.zip
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use a similar terminology. While database schemata tend to use short identifiers
for tables and attributes that often include technical artifacts (e.g. for tagging
primary keys and for foreign keys), ontologies typically use long “speaking”
names. Moreover, names in ontologies include IRIs with prefixes (that refer to a
namespace). Thus, the main challenge is to be able to find similar names despite
the different naming patterns.

Other model differences include the use of plural vs. singular form for entities,
common tokenization schemes, use of synonyms etc. that are not present in other
data integration scenarios (e.g., relational-to-relational or ontology alignment).

2.2 Structural Heterogeneity

The most important differences in relational-to-ontology integration scenarios
compared to other integration scenarios are structural heterogeneities. We dis-
cuss the different types of structural heterogeneity covered by RODI .

Type Conflicts: Relational schemata and ontologies represent the same arti-
facts by using different modeling constructs. While relational schemata use
tables, attributes, as well as constraints, ontologies use modeling elements such
as classes and subclasses (to model class hierarchies), data and object properties,
restrictions, etc. Clearly there exist direct (i.e., naive) mappings from relational
schemata to ontologies for some of the artifacts (e.g., classes map to tables).
However, most real-world relational schemata and corresponding ontologies do
not follow any naive mapping. Instead, the mapping rules are much more com-
plex and there exist big differences (i.e., type conflicts) in the way how the same
concepts are modeled. One reason is that relational schemata are often optimized
towards a given workload (e.g., they are normalized for update-intensive work-
loads or denormalized for read-intensive workloads) while ontologies model a
domain on the conceptual level. Another reason is that some modeling elements
have no direct translation (e.g., class hierarchies in ontologies can be mapped to
relational schemata in different ways). In the following, we list the different type
conflicts covered by RODI :

1. Normalization Artifacts: Often properties that belong to a class in an ontology
are spread over different tables in the relational schema as a consequence of
normalization.

2. Denormalization Artifacts: For read-intensive workloads, tables are often
denormalized. Thus, properties of different classes in the ontology might map
to attributes in the same table.

3. Class Hierarchies: Ontologies typically make use of explicit class hierarchies.
Relational models implement class hierarchies implicitly, typically using one
of three different common modeling patterns (c.f., [8, Chap. 3]). In the fol-
lowing we describe those patterns (see Fig. 1): (1) In one common variant
the relational schema materializes several subclasses in the same table and
uses additional attributes to indicate the subclass of each individual. Those
additional attributes can take the shape of a numeric type column for disjoint
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Fig. 1. Class hierarchies – ontology vs. relational schema

subclasses and/or a combination of several type or role flags for non-disjoint
subclasses. In this case, several classes need to be mapped to the same table
and can be told apart only by secondary features in the data, such as the value
in a type column. (2) Another common way is to use one table per most spe-
cific class in the class hierarchy and to materialize the inherited attributes
in each table separately. Thus, the same property of the ontology must be
mapped to several tables. (3) A third variant uses one table for each class
in the hierarchy, including for possibly abstract superclasses. Tables then use
the same primary key to indicate the subclass relationship. This variant has
a closer resemblance to ontology design patterns. However, it is also rarely
used in practice, as it is more difficult to design, harder to query, impractical
to update and usually considered unnecessary.

Thus, the main challenge is that integration tools should be capable to resolve
different levels of (de-)normalization and different patterns implementing class
hierarchies in a relational schema when mapping a schema to an ontology.

Key Conflicts: In ontologies and relational schemata, keys and references (to
keys) are represented in different ways. In the following, we list the different key
conflicts covered by RODI :
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1. Keys: Keys in databases are often (but not always) explicitly implemented
using constraints (i.e., primary keys and unique constraints). Keys may be
composite and in some cases partial keys of a table identify different related
entities (e.g., denormalized tables on the relational side). Moreover, ontologies
use IRIs as identifiers for individuals. Thus, the challenge is that integration
tools should be able to generate mapping rules for creating IRIs for individuals
from the correct choice of keys.

2. References: A similar observation holds for references. While references are
typically modeled as foreign keys in relational schemata, ontologies use object
properties. Moreover, sometimes relational databases do not model foreign
key constraints at all. In that case an integration tool must be able to derive
references from relational schema (e.g., based on the naming scheme or indi-
viduals).

Dependency Conflicts: These conflicts arise when a group of concepts are
related among themselves with different dependencies (i.e., 1 : 1, 1 : n, n : m)
in the relational schema and the ontology. While relational schemata use foreign
keys over attributes as constraints to model 1-1 and 1-N relationships explic-
itly, they can only model N-M relationships in an implicit way using an addi-
tional connection table. Ontologies, on the other hand, model functionalities (i.e.,
functional properties or inverse functional properties) or they define cardinalities
explicitly using min- and max-cardinality restrictions. However, many ontologies
do not make use of these constraints and thus are often underspecified.

2.3 Semantic Heterogeneity

Besides the usual semantic differences between any two conceptual models of
the same domain, two additional factors apply in relational-to-ontology data
integration: (1) the impedance mismatch between the closed-world assumption
(CWA) in databases and the open-world assumption (OWA) in ontologies;2 and
(2) the difference in semantic expressiveness, i.e., databases may model some
concepts or data explicitly where they are derived logically in ontologies. The
challenge is thus to bridge the model gap. In general, this challenge is inherent
to all relational-to-ontology mapping problems.

3 RODI Benchmark Suite

In the following, we present the details of our RODI benchmark: we first give
an overview, then we discuss the details of the data sets (relational schema and
ontologies) as well as the queries, and finally we present our scoring function to
evaluate the benchmark results.

2 Other notions of impedance mismatch exist (e.g., modeling of values vs. objects).
The OWA/CWA notion is most relevant w.r.t. specific mapping challenges.
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Fig. 2. Overview of the RODI benchmark

3.1 Overview

Figure 2 gives an overview of our benchmark. In its basic version, the benchmark
provides three target ontologies (T-Box only) and different relational source
databases for each ontology (schema and data) varying in the types of mapping
challenges that are covered.

As the primary domain for testing, we chose the conference domain: it is
well understood, comprehensible even for non-domain experts but still complex
enough for realistic testing and it has been successfully used as the domain of
choice in other benchmarks before (e.g., by the OAEI [21]). For each ontology, we
provide different variants of corresponding databases, each focusing on different
types of mapping challenges.

The benchmark asks systems to create mapping rules from the different
source databases to their corresponding target ontologies. We call each such
combination of a database and an ontology a benchmark scenario. For eval-
uation, we provide query pairs for each scenario to test a range of mapping
challenges. Query pairs are evaluated against the instantiated ontology and the
provided databases, respectively. Results are compared for each query pair and
aggregated in the light of different mapping challenges using our scoring function.

In order to be open for other data sets and different domains, our bench-
mark can be easily extended to include scenarios with real-world ontologies and
databases. In our initial version, we already provide one such extension from a
real-world application of the oil and gas domain.

3.2 Data Sources

In the following, we discuss the data sources (i.e., ontologies and relational
schemata) as well as the combinations used as mapping scenarios for the bench-
mark in more details.

Conference Ontologies. The conference ontologies in this benchmark are pro-
vided by the Ontology Alignment Evaluation Initiative (OAEI) [21] and were
originally developed by the OntoFarm project.3 We selected three particular
3 http://nb.vse.cz/∼svatek/ontofarm.html.

http://nb.vse.cz/~svatek/ontofarm.html
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ontologies (CMT, SIGKDD, CONFERENCE), based on a number of criteria:
variation in size, the presence of functional coherences, the coverage of the
domain, variations in modeling style, and the expressive power of the ontol-
ogy language used. In SIGKDD, we have fixed a total of seven inconsistencies
that we discovered in this ontology.

Relational Schemata. We synthetically derived different relational schemata
for each of the ontologies, focusing on different mapping challenges. First, for
each ontology we derived a relational schema that can be mapped to the ontology
using a naive mapping as described in [11]. The algorithm works by extracting
an entity-relationship (ER) model from an OWL DL ontology. It then translates
this ER model into a relational schema according to text book rules (e.g., [8]). We
extended this algorithm to consider ontology instance data to derive more proper
functionalities (rather than just looking at the T-Box as the existing algorithm
did). Otherwise, the generated naive relational schemata would have contained
an unrealistically high number of n : m-relationship tables. The naively trans-
lated schemata of the algorithm are guaranteed to be in fourth normal form
(4NF), fulfilling normalization requirements of standard design practices. Thus,
the naive schemata already include various normalization artifacts as mapping
challenges. Also, all scenarios reflect the kind of semantic heterogeneity that is
inherent to relational-to-ontology mappings.

From each naively translated schema, we systematically created different
variants by introducing different aspects on how a real-world schema may differ
from a naive translation and thus to test different mapping challenges:

1. Adjusted Naming: As described in Sect. 2.1, ontology designers typically con-
sider other naming schemes than database architects do, even when imple-
menting the same (verbal) specification. Those differences include longer vs.
shorter names, “speaking” prefixes, human-readable property IRIs vs. tech-
nical abbreviations (e.g., “hasRole” vs. “RID”), camel case vs. underscore
tokenization, preferred use of singular vs. plural, and others. For each naively
translated schema we automatically generate a variant with identifier names
changed accordingly.

2. Varying Hierarchies: The most critical structural challenge comes with differ-
ent relational design patterns to model class hierarchies more or less implic-
itly, as we have discussed in Sect. 2.2. We automatically derive variants of
all naively translated schemata where different hierarchy design patterns are
presented.

3. Combined Case: In the real world, both of the previous cases (i.e., adjusted
naming and hierarchies) would usually apply at the same time. To find out
how tools cope with such a situation, we also built scenarios where both are
combined.

4. Removing Foreign Keys: Although it is considered as bad style, databases
without foreign keys are not uncommon in real-world applications.
The mapping challenge is that mapping tools must guess the join paths to
connect tables of different entities. Therefore, we have created one dedicated
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Table 1. Scenario combinations

CMT CONFERENCE SIGKDD

Naive (�) (�) (�)

Adjusted naming � � �
Cleaned hierarchies � � �
Combined case (�) (�) �
Missing FKs - � -

Denormalized � - -

scenario to test this challenge with the CONFERENCE ontology and based
it on the schema variant with cleaned hierarchies.

5. Partial Denormalization: In many cases, schemata get partially denormalized
to optimize for a certain read-mostly workload. Denormalization essentially
means that correlated (yet separated) information is jointly stored in the
same table and partially redundant. We provide one such scenario for the
CMT ontology.

Mapping Scenarios. For each of our three main ontologies, CMT, CON-
FERENCE, and SIGKDD, the benchmark includes five scenarios, each with
a different variant of the database schema (discussed before). Table 1 lists the
different versions. All scenarios cover the main semantic challenges and to some
degree also the structural challenges. Renamed scenarios cover the naming con-
flicts challenge. Scenarios with cleaned hierarchies and advanced cases mostly
address structural heterogeneity but also stress the challenge of semantic differ-
ences more than other scenarios. To keep the number of scenarios small for the
default setup, we differentiate between default scenarios and non-default scenar-
ios. While the default scenarios are mandatory to cover all mapping challenges,
the non-default scenarios are optional (i.e., users could decide to run them in
order to gain additional insights). Non-default scenarios are put in parentheses
in Table 1. Similarly, we include scenarios that require mappings of schemata to
one of the other ontologies (e.g., mapping a CMT database schema variant to
the SIGKDD ontology), but do not consider them as default scenarios either.
They represent more advanced scenarios.

Data. In RODI , we provide data to fill both the databases and ontologies, as
all ontologies are provided as empty T-Boxes, only. All data are first generated
as A-Box facts for the different ontologies, and then translated into the corre-
sponding relational data. Actually, for the evaluation it would not be necessary
to generate data for the ontologies. However, this design simplifies the evalua-
tion since all databases can be automatically derived from the given ontologies
as described before. Our conference data generator deterministically produces a
scalable amount of synthetic facts around key concepts in the ontologies, such as
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conferences, papers, authors, reviewers, and others. In total, we generate data for
23 classes, 66 object properties (including inverse properties) and 11 datatype
properties (some of which apply to several classes).

3.3 Queries

We test each mapping scenario with a series of query pairs, consisting of seman-
tically equivalent queries against the instantiated ontology and the provided
databases, respectively.

Each query pair is based on one SPARQL query, which we then translated
into equivalent SQL for each corresponding schema using the same translation
mechanism as used for schema translation. To double-check that queries in each
pair are in fact equivalent, we manually checked result sets on both ends. Queries
are manually curated and designed to test different mapping challenges.

To this end, all query pairs are tagged with categories, relating them to
different mapping challenges. All scenarios draw on the same pool of 56 query
pairs, accordingly translated for each ontology and schema. However, the same
query may face different challenges in different scenarios, e.g., a simple 1 : 1
mapping between a class and table in a naive scenario can turn into a complicated
n : 1 mapping problem in a scenario with cleaned hierarchies. Also, not all query
pairs are applicable on all ontologies (and thus, on their derived schemata).

3.4 Evaluation Criteria

It is our aim to measure the practical usefulness of mappings. We are there-
fore interested in the correctness (precision) and completeness (recall) of query
results, rather than comparing mappings directly to a reference mapping set.
This is important because a number of different mappings might effectively pro-
duce the same data w.r.t. a specific input database. Also, the mere number of
facts is no indicator of their semantic importance for answering queries (e.g., the
overall number of conferences is much smaller than the number of paper sub-
mission dates, yet are at least as important in a query about the same papers).

We therefore define precision and recall locally for each individual test (i.e.,
for each query pair) and use a simple scoring function to calculate averages for
different subsets of tests, i.e., for tests relating to a specific mapping challenge.

Unfortunately, precision and recall cannot be measured immediately by
naively checking results of query pairs tuple by tuple for equality, as different
mappings typically generate different IRIs to denote the same entities. Instead,
we define an equivalence measure that is agnostic of entity IRIs.

In the following, we define tuple set equivalence based on a more general
equivalence of query results (i.e., tuple sets):

Definition 1 (Structural Tuple Set Equivalence). Let V = IRI ∪ Lit ∪
Blank be the set of all IRIs, literals and blank nodes, T = V × ... × V the set of
all n-tuples of V . Then two tuple sets t1, t2 ∈ P(T ) are structurally equivalent
if there is an isomorphism φ : (IRI ∩ t1) → (IRI ∩ t2).
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For instance, {(urn:p-1, ‘John Doe’)} and {(http://my#john, ‘John Doe’)} are
structurally equivalent. On this basis, we can easily define the equivalence of
query results w.r.t. a mapping target ontology:

Definition 2 (Tuple Set Equivalence w.r.t. Ontology (∼O)). Let O be a
target ontology of a mapping, I ⊂ IRI the set of IRIs used in O and t1, t2 ∈ P(T )
result sets of queries q1 and q2 evaluated on a superset of O (i.e., over O plus
A-Box facts added by a mapping).

Then, t1 ∼O t2 (are structurally equivalent w.r.t. O) iff t1 and t2 are struc-
turally equivalent and ∀i ∈ I : φ(i) = i.

For instance, {(urn:p-1, ‘John Doe’)} and {(http://my#john, ‘John Doe’)} are
structurally equivalent, iff http://my#john is not already defined in the target
ontology. Finally, we can define precision and recall:

Definition 3 (Precision and Recall under Tuple Set Equivalence). Let
tr ∈ P(T ) be a reference tuple set, tt ∈ P(T ) a test tuple set and trsub, ttsub ∈
P(T ) be maximal subsets of tr and tt, s.t., trsub ∼O ttsub.

Then the precision of the test set tt is P = |ttsub|
|tt| and recall is R = |trsub|

|tr| .

Table 2. Example results from a query pair asking for author names (simplified)

We observe precision and recall locally on each query test, i.e., based on how
many of the result tuples of each query are structurally equivalent to a reference
query result set. Table 2 shows an example with a query test that asks for the
names of all authors. The corresponding query pair here would be:

SQL: SELECT name FROM persons WHERE person_type = 2.

SPARQL: SELECT ?name WHERE {?p a :Author; foaf:name ?name}).

Result set 1 is structurally equivalent to the reference result set, i.e., it has found all
authors and did not return anything else, so both precision and recall are 1.0. Result
set 2 is equivalent with only a subset of the reference result (e.g., it did not include
those authors who are also reviewers). Here, precision is still 1.0, but recall is only
0.5. In case of result set 3, all expected authors are included, but also another person,
James. Here, precision is only 0.66, but recall is 1.0.

To aggregate results of individual query pairs, a scoring function calculates the
averages of per query numbers for each scenario and for each challenge category. For
instance, we calculate averages of all queries testing 1 : n mappings.
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3.5 Extension Scenarios

Our benchmark suite is designed to be extensible, i.e., additional scenarios can be
easily added. The primary aim of supporting such extensions is to allow actual real-
world mapping challenges to be tested on a realistic query workload alongside our more
controlled default scenarios.

To demonstrate the feasibility of extension scenarios we added and evaluated one
example of an extension scenario in our benchmark suite, based on the data, ontology
and queries from The Norwegian Petroleum Directorate (NPD) FactPages [30]. The
test set contains a small relational database (≈40 MB), but with a relatively complex
structure (70 tables, ≈1000 columns and ≈100 foreign keys), an ontology covering the
domain of the database (with ≈300 classes and ≈350 properties), and 17 query pairs.
The database and ontology are constructed from a publicly available dataset containing
reference data about past and ongoing activities in the Norwegian petroleum industry,
and the queries in the test set are built from real information needs collected from
end-users of the NPD FactPages.

4 Benchmark Results

Setup: In order to show the usability of our benchmark and the usefulness and signifi-
cance of its results, we have performed an initial evaluation with four systems: BootOX
[9,16], IncMap [23,24], morph/MIRROR4 and ontop [29].

(1) BootOX (Bootstrapper of Ox ford) is based on the approach called ‘direct map-
ping’ by the W3C:5, i.e., every table in the database (except for those representing n : m
relationships) is mapped to one class in the ontology; every data attribute is mapped to
one data property; and every foreign key to one object property. Explicit and implicit
database constraints from the schema are also used to enrich the bootstrapped ontology
with axioms about the classes and properties from these direct mappings. Afterwards,
BootOX performs an alignment with the target ontology using the LogMap system [31].
(2) IncMap maps an available ontology directly to the relational schema. IncMap rep-
resents both the ontology and schema uniformly, using a structure-preserving meta-
graph for both. (3) morph/MIRROR (M appIngs for Rdb to Rdf generatOR) is a tool
for generating an ontology and R2RML direct mappings automatically from an RDB
schema. morph/MIRROR has been implemented as a module of the RDB2RDF engine
morph-RDB [28]. (4) ontop is an ontology-based data access system that also includes
a module to automatically compute direct mappings and a simple ontology with the
vocabulary used in the mappings. For the last step of aligning to the target ontology
we have coupled both morph/MIRROR and ontop with LogMap in a similar setup to
the one used in BootOX .

Results: For each of those systems we were running the default scenarios of our bench-
mark (as discussed in Sect. 3). We mainly report overall aggregates but also highlight
some of the most interesting findings in more detail.

Table 3 shows precision, recall and f-measure averaged over all tests for each
scenario. What becomes immediately apparent is that measured quality is relatively
modest. Another surprising observation is that for each system, precision, recall and
f-measure are always the same per scenario. A manual analysis of results has shown,

4 https://github.com/oeg-upm/MIRROR.
5 http://www.w3.org/TR/rdb-direct-mapping/.

https://github.com/oeg-upm/MIRROR
http://www.w3.org/TR/rdb-direct-mapping/
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that the reason for this behavior is linked to the relatively low overall quality: systems
did only solve some of the simpler query tests and those tend to result in atomic answers,
which may be either correct or incorrect, but nothing in-between. For instance, if a query
asks for the number of author instances, the result in either correct (p = r = f = 1.0) or
incorrect (p = r = f = 0.0). Systems did surprisingly well on some tests of medium diffi-
culty, e.g., author names (where, e.g., some other persons could be mistaken for authors)
and scored p = r = f = 1.0 in all cases where they submitted any results at all. For the
most complex queries, where results could be likely in ]0; 1[, systems failed the query tests
completely. We expect this behavior to change as systems improve in general and overall
scores go up.

Best numbers are generally reached for “adjusted naming” scenarios, which are
close to the naive ontology translation and thus schemata resemble their correspond-
ing ontologies most closely. Besides the generic model gap and those, these scenar-
ios only test the challenges of naming conflicts and normalization artifacts. Quality
drops rapidly for almost all other types of scenarios, i.e., whenever we introduce addi-
tional challenges that are specific to the relational-to-ontology modeling gap. With a
few exceptions, BootOX and ontop perform better than the others. Where differences
appear between the two of them, ontop surprisingly outperforms BootOX . Note that
those two similar setups differ mostly in that ontop only produces a very simple ontol-
ogy while BootOX tries to additionally include some knowledge encoded in the database
structure. Results hint that this additional knowledge may be noisy. For CMT, IncMap
outperforms other systems both adjusted names and cleaned hierarchies. This is inter-
esting, as IncMap has been designed to work on typical databases and CMT differs from
the other ontologies insofar as it contains relatively flat class hierarchies and results in
a somewhat more realistic relational database even when translated naively. The gener-
ally low numbers of morph/MIRROR come as a surprise. We had expected it to perform
similarly to or somewhat better than BootOX as it follows the same idea of leveraging
knowledge from the database schema to build a better ontology, but does so more sys-
tematically. The effect of noise seems to be insufficient as an explanation in this case. As
morph/MIRROR is still under development, we assume that some of the effects may be
related to technical issues that we could not isolate and identify as such.

The drop in accuracy between “adjusted names” and “cleaned hierarchies” is mostly
due to the n : 1 mapping challenge, introduced by one of the relational patterns to
represent class hierarchies which groups data for several subclasses in a single table.
Neither of the systems managed to solve even a single test on this challenge.

In the most advanced cases, all systems lose on the additional challenges, although
to different degrees. For instance, all systems failed to solve any of the tests specifically
targeted to the challenge of denormalization artifacts. (For BootOX and ontop, there
is no difference to the “cleaned hierarchies” scenario as the systems failed the relevant
queries already on that simpler scenario.) While BootOX stands up relatively well in
those most advanced scenarios, IncMap records significant further drops. ontop failed
to produce mappings for the advanced scenario involving missing foreign keys.

All systems struggle with identifying properties, as Table 4 shows. A close look shows
that this is in part due to the challenge of normalization artifacts, with no system suc-
ceeding in detecting any properties that map to multi-hop join paths in the tables. Here,
IncMap shows its stronger suit, mapping datatype properties with an average f-measure
of up to 0.5. It has however to be noted that we test properties only in the context of
their domains and ranges, i.e., to succeed in a property test, a correct mapping at least
for its domain class is a precondition, making those tests generally harder.

On NPD FactPages, our extension scenario with real-world data and queries, all
four tested systems fail to answer any of the 17 query tests correctly. Given the previous
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Table 3. Average results of all tests per scenarios. Precision, Recall and F-measure
are all equal as systems fail the more complex tasks while simpler ones are atomic.

Scenario BootOX IncMap MIRROR ontop

P R F P R F P R F P R F

Adjusted naming

CMT 0.33 0.33 0.33 0.5 0.5 0.5 0.28 0.28 0.28 0.39 0.39 0.39

CONFERENCE 0.33 0.33 0.33 0.26 0.26 0.26 0.27 0.27 0.27 0.37 0.37 0.37

SIGKDD 0.45 0.45 0.45 0.21 0.21 0.21 0.3 0.3 0.3 0.45 0.45 0.45

Cleaned hierarchies

CMT 0.28 0.28 0.28 0.44 0.44 0.44 0.17 0.17 0.17 0.28 0.28 0.28

CONFERENCE 0.23 0.23 0.23 0.16 0.16 0.16 0.23 0.23 0.23 0.3 0.3 0.3

SIGKDD 0.16 0.16 0.16 0.11 0.11 0.11 0.11 0.11 0.11 0.16 0.16 0.16

Combined case

SIGKDD 0.16 0.16 0.16 0.05 0.05 0.05 0.11 0.11 0.11 0.16 0.16 0.16

Missing FKs

CONFERENCE 0.17 0.17 0.17 0.03 0.03 0.03 0.17 0.17 0.17 - - -

Denormalized

CMT 0.28 0.28 0.28 0.22 0.22 0.22 0.22 0.22 0.22 0.28 0.28 0.28

Table 4. Average F-measure results for the adjusted naming scenarios. ‘C’ stands for
queries about classes, ‘D’ stands for queries involving data properties and ‘O’ stands
for queries involving object properties

Adjusted naming BootOX IncMap MIRROR ontop

C D O C D O C D O C D O

CMT 0.67 0.0 0.0 0.67 0.50 0.0 0.56 0.0 0.0 0.78 0.0 0.0

CONFERENCE 0.67 0.0 0.0 0.42 0.24 0.0 0.53 0.0 0.0 0.73 0.0 0.0

SIGKDD 0.69 0.0 0.0 0.34 0.0 0.0 0.46 0.0 0.0 0.69 0.0 0.0

results from the default scenarios, this was to be expected. The query tests in NPD
FactPages consist of real-world queries, only. Just as systems failed the most complex
queries in the (generally still simpler) default scenarios, they also failed all queries in
the extension scenario.

5 Related Work

Mappings between ontologies are usually evaluated only on the basis of their underlying
correspondences (usually referred to as ontology alignments). The Ontology Alignment
Evaluation Initiative [21] provides tests and benchmarks of those alignments that can
be considered as de-facto standard. Mappings between relational databases are typi-
cally not evaluated by a common benchmark. Instead, authors compare their tools to
an industry standard system (e.g., [1,6]) in a scenario of their choice. A novel TPC
benchmark [26] was created only recently.

Similarly, evaluations of relational-to-ontology mapping generating systems were
based on one or several data sets deemed appropriate by the authors and are therefore
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not comparable. In one of the most comprehensive evaluations so far, QODI [32] was
evaluated on several real-world data sets, though some of the reference mappings were
rather simple. IncMap [24] was evaluated on real-world mapping problems based on
data from two different domains. Such domain-specific mapping problems could be
easily integrated in our benchmark through our extension mechanism.

A number of papers discuss different quality aspects of such mappings in gen-
eral. Console and Lenzerini have devised a series of theoretical quality checks w.r.t.
consistency [4]. In another benchmark, Impraliou et al. generate synthetic queries to
measure the correctness and completeness of OBDA query rewriting [14]. The presence
of complete and correct mappings is a prerequisite to their approach. Mora and Corcho
discuss issues and possible solutions to benchmark the query rewriting step in OBDA
systems [20]. Mappings are supposed to be given as immutable input. The NPD bench-
mark [19] measures performance of OBDA query evaluation. Neither of these papers,
however, address the issue of systematically measuring mapping quality.

6 Conclusion

We have presented RODI , a benchmark suite for testing the quality of generated
relational-to-ontology mappings. RODI tests a wide range of relational-to-ontology
mapping challenges, which we discussed of the paper.

Initial results on four systems demonstrate that existing tools can cope with sim-
pler mapping challenges to varying degrees. However, all tested tools fail on more
advanced challenges and are still a long way from solving actual real-world problems.
In particular, results show that mapping accuracy degrades massively when relational
schemata use design patterns that differ greatly from the corresponding ontologies (e.g.,
in scenarios with “cleaned hierarchies”). We also gave detailed feedback about specific
shortcomings to the authors of several of the tested systems, which has already lead to
adjustments in one case and will lead to improvements in others.

As the main avenue of future work, we plan to conduct a both broader and deeper
evaluation, also involving a greater number of systems. Another interesting aspect
would be the addition of further extension scenarios to cover data from a number of
application domains out of the box.
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