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Abstract. In this paper we discuss improvements in mechanical, elec-
trical and software design, which we did to become RoboCup 2014 world
champion. Regarding hardware and control our progress includes first
steps towards improved passing accuracy via velocity feedback control
on the shooting lever. In terms of intelligent gameplay we have worked
on creating possibilities for in-game optimization of strategic decisions.
Via qr-code detection we can pass coaching instructions to our robots
and with a basic machine learning algorithm success and failure after
free-kicks is taken into account. In the final part of this paper we briefly
discuss progress we have made in designing a four-wheeled soccer robot
with a suspension system.
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1 Introduction

Tech United Eindhoven is a RoboCup team of Eindhoven University of Technol-
ogy. Our team consists of PhD, MSc and BSc students, supplemented with aca-
demic staff members from different departments. The team was founded in 2005,
originally only participating in the Middle-Size League (MSL). Six years later
service robot AMIGO was added to the team, which since also participates in
the RoboCup@Home league. Knowledge acquired in designing our soccer robots
proved to be an important resource in creating a service robot [3].
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This paper describes our major scientific improvements over the past year
which helped us to become the winner of RoboCup 2014. First we introduce
our current robot platform, followed by a description of the robot skills we have
improved (we will focus on accurate shooting). Hereafter we describe our progress
in strategy and human-robot interaction and lastly the advancements in a new
four-wheeled soccer robot platform we designed in collaboration with an indus-
trial partner.

Many of the points of improvement described in this paper are a direct result
of rulechanges. In 2012 the mid-line passing rule was introduced, which was a
large boost for the league in terms of stimulating smart team-play. Enforcing
teams to make a pass before scoring provides an interesting academic challenge,
but it also makes the matches more fun to watch for spectators.1,2 Rule-changes
for RoboCup 2014 limited continuous dribbling distance, allow robot coaching
along channels that are natural to human beings and replace the mid-line pass-
ing rule by a more general ‘pass before scoring’ rule. The combination of these
rule changes and introducing human-robot interaction to the middle-size league
(Sect. 4.2) and moved the competition towards an even higher level of multi-
agent coordination (Sect. 4).

2 Robot Platform

Our robots have been named TURTLEs (acronym for Tech United RoboCup
Team: Limited Edition). Currently we are employing the fifth redesign of these
robots, built in 2010, together with a goalkeeper robot which was built one year
later (Fig. 1).

Three 12 V Maxon motors, driven by Elmec Violin 25/60 amplifiers and two
Makita 24 V, 3.3 Ah batteries, are used to power our omnidirectional platform.
Our solenoid shooting mechanism, powered by a 450 V, 4.7 mF capacitor, pro-
vides an adjustable, accurate and powerful shot [4]. Each robot, except for the
goalkeeper, is equipped with an active ball handling mechanism, enabling it to
control the ball when driving forwards, while turning, and even when driving
backwards [1]. As said before, we aimed on improving passing abilities and con-
ducted experiments on directly catching lob balls with our ball handling system
(Sect. 3.1.1).

To acquire information about its surroundings, the robot uses an omnivision
unit, consisting of a camera focussed on a parabolic mirror [2]. An electronic
compass is implemented to differentiate between omnivision images on our own
side versus on the opponent side of the field. We also added a kinect sensor to
each robot. A detailed list of hardware specifications, along with CAD files of the
base, upper-body, ball handling and shooting mechanism, has been published on
a ROP wiki.3

1 http://youtu.be/UagXSjp9nfk (Final Match RoboCup 2013 in Eindhoven).
2 http://youtu.be/9XJc-jY90dE (Final Match RoboCup 2014 in Joao Pessoa).
3 http://www.roboticopenplatform.org/wiki/TURTLE.

http://youtu.be/UagXSjp9nfk
http://youtu.be/9XJc-jY90dE
http://www.roboticopenplatform.org/wiki/TURTLE
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Fig. 1. Fifth generation TURTLE robots, with on the left the goalkeeper robot.

To facilitate data-acquisition and high-bandwidth motion control, the robots
are equipped with EtherCAT devices provided by Beckhoff. These are connected
to the onboard host computer via ethernet. Each robot is equipped with an
industrial mini-pc running a preemptive Linux kernel. The software is automat-
ically generated from Matlab/Simulink models via the RTW toolbox, recently
renamed to ‘Simulink Coder’. In order to allow asynchronous processing we have
created a multitasking target for Simulinks code generation toolchain.4

Software for our robots is divided in three main executables: Vision, World-
model and Motion. On-board and robot-to-robot they communicate via a real-
time database tool made by the CAMBADA team [5]. The vision module
provides a localization of ball, obstacles and the robot itself. Hereafter the world-
model combines this information with data acquired from other team members
to get a unified representation of the world. While vision runs at 60 Hz and
worldmodel at 20 Hz, motion contains the controllers for shooting, ball handling
en driving. Therefore it samples at a much higher rate (1000 Hz). On top of
the controllers, the motion executable also contains strategy and pathplanning,
partly implemented as a subtask running at a much lower sample rate.

3 Improved Skills

Considering the rule changes in the middle size league, it is likely that passing
and catching will become increasingly important compared to dribbling. During
RoboCup 2014 in Brazil, this was indeed the case. In the section below, we will
describe how we prepared for RoboCup 2014 by improving our accuracy for flat
passing and by increasing our abilities to accurately catch and shoot a lob ball.
The latter is not only beneficial for passing but also for shots at goal.
4 http://www.techunited.nl/wiki/index.php?title=MultiTasking Target for Linux.

http://www.techunited.nl/wiki/index.php?title=MultiTasking_Target_for_Linux
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3.1 Shooting

The electrical scheme of our kicker consists of a battery pack charging a capacitor
via a DC-DC converter (Fig. 2). Once fully charged, in roughly 20 s, the capacitor
can be discharged via an IGBT switch, creating a pulse-width modulated signal.
The energy of the capacitor drives a solenoid actuator connected to a mechanical
transmission (a shooting lever). The lever can be adjusted in height to allow for
lob- and flat shots.

Fig. 2. Schematic overview of our shooting system. One half of the plunger is made of
a non-magnetic material, the other half consists of a soft-magnetic material.

3.1.1 Shoot Lob Balls
To accurately shoot lob balls, the shooting system needs to be calibrated. Prefer-
ably we do this under conditions as close as possible to the conditions our robots
face during the matches, i.e., on the official field with the same ball that will
be used for competition. But during a tournament, testing time on the field
is limited. Therefore our approach was to simply put the robot at the maxi-
mum distance it could take a lob shot from during a game, tune the PWM duty
cycle until the ball lands exactly in the goal, and store the resulting duty cycle
value. By linear interpolation between zero and the duty cycle we obtained dur-
ing calibration, we could shoot from any spot within shooting range. The same
calibration was used for all robots.

Although the above method is fast, it is also inaccurate. The relation between
shooting distance and required duty cycle is non-linear, and since each robot has
its own mechanical and electrical components, each robot has its own shooting
characteristics. Therefore, calibration of each robot individually would be better.

For RoboCup 2014 we designed and implemented a tool to quickly do robot-
dependent calibration. Furthermore, empiricallywe identified the relation between
the shooting distance (x ) and the required duty cycle (u) is exponential for a
lob-shot (Eq. 1). Parameters a, b and c are robot-dependent parameters. They
have to be obtained by measuring the travelled distance for multiple duty cycles.
To make a correct fit at least four measurements are required, though more are
preferred.

u = b−1ln(a−1(c− x)) (1)
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3.1.2 Catch Lob Balls
During the technical challenge of RoboCup 2013 we showed an initial attempt
to shoot and catch lob passes. In terms of catching the ball, our approach there
was to simply wait until the ball bounces were low enough to simply intercept
it as if it were a flat pass. Building on these first tries, this year we worked on a
much more challenging lob pass approach, where we use our current ball handling
system to grab the ball exactly when it hits the ground after a flight-phase. We
call this coordinate the point of intercept (POI).

The teammate shooting the lob ball communicates to the receiving robot,
where the ball is expected to land (the feedforward position, FFP). When con-
secutive bounces are taken into account, multiple FFP’s exist (example in Fig. 3).
Each of them has a certain inaccuracy, for now modelled as a circle around the
point itself. Based on the estimated time to reach each of the FFP’s, the receiving
robot drives towards one of the feedforward points when a lob ball is expected,
but not actually shot yet.

Once the ball is in-air, a kinect camera mounted on the receiving robot is
used to measure the ball position. Based on these observations, a simplified ball
model, without drag and spin, predicts the ball trajectory. The receiving robot
will respond to this ball-tracking based POI prediction, but only if it is located
within the uncertainty circle. In case the estimated POI is located outside the
circle, the robot will wait at the edge of the circle.

Fig. 3. Lob ball intercept strategy, the receiving robot chooses one of the points of
intercept.

3.1.3 Shooting-Lever Velocity Feedback Control
Similar to what we described for lob shots, currently our control for flat shots and
for flat passes is fully based on feedforward. As said before, many disturbances
are robot-, ball- or field-dependent. Feedback control would allow to compensate
for those.
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Fig. 4. Shooting lever end-effector for more
accurate passing.

We are using an encoder mounted
on the rotational joint of the shooting
lever (Fig. 2) as a feedback signal for
velocity control. For full-power shots
the end-effector of the shooting lever
is pushed into the ball almost entirely
before the ball itself even starts to
move.5 Using lever angular velocity as
a feedback signal to control the result-
ing ball velocity would be hard in this
case, because it is hard to exactly
predict the dynamic behaviour of the
deformed ball.
For slow shooting on the other hand,
it is possible to make the lever and ball
move as one body before the ball leaves the robot. Especially for passing, being
able to accurately control ball-velocity would be of great help.

What was particularly challenging was the limited time one has available
(a shot takes between 20 and 50 ms) and the limited spatial resolution of the
encoder (130 ticks over the entire shooting lever stroke). Furthermore the solenoid
actuator can only push in a single direction, therefore no overshoot is allowed
(Fig. 4).

4 Improved Strategy

Our strategy takes into account the estimated positions of all peers and oppo-
nents, represented in a worldmodel. We developed a method to also use veloci-
ties and estimated game state to assess the feasibility of various tactical actions
(plans). Instead of instantaneously seeking the free space on the field.

As a first step in moving to a more plan-based level of cognition, we have
created a skill-selector, which we will describe in the upcoming section. Further
we worked on in-game optimization of decision making in refbox tasks, either
via human coaching (Sect. 4.2) or via machine learning (Sect. 4.3).

4.1 Skill Selector GUI

In our strategy, first we assign a unique role to each of the robots. Every role
contains a number of actions/skills which can be executed during play. The main
attacker for instance has five different skills to choose from: Flat shot, lob shot,
pass, dribble and push-attack (i.e., bouncing the ball towards the goal with the
side of the robot).

To decide on which skill to use at a certain moment in time, hard-coded con-
ditional statements are evaluated. For the original system, these conditions were

5 http://youtu.be/MF7mfItBriA (High-speed video of a full-power shot).

http://youtu.be/MF7mfItBriA
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solemnly true/false evaluations (e.g., to shoot at goal, there must be a clear path
to the goal). They are evaluated in the order they appear in programming and
therefore immediately discard all other possible actions. This creates situations
for which the TURTLEs do not take the optimal action. In order to solve this
problem, a more generic framework for skill-selection has been developed.

In our improved skill-selector framework, for each of the skills the hard-
coded conditions are complemented with normalized ranking functions (e.g.,
while turning towards the goal, the ranking for shooting at the goal will increase).
After evaluating all ranking functions the skill selector chooses the skill with the
highest overall ranking. In case multiple rankings are the same, the default skill
‘dribble’ will be selected. To make sure the chosen skill consistently ranks higher
than the current skill, a hysteresis function has been added.

For debugging and tuning purposes we have created a graphical user interface
which visualises skill-selector output for a given game state (Fig. 5).

Fig. 5. Skill-selector visualization (Color figure online).

4.2 Human Coaching

For the world championships 2014 human-robot coaching in our league was
allowed. Coaching instructions are intended to pass high-level instructions like
‘shoot more often’, as opposed to low-level commands like ‘shoot now’. As a first
step, this year we used qr-codes to tell our robots which predefined play to use,
e.g., during a free-kick.

We use a freely available open source library to scan a video stream coming
from our robots kinect sensor to scan for qr-codes.6 With the maximum allowed
qr-code size (i.e., 30×30 cm), containing three chars of encoded information, we
experimentally searched for the maximum distance for which the code could
be scanned. Averaged over 35 trails, using seven different char-combinations,

6 http://zbar.sourceforge.net/ (ZBar, open source bar- and qr-code reader).

http://zbar.sourceforge.net/
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this distance turned out to be 5.1 m (with a standard deviation of 0.29). False
positives within the code detection regularly occurred, especially against a non-
plain background. But since none of these false positives matched any of the
known strings, we could simply keep scanning until a combination of symbols
was recognized that was actually grounded in the robots knowledge base.

In any trial of the experiment, if the code got detected, it was recognized
within four seconds. Since in the current rules coaching is only allowed during
‘dead time’ between stop and start of a refbox task, we were interested how
often a robot could actually get within five metres from the coaching spot and
stay there for at least four seconds to receive a coaching instruction. There-
fore we looked back at logged data of the final match during RoboCup 2013
in Eindhoven. In total this match involved 58 refbox tasks, 21 of them did not
involve direct scoring risk (i.e., at least one of our robots was available to come
to the side for coaching). Taking into account constraints on the robots acceler-
ation and velocity, with our current qr-code detection system 17 coach moments
would have succeeded.

4.3 Learning Refbox Play Decisions

In the previous section we described a way to do a hard, human-imposed, reset
within our robots decision making. On top of these hard resets, we also worked
on a basic reinforcement learning algorithm for a more subtle optimization of
strategic play-choice during refbox tasks.

A reinforcement learning algorithm is built around actions, states and
rewards [6]. Applying this framework to our free-kick strategy, we use six exist-
ing refbox plays as our action-space (single kick and shoot, double kick and pass
etc.). Based on which opponent we face and the location of the free-kick (state),
one play may result in slightly better scoring chances than the others. As a
reward function we give high virtual reward for a scored goal, lower reward for a
shot attempt, small punishment for loss of ball possession and severe punishment
for a goal scored by the opponent (all weighted for time passed after the refbox
task start signal).

Within this framework of rewards, states and actions we are able to store an
expected reward for each state, based on past experience.

5 Four-Wheeled Platform with Suspension System

Already since our first generation of soccer robots, we have been using a robot
base with three omniwheels positioned in a triangle. Such a three-wheeled design
makes control easier because, regardless of field irregularities, all of the wheels
will maintain in touch with the ground. But disadvantages also exist. Although
driving straight forward is the most common direction of acceleration, it is also
the direction for which our three-wheeled robot experiences the least traction
during acceleration. The robot tends to tilt backwards, putting most of its pres-
sure on the only wheel that cannot be used to transfer a torque to the ground
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when driving forward. For our current robot-design, traction is the limiting factor
in achieving higher acceleration.

Fig. 6. Base structure.

For a four-wheeled base accelerating forward,
i.e., in the direction of the ball-handling mecha-
nism, additional pressure is put on wheels that
are actively used in acceleration. We worked with
an industrial partner to realize a prototype of
a four-wheeled robot.7 On top of the RoboCup
rulebook requirements with respect to weight
and size, an additional requirement was created:
Without any of the wheels losing contact with
the floor, the robot should be able to take bumps
of at least 10 mm in any direction while main-
taining a ground clearance of 15 mm (Fig. 6).

To meet this latter requirement, a suspen-
sion system is needed. In the current prototype
design, each of the wheels is equipped with an
independent suspension system. Wheels and motor are still directly connected
via a gearbox but the combination of the two is connected to the base via a
passive spring-damper combination. The prototype of the four-wheeled base is
being produced and during RoboCup 2014 the robot played several matches.

6 Conclusions

In this paper we have discussed concrete steps towards more accurate shooting
which, together with better ball tracking abilities, will enable passing via lob
balls. Also we have presented proof of concept experiments for qr-code based
human coaching and for learning algorithms in refbox strategy.

Altogether these improvements helped us to recapture the world title and this
progress contributed to a higher level of dynamic an scientifically challenging
robot soccer during RoboCup 2014. While at the same time maintaining the
attractiveness of our competition for a general audience.
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