
Simulation for the RoboCup Logistics League
with Real-World Environment Agency

and Multi-level Abstraction

Frederik Zwilling, Tim Niemueller(B), and Gerhard Lakemeyer

Knowledge-Based Systems Group, RWTH Aachen University, Aachen, Germany
{zwilling,niemueller,gerhard}@kbsg.rwth-aachen.de

Abstract. RoboCup is particularly well-known for its soccer leagues,
but there are an increasing number of application leagues. The newest
one is the Logistics League where groups of robots take on the task of
in-factory production logistics. It has two unique aspects: a game environ-
ment which itself acts as an agent and a focus on planning and scheduling
in robotics. We propose a simulation based on Gazebo that takes these
into account. It uses the exact same referee box to simulate the environ-
ment reactions similar to the real game and it supports multiple levels
of abstraction that allow to focus on the planning with a high level of
abstraction, or to run the full system on simulated sensor data on a lower
level for rapid integration testing. We envision that this simulation could
be a basis for a simulation sub-league for the LLSF to attract a wider
range of participants and ease entering the robot competition.

1 Introduction

Research on autonomous mobile robots in industrial applications has signifi-
cantly increased during the last years. In industry, mobile robots are the most
complex variant of cyber-physical systems, embedded devices that combine com-
putational resources with physical interaction. The context is the Industry 4.0
movement [1] whose goals are adaptive production capabilities, where material
flows and production processes are dynamic and factories can output a variety
of product types. In this scenario, a group of mobile robots can be used to move
material and handle machines, eventually delivering the resulting products.

The RoboCup Logistics League Sponsored by Festo (LLSF) strives to address
these issues in a competitive scenario to foster research, system integration, and
robotics education relevant to industry. While aspects like competition and scor-
ing points are clearly influenced by RoboCup, other aspects like the referee box
as an order issuing system and time as a critical factor are driven by demands
from industrial applications. Many basic robotics problems like self-localization,
collision avoidance and perception must also be tackled in the LLSF. The char-
acter of the game emphasizes research and application of methods for efficient
planning, scheduling, and reasoning on the optimal work order of production
processes handled by a group of robots. An aspect that distinctly separates this
c© Springer International Publishing Switzerland 2015
R.A.C. Bianchi et al. (Eds.): RoboCup 2014, LNAI 8992, pp. 220–232, 2015.
DOI: 10.1007/978-3-319-18615-3 18



Simulation for the RoboCup Logistics League 221

league from others is that the environment itself acts as an agent by posting
orders and controlling the machines’ reactions. This is what we call environment
agency. Naturally, dynamic scenarios for autonomous mobile robots are complex
challenges in general, and in particular if multiple competing agents are involved.
In the LLSF, the large playing field and material costs are prohibitive for teams
to set up a complete scenario for testing, let alone to have two teams of robots.
Additionally, members of related communities like planning and reasoning might
not want to deal with the full software and system complexity. Still they often
welcome relevant scenarios to test and present their research.

Therefore, we have created an open simulation environment to support
research and development. There are three core aspects in this context:

1. The simulation should be a turn-key solution with simple interfaces,
2. the world must react as close to the real world as possible, including in par-

ticular the machine responses and signals, and
3. various levels of abstraction are desirable depending on the focus of the user,

e.g. whether to simulate laser data to run a self-localization component or to
simply provide the position (possibly with some noise).

With this work, we provide such an environment. It is based on the well-known
Gazebo simulator addressing these issues: (1) its wide-spread use and open
interfaces in combination with our models and adapters provides an easy to
use solution; (2) we have connected the simulation directly to the referee box,
the semi-autonomous game controller of the LLSF, so that it provides precisely
the reactions and environment agency of a real-world game; (3) we have imple-
mented multi-level abstraction that allows to run full-system tests including
self-localization and perception or to focus on high-level control reducing uncer-
tainties by replacing some lower-level components using simulator ground truth
data. This allows to develop an idealized strategy first, and only then increase
uncertainty and enforce robustness by failure detection and recovery.

We propose a new simulation sub-league for the LLSF based on the Gazebo
simulator at different levels of difficulty using the multi-level abstraction, to
attract more teams and ease entering the LLSF robotics competition.

In Sect. 2 we give a brief introduction to the LLSF, followed by related work
in Sect. 3, before we get into the details of the simulation in Sect. 4. We describe
several applications of the simulation in game strategy evaluation in Sect. 5. We
propose a simulation sub-league and conclude in Sect. 6.

2 RoboCup Logistics League

RoboCup is an international robotics competition particularly well-known for
its various soccer leagues. The Logistics League Sponsored by Festo (LLSF) is
an application-oriented major league since 2012 regarding simplified production
logistics. Groups of up to three robots have to plan, execute, and optimize the
material flow in a factory automation scenario and deliver products according
to dynamic orders. Therefore, the challenge consists of creating and adjusting a
production plan and coordinate the group of robots [2].



222 F. Zwilling et al.

Fig. 1. Carologistics (three robots with omni-vision tower) and TUMBendingUnits
(robots on the left and right) during the LLSF finale at the German Open 2014 (Color
figure online)

Since 2014, the two formerly separate playing fields have been merged into
one 11.2 m× 5.6 m in size (cf. Fig. 1). Two teams are playing at the same time
competing for points, (travel) space and time. Each team has an exclusive input
storage (blue areas) and delivery gates (green area). Machines are represented
by the RFID-readers with signal-lights on top. The signal-lights indicate the
current status of a machine, such as “ready”, “producing” and “out-of-order”.
There are three delivery gates, one recycling machine, and twelve production
machines per team. Material is represented by orange pucks with an RFID tag.
At the beginning all pucks have the raw material state S0, and can be refined
through several stages to final products using the production machines. These
machines are assigned a type which determines what inputs are required and
what output will be produced, and how long this conversion will take. Figure 2
shows the production trees for two final products, P1 and P3. The latter is
rather simple, it requires only a single step, but it scores only a small amount
of points. For P1, four refinement steps are required. Only raw material pucks
are available at the beginning, all others must be produced by the robot using
the appropriate machines. The machines are distributed randomly across the
field (mirrored at the narrow middle axis so both teams have the same travel

P1T3

S2T2

S1T1S0

S0

S0

S1T1S0

P3T5S0

Fig. 2. Production Chains for two types of products.



Simulation for the RoboCup Logistics League 223

distances). The rulebook [3] describes the game in more detail. For 2015, the
league has decided to introduce real production steps through the use of the
Festo Modular Production System [4] to make the game easier to understand.

The game is controlled by the referee box (refbox), a software component
which keeps track of puck states, instructs the light signals, and posts orders
to the teams [4]. After the game is started, no manual interference is allowed,
robots receive instructions only from the refbox. Teams are awarded with points
for delivering ordered products, producing complex products, and recycling.

The standard robot platform of this league is the Robotino by Festo Didac-
tic [5]. The Robotino was developed for research and education and features
omni-directional locomotion, a webcam, infrared distance sensors and bumpers.
It is also equipped with a static puck holder to move pucks. The teams may
equip the robot with additional sensors and computation devices. For exam-
ple, the robots of the Carologistics team in Fig. 1 are equipped with a laptop, a
omni-directional camera and a laser range finder. In 2014, Festo released the new
version 3 of the robot featuring better driving, computing unit, and extensibility.

3 Related Work

There is a plethora of existing robotic simulations. Here, we mention two par-
ticular examples used in other RoboCup leagues and the Robotino simulator
provided by Festo as a comparison. We also mention the Fawkes robot software
framework and related systems, as it is used for agent strategy evaluation and
as a prototyping development environment for the simulation.

3D Soccer Simulation League (3DSSL). The 3DSSL is based on the Open Source
multi-robot simulator SimSpark and currently uses the Nao as model for the
players. Software agents communicate with a soccer server to announce their
actions but also to communicate with other players. SimSpark features multi-
platform support, is scriptable via Ruby and supports automatically enforced
rules to realize soccer rules. Today, solutions for body control and perception
must be developed similar to as if a real robot were used. The agent has to take
limited skills of the simulated robot and possible problems in their execution into
account [6]. SimSpark is mostly specialized on the 3DSSL, thus Gazebo brings
many more existing models for, e.g., sensors we could reuse. Especially due to
the extensibility of the robots in the LLSF, we therefore prefer Gazebo.

Rescue Simulation League (RSL). The RSL aims to benchmark software agents
and robots in a disaster scenario. A part of the RSL is the Virtual Robot Com-
petition (VRC) which has the task to find victims in a disaster environment with
a team of robots and a human operator. Important research issues of this league
are victim detection, utility-based mapping of the environment, autonomous nav-
igation and multi-robot coordination. To foster transfer of the research results
to a real application, the simulation features graphical and physical realism [7].
The VRC is based on the multi-robot simulator USARSim. Initially focused on



224 F. Zwilling et al.

urban search and rescue simulations it has evolved into a general purpose sim-
ulator which is also used to simulate RoboCup@Home scenarios [8]. USARSim
uses the Unreal graphics and PhysX physics engine. These allow a graphically
and physically realistic environment. The simulator can be interfaced with ROS
what allows having the same interface as on a real robot [9,10]. We preferred
Gazebo instead of USARSim because of the plethora of available models and
because USARSim relies on non-free components like the Unreal engine.

Robotino Sim Professional. Robotino Sim Professional1 is a simulator for the
Robotino developed by its manufacturer Festo. It is used for the Robotino in
general. An environment resembling the LLSF is not provided. Its closed nature
make it rather hard to extend or modify and it does not run on the Linux
operating system. Therefore it is unsuitable as an open simulation.

3.1 Fawkes

Robot software systems are increasingly complex in the number of components
as well as in their interactions. Therefore, a robot software framework which
provides a suitable middleware, basic modules and auxiliary libraries is typi-
cally used. An often used candidate is the Robot Operating System [11] (ROS).
In this work, we use the component-based framework Fawkes2 [12]. It uses a
hybrid blackboard and messaging middleware for inter- and intra-component
communication. Compared to ROS, it supports a closer integration of the vari-
ous components. These are implemented as run-time loadable plugins consisting
of one or more threads. These threads can be invoked coordinated in a common
main loop or run concurrently.

We use Fawkes for two primary functions. First, it is used to implement
and integrate the software components that drive our robot, including self-
localization, navigation and collision avoidance, and behavior control. Fawkes
serves as one particular example how to connect to the simulation. Similarly
other frameworks like ROS could be used. Second, we have implemented sim-
ulated inter-robot communication and the connection between the referee box
and the simulation as Fawkes plugins. We intend to integrate these two aspects
into Gazebo plugins for general use at a later time. We will give more details on
this in the following section.

4 Simulation

A robotic simulation is a tool to ease testing and debugging of robotic applica-
tions, and in the context of the LLSF we also want to lower the entry barrier to
participate. We have developed a simulation of the LLSF based on Gazebo [13].
An example scene is shown in Fig. 3. The simulation is designed to achieve
1 http://www.festo-didactic.com/int-en/learning-systems/software-e-learning/

robotino-sim-view/robotino-sim-professional.htm.
2 Fawkes is Open Source software and available at http://www.fawkesrobotics.org.

http://www.festo-didactic.com/int-en/learning-systems/software-e-learning/robotino-sim-view/robotino-sim-professional.htm
http://www.festo-didactic.com/int-en/learning-systems/software-e-learning/robotino-sim-view/robotino-sim-professional.htm
http://www.fawkesrobotics.org


Simulation for the RoboCup Logistics League 225

Fig. 3. The simulation of the LLSF in Gazebo. The circles above the robots indicate
their localization and robot number.

the five goals realism, multi-level abstraction, compatibility with the real robot,
expandability and allowing multi-robot strategy evaluation. The realism deter-
mines how similar a robotic system behaves in the simulation and the real world.
That includes sensor data, physical and logical behavior in the simulation that
is similar to their real-world counterpart, e.g. with similar noise and precision.
Compatibility with the real robot allows the robot software to operate in the
simulation with the same interfaces as on the real robot. This allows an easy
transfer from a robot system that works in the simulation to the real world. The
LLSF is a multi-robot scenario. Therefore we need to simulate multiple robots
at the same time efficiently. The LLSF allows additions of arbitrary sensors and
the rules are steadily evolving [4]. Therefore the simulation must be expandable.

4.1 Gazebo

As a basis for our simulation, we use the Open Source robot simulator Gazebo [14]
(http://gazebosim.org). It can simulate various robots and their environment in
a 3D world and is used in many applications, for example in the DARPA Vir-
tual Robotics Challenge which is about solving challenging tasks in a disaster
scenario and requires a high realism of the simulator. Gazebo uses the Ogre
rendering engine for graphically realistic environments with reflections, shadows
and detailed textures. This is important for the simulation of camera sensors
as reflections of light sources and inhomogeneous lighting can cause problems.
Gazebo can use both physics engines Open Dynamics Engine (ODE) or Bullet.

A Gazebo simulation environment is described as a world which contains
certain objects according to models, the light sources, and parameters e.g. for
the physics simulation or rendering. Models describe physical objects such as
a table or a robot. The model is built out of links of various geometries and
joints which connect two links and define possible relative motions. Beside the
physical and visual description of objects, there are also plugins. These consist of
executable code that interacts with the simulation at run-time. They typically
model the behavior of objects. For example, there are plugins for getting sensor
data, applying motor commands and world-plugins for spawning new models.
We will also use plugins later to connect the simulation to the LLSF referee box.

http://gazebosim.org


226 F. Zwilling et al.

Out of the box, Gazebo includes a variety of generalized sensors and models
of common robots, sensors and environment-objects. In the Gazebo framework,
there is support for a variety of sensors. This includes cameras, contact-sensors,
GPS, inertial measurement units, laser and sonar sensors. This is important as
arbitrary additions of sensors are allowed in the LLSF. To adapt the simulation
for a specific team, these models can make this process faster. Gazebo provides
modeling and programming interfaces to extend the simulation to specific needs.
Gazebo also provides a connection to ROS.

As we have built our Robotino system using Fawkes, we have replaced the
hardware accessing plugins by simulation adapters. The interfaces towards the
other components remain unchanged, such that sensor processing, path planning,
or behavior control continue to function without modifications.

Protocol Buffers (protobuf) are a data interchange format developed by Google3.
Given a message specification it generates native (de-)serialization code for var-
ious programming languages. Protocol buffers are used for Gazebo’s internal
communication and as an external interface by means of a publisher/subscriber
model (orange connections in Fig. 4). The refbox uses protobuf messages to com-
municate with robots (UDP broadcast) and the simulation (multiplexed stream
protocol). Additionally we have implemented a module to simulate typical wifi
communication problems like latency or packet loss.

4.2 Architecture

The basic parts for the simulation environment are referenced in the world file,
which contains the walls, ground floor, the machines, pucks, and markings. In
Fig. 4, the middle box represents the Gazebo process. Based on the models (red)
Gazebo can run and visualize the environment. It provides an application pro-
gramming interface (API, green). The protobuf-based messaging middleware is
used for internal communication as well as an external interface. Gazebo also
hosts a number of plugins (blue). These plugins are active components (exe-
cutable code) that typically maintain, provide, and process simulation data. For
example, the LLSF environment plugin communicates with the refbox to pro-
vide the same field reactions as in the real world. If a puck is moved under a
machine, a message is sent to announce this to the refbox, which in return sends
instructions how the light signals change. The robot actually consist of a number
of plugins, typically one per sensor or actuator. We use, for example, the built-in
plugin for the laser data, and have a custom plugin for the robot movements.

The robot software itself is connected again using protobuf. It gathers data
from and sends instructions to the robot-specific plugins. For now, we are using
Fawkes for this connection. But the existing Gazebo-ROS integration would
make the adaptation simple. Also, the refbox connection is currently proxied
through a Fawkes plugin, which we will change before the public release such
that the simulation itself can be accessed from any framework.
3 https://developers.google.com/protocol-buffers.

https://developers.google.com/protocol-buffers


Simulation for the RoboCup Logistics League 227

Gazebo

LLSF Environment

Models

Gazebo Robot 1
Motor, Laser, Cam, ...

Gazebo Robot 2
Motor, Laser, Cam, ...

Gazebo Robot 3
Motor, Laser, Cam, ...

G
a
zeb

o
A

P
I

Referee Box

Visualization

Robot 2
Fawkes, ROS, ...

Robot 1
Fawkes, ROS, ...

Robot 3
Fawkes, ROS, ...

Fig. 4. Architecture overview of the simulation; blue means Gazebo plugins, red mod-
els, green Gazebo API and middleware, orange are components connected via protobuf
middleware. The robots are driven by a system like Fawkes or ROS, referee box and
visualization operate and visualize the environment (Color figure online).

To handle the simulation speed, which can be smaller than real-time on
a slow computer or greater to speed up automated test runs, we publish the
simulation time and the current simulation speed, which can be used to estimate
the simulation time between two synchronization messages. We extended the
refbox to use the simulation time. In Fawkes, the simulation time is provided
instead of the system time.

4.3 Simulation Interfaces

We provide three different ways to interact with the simulation: direct interaction
using native Gazebo messaging, accessing the simulation through Fawkes, or
using our Behavior Engine instruction interface. With this variety of interfaces
it is possible to use existing own software, or re-use (parts of) our components.

Direct Interaction. Using Gazebo’s protobuf-based middleware most aspects of
the simulation are directly accessible via topics. For example, models can be
directly manipulated, e.g. to implement specific robot modifications. It also
allows direct access to internal data, e.g. from additional sensors. The direct
interaction is also accessible from the ROS connection provided by Gazebo.

Fawkes. Our system already comes with many components for interaction with
the simulation. Communication with these components happens over the Fawkes
middleware. For example, Fawkes provides access to generated camera images
to run a perception module, or directly access the puck positions over the black-
board for a higher abstraction level. The interfaces are unified across simulation
and the real robots, allowing a seamless migration between the two.



228 F. Zwilling et al.

Lua-based Behavior Engine (BE). The BE provides a framework and tools for
the development, execution, and monitoring of reactive behaviors. It forms a
mid-level layer between the high-level reasoning and the low-level execution. It
models basic skills as hierarchical hybrid state machines and typically handles
parameter estimation (e.g. determining coordinates for an entity name) and
basic failure recovery (for local failures like losing a product while traveling).
Skills are exposed to the high level system as function for interleaved execution
and provide success/failure and error information feedback. For details of the
modeling and execution we refer to [15]. By using the Behavior Engine, it is
possible to reuse our set of basic skills and build an agent on top. It also allows
for the composition of skills to form more complex skills or even an agent itself.

4.4 Multi-level Abstraction (MLA)

MLA [16] is the ability to choose to either simulate low-level sensor data or to
directly extract higher-level information. In terms of simulation interfaces, the
abstraction level is defined based on the Gazebo topic chosen as input data. In
Fawkes, this manifests in different components which are used to access simula-
tion data. For example, as depicted in Fig. 5, the simulation (red boxes) provides
both, laser data and pose information in different topics. In Fawkes, either an
accessor plugin is used (higher abstraction), or the simulated laser data is fed
to the localization component (lower abstraction). Additionally, for actuation
MLA, we provide the BE as a basis for high-level control software. Note that
Fawkes and the BE serve as one particular example, but they are not a require-
ment. Similar structures can be implemented for example using ROS.

While this is not an aspect unique to our simulation, the explicit specification
is necessary to clarify the capabilities of the simulation, in particular to attract
new users from the planning community. MLA is also useful during develop-
ment, as it allows to perform full integration tests with all software components
(including sensor processing), or to focus on high-level evaluation.

AgentPose
Laser-based
Localization

Laser
Data

Simulated
Laser Sensor

AgentPose
Model

Position

Fig. 5. Multi-level abstraction example: the simulation can either provide the data to
run a laser-based self-localization component or directly provide the position (Color
figure online).



Simulation for the RoboCup Logistics League 229

5 Applications

We have used the simulation for rapid testing, performance evaluation and as
a development environment. We have also conducted experiments to verify the
similarity between simulation and real world robot behavior.

5.1 Agent Strategy Evaluation

With a focus on the planning and scheduling aspects in the LLSF, efficient
testing of such systems becomes an important concern. Our first application
of the simulation is aimed at the evaluation of different game strategies. We
have developed tools to run several games unattended over night and present
the results later for comparison, e.g. in terms of achieved score. Our reasoning
component, based on the CLIPS rules engine, implements incremental task-level
reasoning [17]. We evaluated different numbers of robots on the field or static
and dynamic strategies, where robots would either pursue the same goal (like
producing a P1 product) the whole time or where they could change their role
at run-time [13]. This allowed us to steer our development efforts more informed
to improve the system’s overall performance.

The CPU usage of a simulation game on a desktop with an Intel Core i7-3770
at 3.40 GHz with 16 GB of RAM is shown in Fig. 6. The system was utilized at
about 60 % of capacity including the simulation and 3 robots running all neces-
sary components except visual perception which was given by the simulation.

Fig. 6. CPU usage during a simulation game; X axis shows the system time during the
experiment; Y axis areas show percent of CPU time used stacked on top of each other.

5.2 Simulation vs. Real World

There is typically a gap between the simulation and the real robot. For example,
the lighting of the scene tends to be more uniform and stable in a simulation.
Still some gaps can be bridged, for example using accurate friction parameters
for the pucks or to have similar noise and precision in the laser data. We have
compared simulation runs to our performance at the German Open 2014. We
ran the same software versions, the only differences being that hardware modules



230 F. Zwilling et al.

were replaced by simulation modules and machine-signal perception is given by
the simulation. In ten simulated games the system achieved an average score
of 75.3 points with a standard deviation of 10.1. In the last five games of the
competition we achieved 61.6 points with a standard deviation of 11.6. Overall
teams scored up to 71 points with average 19.1 ± 23.3. While this is certainly
not an exhaustive comparison, we believe that the data provides strong evidence
that the simulation behaves accurately compared to the real world.

M1

T3

M2

T2

R1

M3

T1

M4

T2

M5

T1

M6

T4

M7

T2

M8

T1

M9

T5

M10

T3

M11

T4

M12

T1

D1

D2

D3

Fig. 7. Trajectory comparison of
real world moves (blue) and sim-
ulated moves (red) on a half field
(Color figure online).

We have further corroborated this by com-
paring trajectory repeatability in simulation
and the real world. Figure 7 shows the concave
hull around position information (robot’s self-
localization) recorded at 1 Hz during ten back
and forth drive operations between machines
M1 and M12. As we can see the overall trajec-
tory execution is similar with only small differ-
ences at larger free areas where higher speeds
can be achieved. Perception performance on
simulated images for the camera perspective
depends on the methods used as producing the
bright spotlights on active lights is problematic.
Example images are shown on the website.

Student Hackathon 2013. We conducted a hac-
kathon with about 30 participants in cooper-
ation with the student organization Bonding.
The scenario was to recover prioritized color-coded items from an LLSF-like
environment. Small student groups had to implement the mission behavior code
using the Behavior Engine and the simulator. Then, the very same code was
run on the real robot. Several teams accomplished the task during one night of
development.

6 Conclusion

The Logistics League has unique aspects like environment agency, where the
environment acts like an agent itself, and a focus on planning and scheduling in
robotics. We have developed a simulation based on Gazebo which takes these into
account. It connects to the referee box of the LLSF to provide the same reactions
as the real environment. Multi-level abstraction allows to choose whether to
process simulated sensor data like images or directly use information like signal
light states. This way, the simulation can provide multiple levels of difficulty. This
allows to run full integration tests or to focus on the development of the planning
and scheduling system. As Gazebo is widely used and provides a messaging
middleware, it is open for systems of other teams. We provide adapters for the
Open Source robot software framework Fawkes, but others can be added easily.

Having to develop and maintain a team of robots can be prohibitively costly
in terms of maintaining a local playing field. Other communities we want to reach



Simulation for the RoboCup Logistics League 231

might not even be interested in low-level robotics software. Therefore, we propose
to establish a simulation league directly associated with the LLSF. It would
serve as an entry to the LLSF, which is simplified by multi-level abstraction and
the components we provide, and as a catalyst for new planning strategies, which
could be developed and tested in simulation before being ported to the real
robots. At RoboCup 2014, we seek a discussion with interested parties within
and outside the LLSF to form an interest group to pursue this goal.

Our software components, instructions how to setup the simulation, all evalu-
ation data, and further information is available on the project website at http://
www.fawkesrobotics.org/projects/llsf-sim/.

Acknowledgments. We thank the Carologistics RoboCup Team for their tremendous
effort to develop a system which served as a basis for the presented work.

F. Zwilling and T. Niemueller were supported by the German National Science
Foundation (DFG) research unit FOR 1513 on Hybrid Reasoning for Intelligent Sys-
tems (http://www.hybrid-reasoning.org). We thank the anonymous reviewers.

References

1. Kagermann, H., Wahlster, W., Helbig, J.: Recommendations for implementing the
strategic initiative INDUSTRIE 4.0. Final Report, Platform Industrie 4.0 (2013)

2. Niemueller, T., Ewert, D., Reuter, S., Ferrein, A., Jeschke, S., Lakemeyer, G.:
RoboCup logistics league sponsored by festo: a competitive factory automation
testbed. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.) RoboCup 2013.
LNCS, vol. 8371, pp. 336–347. Springer, Heidelberg (2014)

3. LLSF Technical Committee: RoboCup Logistic League sponsored by Festo - Rules
and Regulations 2014 (2014). http://www.robocup-logistics.org/rules

4. Niemueller, T., Lakemeyer, G., Ferrein, A., Reuter, S., Ewert, D., Jeschke, S., Pen-
sky, D., Karras, U.: Proposal for advancements to the LLSF in 2014 and beyond.
In: ICAR - 1st Workshop on Developments in RoboCup Leagues (2013)

5. Karras, U., Pensky, D., Rojas, O.: Mobile robotics in education and research of
logistics. In: IROS 2011 - Workshop on Metrics and Methodologies for Autonomous
Robot Teams in Logistics (2011)

6. Boedecker, J., Asada, M.: SimSpark-concepts and application in the RoboCup 3D
soccer simulation league. In: SIMPAR - WS on RoboCup Simulators (2008)

7. Akin, H.L., Ito, N., Jacoff, A., Kleiner, A., Pellenz, J., Visser, A.: RoboCup rescue
robot and simulation leagues. AI Mag. 34, 78–86 (2013)

8. van Noort, S., Visser, A.: Extending virtual robots towards RoboCup soccer sim-
ulation and @Home. In: Chen, X., Stone, P., Sucar, L.E., van der Zant, T. (eds.)
RoboCup 2012. LNCS, vol. 7500, pp. 332–343. Springer, Heidelberg (2013)

9. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: IEEE International Conference on Robot-
ics and Automation (ICRA) (2007)

10. Kootbally, Z., Balakirsky, S., Visser, A.: Enabling codesharing in rescue simula-
tion with USARSim/ROS. In: Behnke, S., Veloso, M., Visser, A., Xiong, R. (eds.)
RoboCup 2013. LNCS, vol. 8371, pp. 592–599. Springer, Heidelberg (2014)

11. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

http://www.fawkesrobotics.org/projects/llsf-sim/
http://www.fawkesrobotics.org/projects/llsf-sim/
http://www.hybrid-reasoning.org
http://www.robocup-logistics.org/rules


232 F. Zwilling et al.

12. Niemueller, T., Ferrein, A., Beck, D., Lakemeyer, G.: Design principles of the
component-based robot software framework Fawkes. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 300–311. Springer, Heidelberg (2010)

13. Zwilling, F.: Simulation of the RoboCup logistic league with Fawkes and Gazebo for
multi-robot coordination evaluation. Bachelor’s thesis, RWTH Aachen University,
Knowledge-Based Systems Group, December 2013

14. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: International Conference on Intelligent Robots and Sys-
tems (2004)

15. Niemüller, T., Ferrein, A., Lakemeyer, G.: A lua-based behavior engine for con-
trolling the humanoid robot Nao. In: Baltes, J., Lagoudakis, M.G., Naruse, T.,
Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 240–251. Springer, Hei-
delberg (2010)

16. Beck, D., Ferrein, A., Lakemeyer, G.: A simulation environment for middle-size
robots with multi-level abstraction. In: Visser, U., Ribeiro, F., Ohashi, T., Del-
laert, F. (eds.) RoboCup 2007. LNCS (LNAI), vol. 5001, pp. 136–147. Springer,
Heidelberg (2008)

17. Niemueller, T., Lakemeyer, G., Ferrein, A.: Incremental task-level reasoning in
a competitive factory automation scenario. In: AAAI Spring Symposium 2013 -
Designing Intelligent Robots: Reintegrating AI (2013)


	Simulation for the RoboCup Logistics League with Real-World Environment Agency and Multi-level Abstraction
	1 Introduction
	2 RoboCup Logistics League
	3 Related Work
	3.1 Fawkes

	4 Simulation
	4.1 Gazebo
	4.2 Architecture
	4.3 Simulation Interfaces
	4.4 Multi-level Abstraction (MLA)

	5 Applications
	5.1 Agent Strategy Evaluation
	5.2 Simulation vs. Real World

	6 Conclusion
	References


