
Chapter 6
Electromagnetic Fields

Beam dynamics is effected by electromagnetic fields. Generally, magnetic fields
are used for relativistic particle guidance and focusing while electric fields are
mostly used in the form of electro-static fields or microwaves for acceleration of
the particles. In this chapter, we will discuss in more detail the magnetic fields and
their generation as they are used in beam dynamics. From (1.52), (1.51) we know
how to derive static electric and magnetic fields from a vector or scalar potential by
solving their Laplace equations.

6.1 Pure Multipole Field Expansion

Special desired effects on particle trajectories require specific magnetic fields.
Dipole fields are used to bend particle beams and quadrupole magnets serve,
for example, as beam focusing devices. To obtain an explicit formulation of the
equations of motion of charged particles in an arbitrary magnetic field, we derive
the general magnetic fields consistent with Maxwells equations.

Although we have identified a curvilinear coordinate system moving together
with particles to best fit the needs of beam dynamics, we use in this section first,
for simplicity, a fixed, right-handed Cartesian coordinate system .x; y; z/: By doing
so, we assume straight magnets and neglect the effects of curvature. Later in this
chapter, we will derive both the electromagnetic fields and equations of motion in
full rigor.
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126 6 Electromagnetic Fields

6.1.1 Electromagnetic Potentials and Fields
for Beam Dynamics

Earlier we have derived the potentials from the wave equation in a charge and
current free static environment. This is the beam environment and we want to
formulate fields for beam dynamics there. In the same environment Maxwell’s
equations reduce to rB D 0 and r � B D 0 and can be used directly: Based
on these equations, the magnetic fields can be derived from potentials by (1.51) as
previously defined. Electrostatic fields are derived from a scalar potential alone
according to (1.52).

In beam dynamics we use mostly purely transverse magnetic fields and from
the definition of the magnetic field by the vector potential we find that only the
component Az ¤ 0 collapsing practically to a scalar. To simplify math, we try to
formulate a complex potential for transverse only fields and set

P .z/ D Az .z/C iV .z/ ; (6.1)

where z D xCiy: We define also a complex field which we hope to derive from
the complex potential. The usual derivation of fields from potentials with B D
BxCiBy D � @P

@z ; however, does not work as can be shown by back-substitution.
On the other hand, the conjugate complex form

B� D Bx � iBy D i
@P

@z
(6.2)

is a valid, Maxwell compliant formulation. This is true because only the second
formulation is an analytical function f .z/ D u .x; y/Civ .x; y/ meeting the Cauchy-
Riemann conditions
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(6.3)

and are solutions of the Laplace equation. Evaluating (6.2) we get while dropping
the index z in the non-zero component of the vector potential .Az D A/
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because x?y: Similarly,
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Equating real and imaginary terms on both sides we may now express the field
components like

Bx D �@V

@x
and By D �@V

@y
; or (6.6a)

Bx D C@A

@y
and By D �@A

@x
; (6.6b)

which are just the Cauchy-Riemann conditions for the complex magnetic field B�.
Both field definitions are valid definitions.

The potential of real magnets can be expanded into a power series defining all
multipoles. Any function of an analytical function is also an analytical function.
Especially, the power series

P .z/ D
X

n�0
Cn .x C iy/n D

X

n�0
Cnzn D

X

n�0
Cnrnein' (6.7)

is an analytical function and therefore all components Pn are complex solutions of
the Laplace equation with complex amplitudes

Cn D �n C i�n: (6.8)

The coefficients �n are for upright multipoles while the �n are those of skew
multipoles. Upright multipoles are characterized by midplane symmetry which
requires that for y D 0 the horizontal fields vanish Bx.y D 0/ D 0 and only
vertical field components exist By.y D 0/ ¤ 0: In beam dynamics we almost
exclusively use upright magnets. This ansatz is not the most general solution of the
Laplace equation, but includes all main multipole fields used in beam dynamics.
Later, we will derive a solution that includes all terms allowed by the Laplace
equation in a curvilinear coordinate system. Both, the real and imaginary part, are
two independent solutions of the same Laplace equation. All coefficients �n; �n are
still functions of z although we do not indicate this explicitly.

We distinguish between the electrical potential Ve and the magnetic potential Vm.
Since the Laplace equation is valid for both the electric as well as the magnetic field
in a material free region, no real distinction between both fields had to be made.
In reality, we rarely design devices which include more than one term of the field
expansion. It is therefore appropriate to decompose the general field potential in
(6.7) into its independent multipole terms. To keep the discussion simple, we ignore
here electric fields.
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6.1.2 Fields, Gradients and Multipole Strength Parameter

In (6.7) we used general coefficients which must be related to fields and field
gradients. Furthermore, we are looking for energy independent magnet strength
parameters which are almost exclusively used in beam dynamics. The particular
field patterns for multipole magnets can be derived from the complex potential by
differentiation to get the fields (6.6a). Although fields can be derived from both the
vector and scalar potential, we will use only the latter to define the fields for beam
dynamics.

The first term in (6.7) C0 is a constant and will not contribute to transverse fields.
However C0 .z/ and will therefore show up for longitudinal fields which we will
discuss in Sect. 6.6. In Table 6.1 the scalar potentials are listed for the first five
multipoles. In this list we have already introduced more practical quantities to be
further defined. The coefficients .�n; �n/ have been replaced by field gradients

�n D � 1

nŠ
sn and (6.9)

�n D � 1

nŠ
sn ;

which are defined for upright and skew magnets of order n by

sn
�
T/mn�1� D C @n�1By

@xn�1

ˇ̌
ˇ̌
xD0
yD0

; n D 1; 2; 3 : : : and (6.10a)

sn

�
T/mn�1� D � @n�1Bx

@xn�1

ˇ̌
ˇ̌
xD0
yD0

; (6.10b)

respectively. Following common practice we use special letters for fields and
gradients in low order multipoles (see Table 6.2, left column). In anticipation of
formulating equations of motion we further introduce energy independent field
gradients. Fields and gradients are not convenient for beam dynamics where
we design energy independent beam transport systems. This we can do by a
normalization that includes a general energy factor called the beam rigidity or just

Table 6.1 Magnetic multipole potentials

Dipole �V1 D �Bxx � Byy

Quadrupole �V2 D � 1
2
g .x2 � y2/C gxy ;

Sextupole �V3 D � 1
6
s3

�
x3 � 3xy2

� C 1
6
s3

�
3x2y � y3

�
;

Octupole �V4 D � 1
24

s4
�
x4 � 6x2y2 C y4

� C 1
24

s4
�
x3y � xy3

�
;

Decapole �V5 D � 1
120

s5
�
x5 � 10x3y2 C 5xy4

� C 1
120

s5
�
5x4y � 10x2y3 C y5

�
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Table 6.2 Field gradient
nomenclature for low order
multipoles

Dipole By
e

p0
By D 1

�

Quadrupole
@By

@x D g e
p0

@By

@x D k

Sextupole
@2By

@x2 D s e
p0

@By

@x D m

Octupole
@3By

@x3 D s4
e

p0

@By

@x D r

Decapole
@4By

@x4 D s5
e

p0

@By

@x D S5

the “Brho”from its mathematical form as

Rb D B� D p0
e

D ˇE

ce
D 1

0:29979
ˇE .GV/ : (6.11)

This normalization factor is different for electrical and magnetic fields

Rb,m D ˇE .GV/

0:29979
for magnetic fields, and (6.12)

Rb,e D ˇ2E .GV/

0:29979
for electric fields. (6.13)

This difference will obviously vanish for highly relativistic particles .ˇ � 1/. In
beam dynamics we use for relativistic beams mostly magnets and therefore we will
use in this book the beam rigidity for magnetic fields Rb,m unless otherwise noted.
For low order magnet strength parameters we use �y; k;m for bending magnets,
quadrupoles and sextupoles, respectively as shown in the right column of Table 6.2.
In Chap. 4 the particle path in a uniform field B has been derived as an arc with
radius �

1

�
D ec

ˇE
By: (6.14)

This equation illustrates directly the normalization with a factor equal to the product
of B�: Applied to a bending magnet, for example, we find that the curvature �x D
1=� is the normalized quantity for the uniform bending field By. Since we rarely
deal with vertical bending magnets we drop the index y in By and the index x in �x:

In (6.14) the curvature or the field can be treated very generally not just as the
properties of a bending magnet. Equation (6.19) can be used as the general field and
we obtain by multiplication with the beam rigidity

1

�
D 1

�0
C kx C 1

2
mx2 C 1

6
rx3 C : : : : D

1X

nD1
Snxn�1; (6.15)
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Table 6.3 Upright multipole fields

Dipole e
p0

Bx D 0 e
p0

By D e
p0

By0

Quadrupole e
p0

Bx D ky e
p0

By D kx

Sextupole e
p0

Bx D mxy e
p0

By D 1
2
m

�
x2 � y2

�

Octupole e
p0

Bx D 1
6
r

�
3x2y � y3

�
e

p0
By D 1

6
s4

�
x3 � 3xy2

�

Decapole e
p0

Bx D C 1
24

s5
�
x3y � xy3

�
e

p0
By D C 1

24
s5

�
x4 � 6x2y2 C y4

�

Table 6.4 Rotated or skew multipole fields

Dipole (90ı/ e
p0

Bx D e
p0

Bx0
e

p0
By D 0

Quadrupole (45ı) e
p0

Bx D �kx e
p0

By D Cky

Sextupole (30ı) e
p0

Bx D � 1
2
m

�
x2 � y2

�
e

p0
By D Cmxy

Octupole (22:5ı) e
p0

Bx D � 1
6
r

�
x3 � 3xy2

�
e

p0
By D � 1

6
r

�
3x2y � y3

�

Decapole (18ı) e
p0

Bx D � 1
24

s5
�
x4 � 6x2y2 C y4

�
e

p0
By D C 1

24
s5

�
x3y � xy3

�

The angles indicate the orientation of the central pole with respect to the y-axis (the y-axis is at
90ı/

where 1
�0

is the pure dipole field and the multipole magnet strengths

Sn D ec

ˇE
sn (6.16)

or in more practical units

Sn .m�n/ D 0:29979 � sn
�
T/mn�1� : (6.17)

This gives us immediately the normalization for quadrupoles, sextupoles and
higher order multipoles. These parameters are used in beam dynamics as the energy
independent magnet strengths while field gradients would scale with beam energy.
From Table 6.1 we get by differentiation for upright multipoles the fields for low
order upright multipole magnets which are compiled in Table 6.3.

The other class of magnets does not have mid-plane symmetry but the magnets
have the same field patterns as the corresponding upright magnets, yet are rotated
about the z-axis by an angle �n D �=.2n/, where n is the order of the multipole.
These magnets are rarely used in beam dynamics and if so mostly as corrections to
field errors. For example, misaligned quadrupoles can create a skew field causing
undesired coupling of particle motion between horizontal and vertical plane. Such
coupling can be compensated by installing skew quadrupoles. From the expressions
for the multipole potentials in Table 6.1 we obtain again the multipole field
components which are compiled up to decapoles in Table 6.4.

The characteristic difference between the two sets of field solutions is that the
fields of upright linear magnets in Table 6.3 do not cause coupling for particles
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traveling in the horizontal or vertical midplane, in contrast to the rotated magnet
fields of Table 6.4 which would deflect particles out of the horizontal midplane. In
linear beam dynamics, where we use only dipole and upright quadrupole magnets,
the particle motion in the horizontal and vertical plane are completely independent.
This is a highly desirable “convenience” without which particle beam dynamics
would be much more complicated and less predictable. Since there is no particular
fundamental reason for a specific orientation of magnets in a beam transport
systems, we may as well use that orientation that leads to the simplest and most
predictable results. We will therefore use exclusively upright magnet orientation for
the main magnets and treat the occasional need for rotated magnets as a perturbation.
In summary, the general magnetic field equation including only the most commonly
used upright multipole elements are given by

e

p0
Bx D Cky C mxy C 1

6
r

�
3x2y � y3

� C : : : (6.18a)

e

p0
By D 1

�0
C kx C 1

2
m

�
x2 � y2

� C 1
6
r

�
x3 � 3xy2

� C : : : (6.18b)

Sometimes it is interesting to investigate the particle motion only in the horizon-
tal midplane, where y D 0. In this case we expect the horizontal field components
Bx of all multipoles to vanish and any deflection or coupling is thereby eliminated.
In such circumstances, the particle motion is completely contained in the horizontal
plane and the general fields to be used are given by

e

p0
Bx D 0 (6.19a)

e

p0
By D 1

�0
C kx C 1

2
mx2 C 1

6
rx3 C : : :C 1

.n � 1/ŠSnxn�1 (6.19b)

6.1.3 Main Magnets for Beam Dynamics

The feasibility of any accelerator or beam transport line design depends fundamen-
tally on the parameters and diligent fabrication of technical components composing
the system. Not only need the magnets be designed such as to minimize undesirable
higher order multipole fields but they also must be designed such that the desired
parameters are within technical limits. Most magnets constructed for beam transport
lines are electromagnets rather than permanent magnets. The magnets are excited
by electrical current carrying coils wound around magnet poles or in the case of
superconducting magnets by specially shaped and positioned current carrying coils.
In this section, we will discuss briefly some fundamental design concepts and limits
for most commonly used iron dominated bending and quadrupole magnets as a
guide for the accelerator designer towards a realistic design. For more detailed
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discussions on technical magnet designs we refer to related references, for example
[1, 2].

Iron dominated magnets are the most commonly used magnets for particle beam
transport systems. Only where very high particle energies and magnetic fields are
required, superconducting magnets are used with maximum magnetic fields of 6–
10 T compared to the maximum field in an iron magnet of about 2 T. Although
saturation of ferromagnetic material imposes a definite limit on the strength of iron
dominated magnets, most accelerator design needs can be accommodated within
this limit.

We are now in a position to determine the fields for any multipole. This will be
done in this section for magnetic fields most commonly used in particle transport
systems, the bending field and the focusing quadrupole field. Only for very special
applications are two or more multipole field components desired in the same magnet
like in a gradient bending magnet or synchrotron magnet.

Deflecting Magnets

For the bending field n D 1 and we get from (6.7) the magnetic potential

P1.x; y/ D A1 C iV1 D C1 .x C iy/ D .�1x � �1y/C i .�1y C �1x/ : (6.20)

in case of bending magnets, the skew type is a vertical bending magnet which is
used in beam dynamics very rarely. The equipotential lines in the transverse .x; y/-
plane along which the scalar potential is constant are determined for the first order
potential by

V1 D �1y C �1x D const (6.21)

and the corresponding electromagnetic field is given in component formulation by
the vector

B D .��1;��1; 0/ : (6.22)

Equation (6.22) defines the lowest order transverse field in beam guidance or beam
transport systems, is uniform in space and is called a dipole field. To simplify the
design of beam transport systems it is customary to use dipole fields that are aligned
with the coordinate system such as to exert a force on the particles only in the
horizontal x- or only in the vertical y-direction. With these definitions, we have for
a horizontally deflecting magnet .�1 ¤ 0; �1 D 0/ and for a vertically deflecting
magnet .�1 D 0; �1 ¤ 0/ :To design a pure dipole magnet, we would place iron
surfaces at equipotential lines. Specifically, for a horizontally deflecting magnet the
equipotential lines are at

y D ˙G (6.23)
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to define a uniform vertical field within a vertical magnet aperture of 2G. Infinitely
long magnets are assumed and the equipotential surface is defined by the same line
anywhere along z:

As mentioned above, vertical bending magnets are rarely used in accelerator
physics. Yet, there are special instances, especially in beam transport lines where
vertical bending magnets are required. In those cases we would just introduce a
vertical curvature �y in (6.18a) or (6.19a) cover the vertical dispersion function.
Outside the bending magnet the dispersion behaves just like a particle trajectory
and therefore the quadrupoles do not have to be rotated or modified.

Focusing Device

The most suitable device that provides a material free aperture and a desired
focusing field is a quadrupole magnet. The magnetic field can be derived from the
term n D 2 of the scalar potential (6.7)

P2.x; y/ D C2 .x C iy/2 D C2 .x
2 � y2 C i2xy/: (6.24)

Similar to the dipole case, both the real and imaginary parts are two independent
solutions of the same Laplace equation and therefore the potential for both
components can be written in the form

P2.x; y/ D A2 C iV2 D �2.x
2 � y2/� 2�2xy C i

�
2�2xy C �2

�
x2 � y2

��
: (6.25)

Both the real and imaginary solutions are independent solutions with independent
coefficients. Coefficient �2�2 D g is equal to the field gradient for an upright
quadrupole and �2�2 Dg, which is the field gradient of a skew quadrupole.
Separating both solutions, equipotential lines in the transverse .x; y/-plane for both
second order potentials can be defined by

x2 � y2 D const; for the skew quadrupole and (6.26a)

xy D const. for the upright quadrupole. (6.26b)

Magnetic equipotential surfaces with a profile following the desired scalar
potential (6.1.3) will be suitable to create the desired fields. The field pattern of an
upright quadrupole magnet (6.26b) is shown schematically in Fig. 6.1 (left) together
with the pole configuration for a rotated quadrupole Fig. 6.1 (right).

Synchrotron Magnet

Sometimes a combination of both, the dipole field of a bending magnet and the
focusing field of a quadrupole, is desired for compact beam transport lines to form
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Fig. 6.1 Pole shape of an upright quadrupole (left) and of a rotated quadrupole magnet (right)
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Fig. 6.2 Pole profile for a synchrotron magnet (schematic)

what is called a synchrotron magnet. The name comes from the use of such magnets
for early synchrotron accelerators. The fields can be derived just like the dipole and
quadrupole fields from the two-term potential (6.7) with n D 1 and n D 2:

Such a magnet actually is nothing but a transversely displaced quadrupole. The
field in a quadrupole displaced by x0 from the beam axis is By D g.x�x0/ D gx�gx0

and a particle traversing this quadrupole at x D 0 will be deflected by the field By D
gx0. At the same time, we still observe focusing corresponding to the quadrupole
field gradient g. The pole cross section of such a magnet is shown in Fig. 6.2.
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The deviation from parallelism of the magnet poles at the reference trajectory is
often quantified by the characteristic length defined by

`ch D By

g
D 1

�0k
: (6.27)

Geometrically this characteristic length is equal to the distance from the reference
trajectory to that point at which the tangents from the two magnet poles at the
vertical reference plane would touch (Fig. 6.2).

Higher Order Multipole Magnets

In a general beam transport line we use bending and quadrupole magnets to guide
and focus a particle beam. For more sophisticated systems, however, we experience
chromatic aberrations as is known from light optics. Particles with slightly different
energies are focused differently and the image becomes blurred. In light optics such
aberrations are partially corrected by the use of glasses with different refractive
indices. In particle optics we use sextupoles. As the name indicates this magnet is
composed of six poles. The complex potential is

P3 .z/ D A3 C iV3 D C3 .x C iy/3 D �3
�
x3 � 3xy2

� � �3
�
3x2y � y3

�

C i
�
�3

�
3x2y � y3

� C �3
�
x3 � 3xy2

��
: (6.28)

Only upright sextupoles are used in beam dynamics for which �6�3 D s3 the ideal
fields are

e

p0
Bx D �mxy and

e

p0
By D �1

2
m

�
x2 � y2

�
: (6.29)

The pole profile is given by the scalar potential V3

V3 D 3x2y � y3 D const (6.30)

which describes the center poles along the vertical axis. To get the other poles one
must rotate the center pole by 60ı: The aperture radius R must be chosen like in the
case of the quadrupole from other consideration related to the application and beam
requirement. The actual sextupole profile (6.30) is then given for the center pole by

3x2y � y3 D �R3: (6.31)

The magnet pole shapes for sextupole octupole or higher order magnets are
shown in Fig. 6.3. Odd order multipoles like dipoles, sextupoles, decapoles etc.
are characterized by central poles along the vertical axis (Fig. 6.3 left). Even order
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pole profile
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4xy(x2-y2) = R4
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Fig. 6.3 Pole profile for an upright sextupole (left) and octupole (right) magnet

multipoles have no poles along the horizontal or vertical axis (Fig. 6.3 right). The
profile can be derived directly from the respective potential (6.7). Only the profile of
one pole must be determined since the other poles are generated by simple rotation
of the first pole by multiples of the angle 90ı=n, where n is the order of the multipole.
Multipoles of higher order than sextupoles are rarely used in accelerator physics but
can be derived from the appropriate multipole potentials.

For an arbitrary single higher order multipole the field components can be derived
from its potential (6.7)

Pn.x; y/ D An C iVn D Cn .x C i y/n: (6.32)

From this equation it is straight forward to extract an expression for the potential
of any multipole field satisfying the Laplace equation. Since both electrical and
magnetic fields may be derived from the Laplace equation, we need not make any
distinction here and may use (6.32) as an expression for the electrical as well as the
magnetic potential.

As mentioned before, it is useful to keep both sets of solutions .�n;�n/ separate
because they describe two distinct orientations of multipole fields. For a particular
multipole both orientations can be realized by a mere rotation of the element about
its axis. Only the solution �n has what is called midplane symmetry with the
property that Bny.x; y/ D Bny.x;�y/. In this symmetry, there are no horizontal field
components in the midplane, Bnx.x; 0/ � 0, and a particle travelling in the horizontal
mid plane will remain in this plane. We call all magnets in this class upright magnets.
The magnets defined by �n ¤ 0 we call rotated or skew magnets since they

differ from the upright magnets only by a rotation about the magnet axis. In real
beam transport systems, we use almost exclusively magnetic fields with midplane
symmetry.
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Fig. 6.4 Simulation of the dipole field through a vacuum chamber which is magnetic (� D 1:8/

(left). The same situation is shown on the right side after annealing of the vacuum chamber

Vacuum Chamber Material

We have made great efforts to optimize the multipole field quality, but much of
this can be destroyed again with the installation of a vacuum chamber. The vacuum
chamber must be made of material which is non-magnetic. This is no problem with
Aluminum or Copper but great care must be exercised with steel chambers. Non-
magnetic material with a permeability of some � D 1:01 or D 1:02 should be
used. If the permeability is greater, the vacuum chamber walls concentrate magnetic
flux which distorts the desired field. A field simulation with vacuum chamber is
shown in Fig. 6.41 where we note the field concentration in two parts of the vacuum
chamber (left) which has a permeability of � D 1:8: The simulation is for the
NSRRC booster where beam could not be stored at injection energy of 150 MeV
because of the magnetic properties of the vacuum chamber. After annealing to about
1,050 ıC the permeability was reduced to � � 1:01 � 1:02 and the effect of the
vacuum chamber has been clearly eliminated (right). Similar effects on the ideal
magnetic field can occur in any other multipole. While the perturbation seems small
and barely noticeable it is big enough to prevent storage of a beam in a circular
accelerator.

6.1.4 Multipole Misalignment and “Spill-down”

In beam dynamics it is very important to align magnets very precise. However, there
are limits and we need to know what happens if we misalign magnets. We consider
first only a rotational misalignment by the angle ı: The scalar potential is then

Pn .r; '/ D Cnrnein.'�ı/: (6.33)

1The author thanks Jyh-Chyuan Jan, Cheng-Ying Kuo and Ping J. Chou from NSRRC, Taiwan for
the pictures showing the effect of a magnetized vacuum chamber based on simulations.
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Expanding this, we get for small rotations such that nı � 1

Pn .r; '/ D Cnrnein'e�inı � Cnrnein' .1� inı/ : (6.34)

The rotational error ı has not altered the original magnetic field, but has added
a small skew component of the same magnet. Much more dramatic are lateral
misalignments. Here, we start from (6.32) and misplace the magnet by the amount
ız D ıxCiıy:

Pn .x; y/ D Cn .z C ız/n : (6.35)

This can be expanded for

Pn .x; y/ D Cn .z C ız/n (6.36)

� Cnzn C Cn
��n
1

�
zn�1ız C �n

2

�
zn�2ız2 C : : :C �n

n

�
ızn

�
:

The original field is still preserved, but now many lower order terms appear.
Actually, for a lateral misalignment all lower order magnetic field components
appear, a phenomenon that is called “spill-down”. These lower order fields cause
orbit distortions, focusing errors and errors in the chromaticity, which all have to be
compensated.

6.2 Main Magnet Design Criteria

In this section we will shortly discuss the design criteria for the main beam dynamics
magnets like bending magnets and quadrupoles. For more detailed studies on
magnets the reader is referred to relevant texts like [2].

6.2.1 Design Characteristics of Dipole Magnets

The expressions for the magnetic potentials give us a guide to design devices that
generate the desired fields. Multipole fields are generated mostly in one of two ways:
as iron dominated magnets, or by proper placement of electrical current carrying
conductors. The latter way is mostly used in high field superconducting magnets,
where fields beyond the general saturation level of about 2 T for iron are desired.

In iron dominated magnets, fields are determined by the shape of the iron
surfaces. Just like metallic surfaces are equipotential surfaces for electrical fields,
so are surfaces of ferromagnetic material, like iron in the limit of infinite magnetic
permeability, equipotential surfaces for magnetic fields. Actually, for practical
applications the permeability only has to be large just like the conductivity must be
large to make a metallic surface an equipotential surface. This approximate property
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of iron surfaces can be exploited for the design of unsaturated or only weakly satu-
rated magnets. For preliminary design calculations, we assume infinite permeability.
Where effects of finite permeability or magnetic saturation become important, the
fields are determined numerically by mathematical relaxation methods. In this text,
we will not be able to discuss the details of magnet design and construction but
will concentrate only on the main magnet features from a beam dynamics point of
view. A wealth of practical experience in the design of iron dominated accelerator
magnets, including an extensive list of references, is compiled in a review article by
Fischer [1] and a monograph by Tanabe [2].

Excitation Current and Saturation in a Bending Magnet

A dipole field can be generated, for example, in an electromagnet as shown in
Fig. 6.5 where the beam would travel normal to the cross section into the center
of the magnet.

The magnetic field B is generated by an electrical current I in current carrying
coils surrounding magnet poles. A ferromagnetic return yoke surrounds the excita-
tion coils providing an efficient return path for the magnetic flux. The magnetic field
is determined by Ampere’s law

r � B
�r

D �0 j; (6.37)

where �r is the relative permeability of the ferromagnetic material and j is the
current density in the coils. Integrating (6.37) along a closed path like the one shown
in Fig. 6.5 and using Stokes’ theorem gives

2GB0 C
Z

iron

B
�r

d� D �0Itot; (6.38)

return
choke

pole gap

excitation
coil

integration pathmagnet pole

B2G

Fig. 6.5 Cross section of a dipole magnet (schematic)
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where B0 is the magnetic field in the center of the magnet aperture between and
normal to the parallel magnet poles with a gap distance of 2G. The integral term
in (6.38) is zero or negligibly small in most cases assuming infinite or a very large
permeability within the magnetic iron. Itot D 2Icoil is the total current flowing in the
complete cross section of both coils. Solving (6.38) for the total current in each coil
we get in more practical units

Icoil.A/ D 1

�0
B0 .T/G .m/ ; (6.39)

which is proportional to the magnetic field and the aperture between the magnet
poles.

As a practical example, we consider a magnetic field of 1 T in a dipole magnet
with an aperture of 2G D10 cm. From (6.39), a total electrical excitation current
of about 40,000 A is required in each of two excitation coils to generate this field.
Since the coil in general is composed of many turns, the actual electrical current is
much smaller by a factor equal to the number of turns and the total coil current Icoil

is therefore often measured in units of Ampere�turns. For example, a coil composed
of 40 windings with sufficient cross section to carry an electrical current of 1,000 A
would provide the total required current of 40,000 A�turns.

As a rule of thumb to get a good field quality within an aperture width equal to the
full gap height the pole width should be at least 3-times the full gap height. Narrower
pole profiles require shimming of the pole profile. There are elaborate way to shape
the pole profile for a bending magnet [2] but there are also more simple ways. The
drop-off of the field towards the side of the poles can be to some extend extended
further out by adding to the pole profile a straight line shim to slightly reduce the
pole gap around the edges of the poles. This shim need not be more elaborate than
a line segment to reduce the gap followed by a horizontal section to the edge of the
pole. Such shims may start around half a full gap size from the center with a gentle
slope and rarely a thickness of more than 0:5–1mm. We will discuss such shims in
more detail in connection with quadrupole design.

Saturation effects are similar to those in a quadrupole magnet which will be
discussed in the next section. Like in any magnet the first sign of saturation show up
most likely at the pole root where the poles join the return yoke. That is so because
much magnetic flux comes into the pole from the sides along the length of the pole
thus increasing the magnetic flux density. One way out is to shape the pole pieces
like wedges with increasing cross section towards the return yoke. Any saturation
in the return yoke is easily avoided by increasing the thick ness of the iron in the
return yoke.

6.2.2 Quadrupole Design Concepts

Quadrupoles together with bending magnets are the basic building blocks for
charged particle beam transport systems and serve as focusing devices to keep
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the particle beam close to the desired beam path. The magnet pole profile for a
quadrupole can be derived the same way as that for a dipole magnet. Placing an iron
boundary in the shape of a hyperbola generates the equipotential surface required
for an upright quadrupole, or mathematically

xy D const : (6.40)

The inscribed radius of the iron free region is R and the constant in (6.40) is

therefore .R=
p
2/
2 D 1

2
R2 as shown in Fig. 6.1. The pole shape or pole profile

for a quadrupole with bore radius R is then defined by the equation

xy D ˙ 1
2
R2: (6.41)

Similarly, the pole profile of a rotated quadrupole is given by

x2 � y2 D ˙R2: (6.42)

This is the same hyperbola as (6.41) but rotated by 45ı. Both (6.41) and (6.42)
describe four symmetrically aligned hyperbolas which become the surfaces of
the ferromagnetic poles producing an ideal quadrupole field. Magnetization at
alternating polarity of each pole generates a sequence of equally strong north and
south poles.

In a real quadrupole, we cannot use infinitely wide hyperbolas but must cut-
off the poles at some width. In Fig. 6.6 some fundamental design features and
parameters for a real quadrupole are shown and we note specifically the finite pole
width to make space for the excitation coils. Since only infinitely wide hyperbolic
poles create a pure quadrupole field, we expect the appearance of higher multipole
field errors characteristic for a finite pole width.

Pole Profile Shimming

While in an ideal quadrupole the field gradient along, say, the x-axis would be
constant, we find for a finite pole width a drop off of the field and gradient
approaching the corners of poles. Different magnet designer apply a variety of pole
shimming methods. In this text we use tangent shimming as described below. The
field drop off at the pole edge can be reduced to some extend if the hyperbolic pole
profile continues into its tangent close to the pole corner as indicated in Fig. 6.6.

This adds some iron to increase the field where the field would otherwise fall
below the desired value. The starting point of the tangent determines greatly the
final gradient homogeneity in the quadrupole aperture. In Fig. 6.7 the gradient along
the x-axis is shown for different starting points of the tangent. There is obviously an
optimum point for the tangent to minimize the gradient error over a wide aperture.
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Fig. 6.6 Quadrupole design features
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Fig. 6.7 Empirical field gradient and pole profile shimming for a particular quadrupole as
determined by numerical simulations with the program MAGNET [3]

Application of tangent shimmingmust be considered as a fine adjustment of the
field quality rather than a means to obtain a large good field aperture as becomes
apparent from Fig. 6.7. The good field aperture is basically determined by the width
of the pole. While optimizing the tangent point, we find an empirical correlation
between gradient tolerance (Fig. 6.8) within an aperture region x � XF and the pole
width expressed by the minimum pole distance A. The good field region increases
as the pole gets wider. For initial design purposes, we may use Fig. 6.8 to determine
the pole width from A based on the desired good field region XF and gradient field
quality.

The final design of a magnet pole profile is made with the help of computer codes
which allow the calculation of magnet fields from a given pole profile with satura-
tion characteristics determined from a magnetization curve. Widely used computer
codes for magnet design are, for example, MAGNET [3] and POISSON [4].
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Fig. 6.8 Field gradient tolerances as a function of pole profile parameters calculated with
MAGNET

Field errors in iron dominated magnets have two distinct sources, the finite pole
width and mechanical manufacturing and assembly tolerances. From symmetry
arguments, we can deduce that field errors due to the finite pole width produce only
select multipole components. In a quadrupole, for example, only .2n C 1/ � 4-pole
fields like 12-pole or 20-pole fields are generated. Similarly in a dipole of finite pole
width only .2n C 1/ � 2-pole fields exist. We call these multipole field components
often the allowed multipole errors. Manufacturing and assembly tolerances on the
other hand do not exhibit any symmetry and can cause the appearance of any
multipole field error.

The particular choice of some geometric design parameters must be checked
against technical limitations during the design of a beam transport line. One basic
design parameter for a quadrupole is the bore radius R which depends on the
aperture requirements of the beam. Addition of some allowance for the vacuum
chamber and mechanical tolerance between chamber and magnet finally determines
the quadrupole bore radius.

Excitation Current and Saturation

The field gradient is determined by the electrical excitation current in the quadrupole
coils. Similar to the derivation for a bending magnet, we may derive a relation
between field gradient and excitation current from Maxwell’s curl equation. To
minimize unnecessary mathematical complexity, we choose an integration path as
indicated in Fig. 6.9 which contributes to the integral

H
Bsds only in the aperture of

the quadrupole.
Starting from the quadrupole axis along a path at 45ı with respect to the

horizontal or vertical plane toward the pole tip, we have

1

�r

I
Bsds D

Z R

0

Brdr D �0Itot: (6.43)



144 6 Electromagnetic Fields

Fig. 6.9 Determination of
the field gradient from the
excitation current iron yoke

integration
path

Since Bx D gy and By D gx; the radial field component is Br D
q

B2x C B2y D gr

and the excitation current from (6.43) is given by

Itot.A � turns/ D 1

2�0
g

�
T

m

�
R2.m/ : (6.44)

The space available for the excitation coils or coil slot in a real quadrupole
design determines the maximum current carrying capability of the coil. Common
materials for magnet coils are copper or aluminum. The electrical heating of the
coils depends on the current density and a technically feasible balance between
heating and cooling capability must be found. As a practical rule the current density
in regular beam transport magnets should not exceed about 6–8 A/mm2. This is
more an economical than a technical limit and up to about a factor of two higher
current densities could be used for special applications. The total required coil
cross section, however, including an allowance for insulation material between coil
windings and about 15–20 % for water cooling holes in the conductor depends on the
electrical losses in the coil. The aperture of the water cooling holes is chosen such
that sufficient water cooling can be provided with an allowable water temperature
increase which should be kept below 40 ıC to avoid boiling of the cooling water at
the surface and loss of cooling power. A low temperature rise is achieved if the water
is rushed through the coil at high pressure in which case undesirable vibrations of
the magnets may occur. The water cooling hole in the conductor must therefore be
chosen with all these considerations in mind. Generally the current density averaged
over the whole coil cross section is about 60–70 % of that in the conductor.

In practical applications, we find the required coil cross section to be significant
compared to the magnet aperture leading to a long pole length and potential
saturation. To obtain high field limits due to magnetic saturation, iron with a
low carbon content is used for most magnet applications in particle beam lines.
Specifically, we require the carbon content for most high quality magnets to be no
more than about 1 %. In Fig. 6.10 the magnetization curve and the permeability as
a function of the excitation are shown for iron with 0.5 % carbon content. We note
a steep drop in the permeability above 1.6 T reaching full saturation at about 2 T.
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Fig. 6.10 Magnetization and
permeability of typical low
carbon steel as a function of
excitation
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A magnet has an acceptable saturation level if the magnetic permeability anywhere
over the cross section of the magnet remains large compared to unity, �r 	 1.

Severe saturation effects at the corners of the magnet pole profile can be avoided
if the maximum field gradient, as a rule of thumb, is chosen such that the pole tip
field does not exceed a value of Bp D 0:8 � 1 T. This limits the maximum field
gradient to gmax D Bp=R and the quadrupole length must therefore be long enough
to reach the focal length desired in the design of the beam transport line. Saturation
of the pole corners introduces higher-order multipoles and must therefore be kept to
a minimum.

Other saturation effects may occur at the pole root where all magnetic flux from
a pole including fringe fields are concentrated. If the pole root is too narrow, the
flux density is too high and saturation occurs. This does not immediately affect
the field quality in the central aperture, but requires higher excitation currents. A
similar effect may occur in the return yokes if the field density is too high because
of too small an iron cross section. In Fig. 6.11 a permeability plot is shown for a
magnet driven into severe saturation. Low values of the permeability indicate high
saturation, which is evident in the pole root.

By increasing the width of the pole root the saturation is greatly reduced as shown
in Fig. 6.12. To minimize pole root saturation the pole length should be as short as
possible because less flux is drawn through the side of the pole. Unfortunately, this
also reduces the space available for the excitation coils leading to excessively large
current densities. To reduce this conflict, the pole width is usually increased at the
pole root rather than shortening the pole length.

In addition to pole root saturation, we may also experience return yoke saturation,
which is easily avoided by increasing its thickness.

6.3 Magnetic Field Measurement

The quality of the magnetic fields translates immediately into the quality and
stability of the particle beam. The precision of the magnetic fields determines
the predictability of the beam dynamics designs. While we make every effort to
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Fig. 6.11 Permeability values are plotted in a grid over the iron cross section of a highly excited
quadrupole. We note the significantly reduced permeability (� � 100) in the narrow pole root
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Fig. 6.12 Permeability values are plotted in a grid over the iron cross section of a highly excited
quadrupole. We note the significantly reduced permeability (� � 100) in the narrow pole root
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construct magnets as precise as possible, we cannot avoid the appearance of higher
multipole fields due to finite pole widths or machining and assembly tolerances.
Therefore, precise magnetic field measurements are required. While detailed dis-
cussions of magnetic field measurement technology exceeds the goals of this book,
the issue is too important to ignore completely and we will discuss this topic in an
introductory way. For more detailed information, please consult texts like [2].

6.3.1 Hall Probe

The Hall probe is the most commonly used device to measure the magnetic field.
Its principle is based on the Lorentz force on moving charges. Use a small piece
of metallic foil, say 1 � 1 mm2, send an electrical current in one direction through
the foil and place the foil into a magnetic field such that the field penetrates the
plane of the foil. The moving electrons feel the Lorentz force due to the presence
of the magnetic field and are pulled off a straight path, thus accumulating charge
on one side of the foil. That charge accumulation causes with the other side of
the foil a potential difference, the Hall voltage, which can be measured and which
is proportional to the magnetic field component passing orthogonally through the
foil. The material of commercial Hall probes is not a metallic foil but some material
which contains many electrons with great mobility to maximize the sensitivity of the
probe. The size of the probe is made very small for maximum resolution because
the probe measures the average field across the area of the foil. Typical areas of a
Hall probe may be in the �m range which provides a high resolution as desired in
magnetic field measurements for beam dynamics. Figure 6.13 shows the principle
functioning of a Hall Probe.

By computer controlled precise movement of the Hall probe from point to point
within the magnet aperture, the magnetic field can be mapped to high precision. The
measurements can then be analysed as to field errors, multipole content and fringe
field effects.

Fig. 6.13 Hall probe
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Fig. 6.14 Rotating coil in a
magnet to determine higher
order multipole components
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6.3.2 Rotating Coil

In practice, however, the particles in a beam integrate through a whole magnet and
we are therefore bound to do the same with Hall probe measurements. A faster
method, and actually more precise method for higher order multipole fields, is a
rotating coil as shown in Fig. 6.14. Here, a coil wound of very thin electrical wire
is installed coaxial within the magnet aperture. Rotating the coil produces a time
dependent voltage which includes all fields within the cross section of the coil and
integrated along the length of the coil. The length of most coils extends well beyond
the ends of the magnet while very short coils may be used to specifically probe local
fields like fringe fields in the ends of magnets. As the coil rotates the induced voltage
is recorded measuring the integrated field along the length of the coil. The induced
voltage is V D � d˚

dt and the magnetic flux

˚ D Leff

Z
B .s/ ds; (6.45)

where Leff is the effective length of the magnet. The integration is taken from the
axis to the radial extent of the coil. With d˚

dt D d˚
ds

ds
dt D LeffB .s/

ds
dt the induced

voltage is V D �LeffB .s/
ds
dt and the integrated voltage is

Z
Vdt D �Leff

Z r

0

B .s/ ds: (6.46)

With Bx D @A
@y and By D � @A

@x , we get B .s/ D �Bx sin � C By cos � D � dA
ds and

Z
Vdt D �Leff A .�/ D

X

n

Œpn cos .n� C  n/C qn sin .n� C  n/	 ; (6.47)

where we have also introduced the Fourier transform of the signal. The vector
potential is used to determine the fields because of simplicity of math. The Fourier
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transform will help us to determine the multipole strength and orientation. For the
n-multipole

Z
Vdt

ˇ̌
ˇ̌
n

D �LeffAn (6.48)

D �Leff jCnj rn
0 .cos n� cos n � sin n� sin n/

D pn cos .n� C  n/C qn sin .n� C  n/ ;

where r0 is the radius of the coil and An D Re Pn D jCnj rn
0 cos .n� C  n/ : To

maximize the signal, the coil radius r0 should be about 80 % of the aperture radius.
Larger coils would not fit the magnet aperture. The phase  n defines the orientation
of the n-multipole. From (6.48) the multipole strength is

Leff jCnj D
p

p2n C q2n
rn
0

(6.49)

and the orientation

 n D � arctan
qn

pn
: (6.50)

From the Fourier coefficients .pn; qn/ of the measured signal
R

Vdt and knowledge
of the coil size r0 we can determine the strength Cn and orientation  n of all
multipole limited only by the sensitivity of the experimental setup. The magnetic
fields are given by

Bnx � iBny D iP0 D inCn jzjn�1 ei.n�1/� (6.51)

D n jCnj rn�1
0 f� sin Œ.n � 1/ � C  n	C i cos Œ.n � 1/ � C  n	g

or

Bnx D �nrn�1
0 Œ��n cos .n � 1/ � C �n sin .n � 1/ �	 ; and

Bny D �nrn�1
0 ŒC�n cos .n � 1/ � � �n sin .n � 1/ �	 : (6.52)

with

jCnj sin n D ��n D an
Bmain .r0/

nrn�1
0

and

jCnj cos n D C�n D �bn
Bmain .r0/

nrn�1
0

: (6.53)
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rotation

r3

r4

r1

r2

Fig. 6.15 Twin coil to determine higher order multipole components

The field components at an arbitrary radius r are finally

Bnx

Bmain
D

�
r

r0

�n�1
Œbn sin .n � 1/ � C an cos .n � 1/ �	 ; and

Bny

Bmain
D

�
r

r0

�n�1
Œbn cos .n � 1/ � C an sin .n � 1/ �	 ; (6.54)

where Bmain is the main magnet field at r0:The signal obtained from a rotating coil
can be used to determine the strength and orientation of higher multipoles.

Practical Considerations

The signals from higher multipoles are measured in the presence of the strong main
field. The dynamic range of the equipment and integrator may not be wide enough
to yield precise multipole information. It would be a great advantage if the signal
from the main field could be compensated or at least be reduced to the level of the
multipole signal. This is possible with multiple coils as shown in Fig. 6.15.

Here the signals from two coils are processed such that the main field is “bucked”
out. There is an outer coil at r1; r3 and an inner coil r2; r4: The signal from the outer
coil is

Z
Vdt

ˇ̌
ˇ̌
outer coil

D Leff mo

X

n

jCnj �
rn
1 � rn

3

�
cos .n� C  n/ (6.55)

and from the inner coil

Z
Vdt

ˇ̌
ˇ̌
inner coil

D Leff mi

X

n

jCnj �
rn
2 � rn

4

�
cos .n� C  n/ (6.56)
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forming a combined signal

Z
Vdt

ˇ̌
ˇ̌
compensated

D Leff

X

n�0
jCnj �

mo
�
rn
1 � rn

3

� C mi
�
rn
2 � rn

4

��
cos .n� C  n/ :

(6.57)

Here, mo and mi are the turns in the outer and inner coil, respectively. Defining

ˇ1 D
ˇ̌
ˇ r3

r1

ˇ̌
ˇ ; ˇ1 D

ˇ̌
ˇ r4

r2

ˇ̌
ˇ ; � D r2

r1
and � D mi

mo
the combined signal (6.57) is for the

signal from the uncompensated outer coil

Z
Vdt

ˇ̌
ˇ̌
uncompensated

D Leff mo

X

n�0
jCnj rn

1SN cos .n� C  n/ (6.58)

and for the compensated coil signal

Z
Vdt

ˇ̌
ˇ̌
compensated

D Leff mo

X

n�0
jCnj rn

1 sn cos .n� C  n/ : (6.59)

The signal sensitivity for the uncompensated coil is

SN D 1 � .�ˇ1/N (6.60)

where N represents the order of the main magnet field and the compensated coil has
the sensitivity sn for the nth-order multipole

sn D 1 � .�ˇ1/n � ��n Œ1 � .�ˇ2/n	 ; (6.61)

where n represents the nth order multipole. By choosing parameters such that sn

becomes zero for the desired values of n, we may eliminated electronically the large
signal from the main magnet field. For example, in case of a quadrupole, we would
like to compensate the quadrupole field and the dipole field which may appear as a
“spill-down” from a misaligned quadrupole. In this case, we would want to set s1 D
1C ˇ1 � �� Œ1C ˇ2	 � 0 and s2 � 1� ˇ21 � �� �

1 � ˇ22
� D 0 and build a specific

measurement coil for quadrupoles: Selecting arbitrarily � D 2 and � D 0:625 the
desired sensitivity will be zero with ˇ1 D 0:5 and ˇ2 D 0:2: All other sensitivities
are at least 60 % and well known to be included in the analysis. It is not necessary
that the main fields are bucked perfectly. It’s sufficient if their signal is reduced to
the level of the higher order multipole signals.

The whole magnetic measurement would record the signals from both coils
separately and produce the strength and orientation of the main field for n D N
according to (6.49) and (6.50) while the same multipole parameters are derived from
the same equations based on the compensated signal and including the calculated
sensitivities.
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Magnetic field measurements have developed very far and have reached a level of
accuracy and precision that fully meets the demands of beam dynamics. Especially,
the determination of the multipole content is important to ensure the stability of a
beam in, for example, a storage ring. While the effects of multipole fields cannot
be analyzed analytically, we may track particles many times around the storage
ring in the presence of these multipole fields and thus define beam stability and the
dynamic aperture.

6.4 General Transverse Magnetic-Field Expansion*

In the previous section, we discussed solutions to the Laplace equation which
included only pure transverse multipole components in a cartesian coordinate
system thus neglecting all kinematic effects caused by the curvilinear coordinate
system of beam dynamics. These approximations eliminate many higher-order
terms which may become of significance in particular circumstances. In preparation
for more sophisticated beam transport systems and accelerator designs aiming, for
example, at ever smaller beam emittances it becomes imperative to consider higher-
order perturbations to preserve desired beam characteristics. To obtain all field
components allowed by the Laplace equation, a more general ansatz for the field
expansion must be made. Here we restrict the discussion to scalar potentials only
which are sufficient to determine all fields [5, 6].

Since we use a curvilinear coordinate system for beam dynamics, we use the
same for the magnetic-field expansion and express the Laplace equation for the
complex potential P in these curvilinear coordinates


V D 1

h

�
@

@x

�
h
@V

@x

�
C @

@y

�
h
@V

@y

�
C @

@z

�
1

h

@V

@z

�	
D 0; (6.62)

where h D 1C�xxC�yy and �x; �y the ideal curvatures in the horizontal and vertical
plane, respectively. We also assume that the particle beam may be bend horizontally
as well as vertically. For the general solution of the Laplace equation (6.62) we use
an ansatz in the form of a power expansion

ec

ˇE
V.x; y; z/ D �

X

p;q�0
Apq.z/

xp

pŠ

yq

qŠ
; (6.63)

where we have added the beam rigidity to facilitate the quantities for application in
beam dynamics and where the coefficients Apq.z/ are functions of z: Terms with
negative indices p and q are excluded to avoid nonphysical divergences of the
potential at x D 0 or y D 0. We insert this ansatz into (6.62), collect all terms
of equal powers in x and y and get

X

p�0

X

q�0

˚
Fpq


 xp

.p � 2/Š

yq

.q � 2/Š
� 0 ; (6.64)
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where fFpqg represents the collection of all coefficients for the term xpyq. For (6.64)
to be true for all values of the coordinates x and y; we require that every coefficient
Fpq must vanish individually. Setting Fpq D 0 leads to the recursion formula

Ap;qC2 C ApC2;q D ��x.3p C 1/ApC1;q � �y.3q C 1/Ap;qC1
�3�yqApC2;q�1 � 3�xpAp�1;qC2
�2�x�0yq.3p C 1/ApC1;q�1 � 2�x�yp.3q C 1/Ap�1;qC1

�3�2y q.q � 1/ApC2;q�2 � 3�2x p.p � 1/Ap�2;qC2

��3x p.p2 � 3p C 2/Ap�3;qC2 � �3y q.q2 � 3q C 2/ApC2;q�3

��x�
2
y q.q � 1C 3pq � 3p/ApC1;q�2 (6.65)

��2x�yp.p � 1C 3pq � 3q/Ap�2;qC1

��yq.3�2x p2 � �2x p C �2y q2 � 2�2y q C �2y /Ap;q�1

��xp.3�2y q2 � �2y q C �2x p2 � 2�2x p C �2x /Ap�1;q

�.3p � 1/p�2x Ap;q � .3q � 1/q�2y Ap;q

�A00
p;q � �xpA00

p�1;q � �yqA00
p;q�1 � �0

xpA0
p�1;q � �0

yqA0
p;q�1

which allows us to determine all coefficients Apq. We note that all terms on the right
hand side are kinematic terms originating from the curvilinear coordinate system.
The derivatives, indicated by a prime, are understood to be taken with respect to the
independent variable z, like A0 D dA=dz, etc. Equation (6.65) is a recursion formula
for the field coefficients Apq and we have to develop a procedure to obtain all terms
consistent with this expression.

6.4.1 Pure Multipole Magnets

The Laplace equation is of second order and therefore we cannot derive coefficients
of quadratic or lower order from the recursion formula. The lowest-order coefficient
A00 represents a constant potential independent of the transverse coordinates x and
y and since this term does not contribute to a transverse field component, we will
ignore it in this section. However, since this term depends on z we cannot neglect
this term where longitudinal fields such as solenoid fields are important. Such fields
will be discussed separately in Sect. 6.6 and therefore we set here for simplicity

A00 D 0 : (6.66)
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The terms linear in x or y are the curvatures in the horizontal and vertical plane as
defined previously

A10 D ��y and A01 D �x ; (6.67)

and

�x D �x" D C e
p By with

ˇ̌
ˇ e

p By

ˇ̌
ˇ D 1

�x
;

�y D �y" D � e
p Bx with

ˇ̌
ˇ e

p Bx

ˇ̌
ˇ D 1

�y
:

(6.68)

Finally, the quadratic terms proportional to x and y are identical to the quadrupole
strength parameters

A20 D �k; A11 D k ; A02 D k: (6.69)

With these definitions of the linear coefficients, we may start exploiting the
recursion formula. All terms on the right-hand side of (6.65) are of lower order than
the two terms on the left-hand side which are of order n D p C q C 2. The left-hand
side is composed of two contributions, one resulting from pure multipole fields of
order n and the other from higher-order field terms of lower-order multipoles.

In (6.65) we identify and separate from all other terms the pure multipole terms
of order n which do not depend on lower-order multipole terms like kinematic terms
by setting

ApC2;q;n C Ap;qC2;n D 0 for p C q C 2 � n (6.70)

and adding the index n to indicate that these terms are the pure nth-order multipoles.
Only the sum of two terms can be determined which means both terms have the
same value but opposite signs. For n D 3 we have, for example, A30 D �A12 or
A21 D �A03 and a comparison with the potentials of pure multipoles of Table 6.5
shows that A30 D �m and A21 D m: Similar correlations can be formulated for all
higher order multipole.2 Analogous to dipoles and quadrupole magnets, we may get
potential expressions for all other multipole magnets. The results up to fifth order
are compiled in Table 6.6.

Each expression for the magnetic potential is composed of both the real and the
imaginary contribution. Since both components differ only by a rotational angle, real
magnets are generally aligned such that only one or the other component appears.
Only due to alignment errors may the other component appear as a field error which
can be treated as a perturbation.

2Consistent with the definitions of magnet strengths, the underlined quantities represent the magnet
strengths of rotated multipole magnets.
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Table 6.5 Correspondence between the potential coefficients and multipole strength parameters

A00
A10 A01

A20 A11 A02
A30 A21 A12 A03

A40 A31 A22 A13 A04

A50 A41 A32 A23 A14 A05

m
0

��y �x

�k k k

�m m m �m

�r r r r �r

�d d d �d �d d

Table 6.6 Magnetic multipole potentials

Dipole � e
p0

V1 D ��yx C �xy

Quadrupole � e
p0

V2 D � 1
2
k .x2 � y2/C kxy ;

Sextupole � e
p0

V3 D � 1
6
m

�
x3 � 3xy2

� C 1
6
m

�
3x2y � y3

�
;

Octupole � e
p0

V4 D � 1
24

r
�
x4 � 6x2y2 C y4

� C 1
24

r
�
x3y � xy3

�
;

Decapole � e
p0

V5 D � 1
120

d
�
x5 � 10x3y2 C 5xy4

� C 1
120

d
�
5x4y � 10x2y3 C y5

�

6.4.2 Kinematic Terms

Having identified the pure multipole components, we concentrate now on using the
recursion formula for other terms which so far have been neglected. First, we note
that coefficients of the same order n on the left-hand side of (6.65) must be split
into two parts to distinguish pure multipole components Ajk;n of order n from the
nth-order terms A�

jk of lower-order multipoles which we label by an asterisk �. Since
we have already derived the pure multipole terms, we explore (6.65) for the A�
coefficients only

A�
p;qC2 C A�

pC2;q D r.h.s. of .6.65/: (6.71)

For the predetermined coefficients A10, A01 and A11 there are no corresponding
terms A� since that would require indices p and q to be negative. For p D 0 and
q D 0 we have

A�
02 C A�

20 D ��0xA10 � �0yA01 D 0: (6.72)
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This solution is equivalent to (6.70) and does not produce any new field terms.
The next higher-order terms for p D 0 and q D 1 or for p D 1 and q D 0 are
determined by the equations

A�
03 C A�

21 D ��0xg � �0yg��00
x D C;

A�
12 C A�

30 D ��0yg C �0xg C �00
y D D;

(6.73)

where we set in preparation for the following discussion the right-hand sides equal
to the as yet undetermined quantities C and D. Since we have no lead how to separate
the coefficients we set

A�
21 D fC; A�

03 D .1 � f /C;
A�
12 D gD; A�

30 D .1 � g/D;
(6.74)

where 0 � . f ; g/ � 1 and f D g. The indeterminate nature of this result is an
indication that these terms may depend on the actual design of the magnets.

Trying to interpret the physical meaning of these terms, we assume a magnet
with a pure vertical dipole field in the center of the magnet, By.0; 0; 0/ 6D 0, but no
horizontal or finite longitudinal field components, Bx.0; 0; 0/ D 0 and Bz.0; 0; 0/ D
0. Consistent with these assumptions the magnetic potential is

ec

ˇE
V.x; y; z/ D �A01y � 1

2
A�
21x

2y � 1
2
A�
12xy2 (6.75)

� 1
6
A�
30x

3 � 1
6
A�
03y

3 C O.4/:

From (6.73) we get D � 0, C D �B00
y and with (6.74) A�

12 D A�
30 D 0. The

magnetic-field potential reduces therefore to

ec

ˇE
V.x; y; z/ D ��xy C 1

2
f�00

x x2y C 1
6
.1 � f /�00

x y3 (6.76)

and the magnetic-field components are

ec
ˇE Bx D �f�00

x xy;
ec
ˇE By D C�x � 1

2
f�00

x x2 � 1
2
.1 � f /�00

x y2:
(6.77)

The physical origin of these terms becomes apparent if we investigate the
two extreme cases for which f D 0 or f D 1 separately. For f D 0

the magnetic fields in these cases are
�

ec
ˇE Bx D 0; ec

ˇE By D �x � 1
2
�00

x y2
�

and
�

ec
ˇE Bx D ��00

x xy; ec
ˇE By D �x � 1

2
�00

x x2
�

for f D 1: Both cases differ only in the

�00
x -terms describing the magnet fringe field. In the case of a straight bending

magnet (By 6D 0) with infinitely wide poles in the x-direction, the horizontal field
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Fig. 6.16 Dipole end field configuration for f D 0
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Fig. 6.17 Dipole end field configuration for 0 < f < 1

component Bx must vanish consistent with f D 0. The field configuration in the
fringe field region is of the form shown in Fig. 6.16 and independent of x.

Conversely, the case 0 < f < 1 describes the field pattern in the fringe field
of a bending magnet with poles of finite width in which case finite horizontal field
components Bx appear off the symmetry planes. The fringe fields not only bulge
out of the magnet gap along z but also spread horizontally due to the finite pole
width as shown in Fig. 6.17, thus creating a finite horizontal field component off the
midplane. While it is possible to identify the origin of these field terms, we are not
able to determine the exact value of the factor f in a general way but may apply
three-dimensional magnet codes to determine the field configuration numerically.
The factor f is different for each type of magnet depending on its actual mechanical
dimensions.

Following general practice in beam dynamics and magnet design, however, we
ignore these effects of finite pole width, since they are specifically kept small by
design, and we may set f D g D 0. In this approximation we get

A�
21 D A�

12 D 0 (6.78)

and

A�
03 D ��xk��yk � �00

x ;

A�
30 D ��yk C �xk C �00

x :
(6.79)

Similar effects of finite pole sizes appear for all multipole terms. As before, we
set f D 0 for lack of accurate knowledge of the actual magnet design and assume
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that these terms are very small by virtue of a careful magnet design within the
good field region provided for the particle beam. For the fourth-order terms we have
therefore with A�

22 � 0 and

A�
40 D �xm � �ym � 4�x�yk C 4�2x k C k00 C 2�x�

00
y C 2�0

x�
0
y;

A�
04 D �ym � �xm � 4�x�yk � 4�2y k � k00 � 2�y�

00
x � 2�0

y�
0
x:

(6.80)

In the case p D q; we expect Aij D Aji from symmetry and get

2A�
13 D 2A�

31 D ��xm � �ym C 2�2x k C 2�2y k � k00

C2�y�
00
y � 2�x�

00
x � �x�

0
x C �y�

0
y: (6.81)

With these terms we have finally determined all coefficients of the magnetic
potential up to fourth order. Higher-order terms can be derived along similar
arguments. Using these results, the general magnetic-field potential up to fourth
order is from (6.63)

� ec

ˇE
V.x; y; z/ D CA10x C A01y (6.82)

C 1
2
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24
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24
A�
04y

4 C O.5/:

From the magnetic potential we obtain the magnetic field expansion by differen-
tiation with respect to x or y for Bx and By, respectively. Up to third order we obtain
the transverse field components in energy independent formulation

ec

ˇE
Bx D ��y � kx C ky (6.84)
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and

ec

ˇE
By D C�xCky C kx (6.85)
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x C�02

x � �02
y /.x

3 C 3xy2/

C 1
6
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00
x �2�0
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0
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3 C O.4/;

where m D e
p s3 and r D e

p s4: The third component of the gradient in a curvilinear

coordinate system is Bz D � 1
h
@V
@z and collecting all terms up to second order we get

ec

ˇE
Bz D C�0

xy � �0
yx C .�y�

0
y � �x�

0
x C k0/xy

C .�x�
0
y � 1

2
k0/x2 � .�y�

0
x � 1

2
k0/y2 C O.3/: (6.86)

Upon closer inspection of (6.84)–(6.86) it becomes apparent that most terms
originate from a combination of different multipoles. These equations describe
the general fields in any magnet, yet in practice, special care is taken to limit the
number of fundamentally different field components present in any one magnet. In
fact most magnet are designed as single multipoles like dipoles or quadrupoles or
sextupoles etc. A beam transport system utilizing only such magnets is also called
a separated-function lattice since bending and focusing is performed in different
types of magnets. A combination of bending and focusing, however, is being used
for some special applications and a transport system composed of such combined-
field magnets is called a combined-function lattice. Sometimes even a sextupole
term is incorporated in a magnet together with the dipole and quadrupole fields.
Rotated magnets, like rotated sextupoles s3 and octupoles s4 are either not used or
in the case of a rotated quadrupole the chosen strength is generally weak and its
effect on the beam dynamics is treated by perturbation methods.

No mention has been made about electric field patterns. However, since the
Laplace equation for electrostatic fields in material free areas is the same as for
magnetic fields we conclude that the electrical potentials are expressed by (6.82)
as well and the electrical multipole field components are also given by (6.84)–
(6.86) after replacing the magnetic field (Bx;By;Bz) by electric-field components
(Ex;Ey;Ez).
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Fig. 6.18 Frenet-Serret
coordinate system
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6.5 Third-Order Differential Equation of Motion*

Equations of motions have been derived in Chap. 5 for the transverse .x; z/ and
.y; z/ planes up to second order which is adequate for most applications. Sometimes,
however, it might be desirable to use equations of motion in higher order of
precision or to investigate perturbations of higher order. A curvilinear Frenet-Serret
coordinate system moving along the curved trajectory of the reference particle r0.z/,
was used and we generalize this system to include curvatures in both transverse
planes as shown in Fig. 6.18.

In this .x; y; z/-coordinate system, a particle at the location s and under the
influence of a Lorentz force follows a path described by the vector r as shown in
Fig. 6.18. The change in the momentum vector per unit time is due only to a change
in the direction of the momentum while the magnitude of the momentum remains
unchanged in a static magnetic fields. Therefore p D pdr=ds where p is the value
of the particle momentum and dr=ds is the unit vector along the particle trajectory.
With dp

d� D dp
dsˇc, where � D s

ˇc ; the particle velocity vs D dr
d� D dr

dsˇc, and we
obtain the differential equation describing the particle trajectory under the influence
of a Lorentz force FL: From dp

d� D FL D e Œvs � B	 we get

d2r
ds2

D ec

ˇE

�
dr
ds

� B
	

(6.87)

and to evaluate (6.87) further, we note that

dr
ds

D dr=dz

ds=dz
D r0

s0 (6.88)

and

d2r
ds2

D 1

s0
d

dz

�
r0

s0

�
: (6.89)
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With this, the general equation of motion is from (6.87)

d2r
dz2

� 1

2s02
dr
dz

ds02

dz
D ec

ˇE
s0

�
dr
dz

� B
	
:

In the remainder of this section, we will re-evaluate this equation in terms of more
simplified parameters. From Fig. 6.18 or (4.21) we have r D r0 C xux C yuy ; where
the vectors ux, uy and uz are the unit vectors defining the curvilinear coordinate
system. To completely evaluate (6.89), the second derivative d2r=dz2 must be
derived from (4.23) with duz D ��xuxdz � �yuydz and h D 1C �xx C �yy for

d2r
dz2

D .x00 � �xh/ux C .y00 � �yh/uy C .2�xx0 C 2�yy
0 C �0

xx C �0
yy/uz; (6.90)

and (6.89) becomes with (4.23) and s0 2 D r0 2
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�
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0 C 2�yy
0 C �0

xx C �0
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s02
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�
uz D ec

ˇE
s0

�
dr
dz

� B
	
: (6.91)

Here the quantities �x and �y are the curvatures defining the ideal particle
trajectory or the curvilinear coordinate system. This is the general equation of
motion for a charged particles in a magnetic field B. So far no approximations have
been made. For practical use we may separate the individual components and get
the differential equations for transverse motion

x00 � �xh�1
2

x0

s02
ds02

dz
D ec

ˇE
s0Œy0Bz � hBy	; (6.92a)

y00 � �yh � 1

2

y0

s02
ds02

dz
D ec

ˇE
s0ŒhBx � x0Bz	: (6.92b)

Chromatic effectsoriginate from the momentum factor ec
ˇE which is different for

particles of different energies. We expand this factor into a power series in ı

ec

ˇE
D e

p0
.1 � ı C ı2 � ı3 C : : :/; (6.93)

where ı D 
p=p0 and cp0 D ˇE0 is the ideal particle momentum. A further
approximation is made when we expand s0 to third order in x and y while restricting
the discussion to paraxial rays with x0 � 1 and y0 � 1

s0 � h C 1
2
.x02 C y02/.1 � �xx � �yy/C : : : : (6.94)
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Evaluating the derivative ds02=dz2 second-order derivatives x00 and y00 appear
which, neglecting fourth-order terms, can here be replaced by the unperturbed
equations of motion x00C.�2x Ck/x D 0 and y00C.�2y Ck/y D 0. For the magnetic field
components, we insert in (6.92a), (6.92b) expressions (6.84)–(6.86) while making
use of (6.93) and (6.94). Keeping all terms up to third order in x; y; x0; y0 and ı;
we finally obtain equations of motion for a particle with charge e in an arbitrary
magnetic field derivable from a scalar potential. For the horizontal and vertical plane
the general equations of motion in a curvilinear coordinate system and including
chromatic terms up to third-order in .x; y; ı/ are (6.95) and (6.96), respectively.

x00 C .�2x C k/x D �xı � �xı
2 C �xı

3 � .k C �x�y/y (6.95)
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y00 C .�2y � k/y D C�yı � �yı
2 C �yı

3 � .k C �x�y/x (6.96)
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In spite of our attempt to derive a general and accurate equation of motion,
we note that some magnet boundaries are not correctly represented. The natural
bending magnet is of the sector type and wedge or rectangular magnets require
the introduction of additional corrections to the equations of motion which are not
included here. This is also true for cases where a beam passes off center through a
quadrupole, in which case theory assumes a combined function sector magnet and
corrections must be applied to model correctly a quadrupole with parallel pole faces.
The magnitude of such corrections is, however, in most cases very small. Equation
(6.95) shows an enormous complexity which in real beam transport lines, becomes
very much relaxed due to proper design and careful alignment of the magnets.
Nonetheless (6.95) and (6.96) for the vertical plane, can be used as a reference
to find and study the effects of particular perturbation terms. In a special beam
transport line one or the other of these perturbation terms may become significant
and can now be dealt with separately. This may be the case where strong multipole
effects from magnet fringe fields cannot be avoided or because large beam sizes
and divergences are important and necessary. The possible significance of any
perturbation term must be evaluated for each beam transport system separately.
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In most beam transport lines the magnets are built in such a way that different
functions like bending, focusing etc., are not combined thus eliminating all terms
that depend on those combinations like �x�y, �xk or m�x etc. As long as the terms
on the right-hand sides are small we may apply perturbation methods to estimate
the effects on the beam caused by these terms. It is interesting, however, to try to
identify the perturbations with aberrations known from light optics.

Chromatic terms �x.ı � ı2 C ı3/, for example, are constant perturbations for off
momentum particles causing a shift of the equilibrium orbit which ideally is the
trivial solution x � 0 of the differential equation x00 C .k C�2x /x D 0. Of course, this
is not quite true since �x is not a constant but the general conclusion is still correct.
This shift is equal to 
x D �x.ı � ı2 C ı3/=.k C �2x / and is related to the dispersion
function D by D D 
x=ı. In light optics this corresponds to the dispersion of colors
of a beam of white light (particle beam with finite energy spread) passing through
a prism (bending magnet). We may also use a different interpretation for this term.
Instead of a particle with an energy deviation ı in an ideal magnet �x we can interpret
this term as the perturbation of a particle with the ideal energy by a magnetic field
that deviates from the ideal value. In this case, we replace �x .ı � ı2 � ı3/ by �
�x

and the shift in the ideal orbit is then called an orbit distortion. Obviously, here and
in the following paragraphs the interpretations are not limited to the horizontal plane
alone but apply also to the vertical plane caused by similar perturbations. Terms
proportional to x2 cause geometric aberrations, where the focal length depends on
the amplitude x while terms involving x0 lead to the well-known phenomenon of
astigmatism or a combination of both aberrations. Additional terms depend on the
particle parameters in both the vertical and horizontal plane and therefore lead to
more complicated aberrations and coupling.

Terms depending also on the energy deviation ı, on the other hand, give rise
to chromatic aberrations which are well known from light optics. Specifically,
the term .k C 2�2x /xı is the source for the dependence of the focal length on the
particle momentum. Some additional terms can be interpreted as combinations of
aberrations described above.

It is interesting to write down the equations of motion for a pure quadrupole
system where only k 6D 0 in which case (6.95) becomes

x00 C kx D kx.ı � ı2 � ı3/ (6.97)

� 1
12

k00x.x2 C 3y2/ � 3
2
k xx02 C k x0yy0 C k0xyy0 C O.4/:

We note that quadrupoles produce only second order chromatic aberrations and
geometric perturbations only in third order.
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6.6 Longitudinal Field Devices

General field equations have been derived in this chapter with the only restriction
that there be no solenoid fields, which allowed us to set A00 D 0 in (6.66), and
concentrate on transverse fields only. Longitudinal fields like those produced in a
solenoid magnet are used in beam transport systems for very special purposes and
their effect on beam dynamics cannot be ignored. We assume now that the lowest-
order coefficient A00 in the potential (6.63) does not vanish

A00.z/ 6D 0 : (6.98)

Longitudinal fields do not cause transverse beam deflection although there can
be some amplitude dependent focusing or coupling. We may therefore choose a
cartesian coordinate system along such fields by setting �x D �y D 0 ; and the
recursion formula (6.65) reduces to

A02 C A20 D �A00
00 : (6.99)

Again, we have a solution where A02 C A20 D 0, which is a rotated quadrupole
as derived in (6.25) and can be ignored here. The additional component of the field
is A�

02 C A�
20 D �A00

00 and describes the endfields of the solenoid. For reasons of
symmetry with respect to x and y we have A�

02 D A�
20 and

A�
02 D A�

20 D � 1
2
A00
00: (6.100)

With this, the potential (6.63) for longitudinal fields is

� Vs.x; y; z/ D A00 � 1
4
A00
00.x

2 C y2/ D A00 � 1
4
A00
00r

2; (6.101)

where we have made use of rotational symmetry. The longitudinal field component
becomes from (6.101) in linear approximation

Bz D CA0
00 (6.102)

and the transverse components

BrD � 1
2
A00
00r D � 1

2
B0

zr; (6.103)

B'D 0:

The azimuthal field component obviously vanishes because of symmetry. Radial
field components appear whenever the longitudinal field strength varies as is the
case in the fringe field region at the end of a solenoid shown in Fig. 6.19.

The strength B0 in the center of a long solenoid magnet can be calculated in the
same way we determined dipole and higher-order fields utilizing Stokes’ theorem.
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Fig. 6.19 Solenoid field integration path
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The integral
H

Bdz is performed along a path as indicated in Fig. 6.19. The only
contribution to the integral comes from the integral along the field at the magnet
axis. All other contributions vanish because the integration path cuts field lines at
a right angles, where Bdz D 0 or follows field lines to infinity where Bz D 0. We
have therefore

I
Bd z D B0
z D �0�rJ
z; (6.104)

where J is the total solenoid current per unit length. The solenoid field strength is
therefore given by

B0 .x D 0; y D 0/ D �0�rJ: (6.105)

The total integrated radial field
R

Brdz can be evaluated from the central field
for each of the fringe regions. We imagine a cylinder concentric with the solenoid
axis and with radius r to extend from the solenoid center to a region well outside
the solenoid. In the center of the solenoid a total magnetic flux of �r2B0 enters this
cylinder. It is clear that along the infinitely long cylinder the flux will exit the surface
of the cylinder through radial field components. We have therefore

�r2B0 D
Z 1

0

2�rBr.r/dz; (6.106)

where we have set z D 0 at the center of the solenoid. The integrated radial field per
fringe field is then

Z 1

0

Br.r/dz D � 1
2
B0r: (6.107)

The linear dependence of the integrated radial fields on the distance r from
the axis constitutes linear focusing capabilities of solenoidal fringe fields. Such
solenoid focusing is used, for example, around a conversion target to catch a highly
divergent positron beam. The positron source is generally a small piece of a heavy
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metal like tungsten placed in the path of a high energy electron beam. Through
an electromagnetic cascade, positrons are generated and emerge from a point like
source into a large solid angle. If the target is placed in the center of a solenoid
the radial positron motion couples with the longitudinal field to transfer the radial
particle momentum into azimuthal momentum. At the end of the solenoid, the
azimuthal motion couples with the radial field components of the fringe field to
transfer azimuthal momentum into longitudinal momentum. In this idealized picture
a divergent positron beam emerging from a small source area is transformed or
focused into a quasi-parallel beam of larger cross section. Such a focusing device is
called a �=4-lens, since the particles follow one quarter of a helical trajectory in the
solenoid.

In other applications large volume solenoids are used as part of elementary
particles detectors in high energy physics experiments performed at colliding-beam
facilities. The strong influence of these solenoidal detector fields on beam dynamics
in a storage ring must be compensated in most cases. In still other applications
solenoid fields are used just to contain a particle beam within a small circular
aperture like that along the axis of a linear accelerator.

6.7 Periodic Wiggler Magnets

Particular arrays or combinations of magnets can produce desirable results for a
variety of applications. A specially useful device of this sort is a wiggler magnet
[7] which is composed of a series of short bending magnets with alternating field
excitation. Most wiggler magnets are used as sources of high brightness photon
beams in synchrotron radiation facilities and are often also called undulators. There
is no fundamental difference between both. We differentiate between a strong field
wiggler magnet and an undulator, which is merely a wiggler magnet at low fields,
because of the different synchrotron radiation characteristics. As long as we talk
about magnet characteristics in this text, we make no distinction between both types
of magnets. Wiggler magnets are used for a variety of applications to either produce
coherent or incoherent photon beams in electron accelerators, or to manipulate
electron beam properties like beam emittance and energy spread. To compensate
anti-damping in a combined function synchrotron a wiggler magnet including a
field gradient has been used for the first time to modify the damping partition
numbers [8]. In colliding-beam storage rings wiggler magnets are used to increase
the beam emittance for maximum luminosity [9]. In other applications, a very
small beam emittance is desired as is the case in damping rings for linear colliders
or synchrotron radiation sources which can be achieved by employing damping
wiggler magnets in a different way [10].

Wiggler magnets are generally designed as flat magnets as shown in Fig. 6.20
[7] with field components only in one plane or as helical wiggler magnets [11–
13] where the transverse field component rotates along the magnetic axis. In this
discussion, we concentrate on flat wigglers which are used in growing numbers to
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Fig. 6.20 Permanent magnet
wiggler showing the
magnetization direction of
individual blocks (schematic)

particle
path

permanent magnet pieces

generate, for example, intense beams of synchrotron radiation from electron beams,
to manipulate beam parameters or to pump a free electron laser.

6.7.1 Wiggler Field Configuration

Whatever the application may be, the wiggler magnet deflects the electron beam
transversely in an alternating fashion without introducing a net deflection on the
beam. Wiggler magnets are generally considered to be insertion devices installed in
a magnet free straight section of the lattice and not being part of the basic magnet
lattice. To minimize the effect of wiggler fields on the particle beam, the integrated
magnetic field through the whole wiggler magnet must be zero

Z

wiggler

B?dz D 0 : (6.108)

Since a wiggler magnet is a straight device, we use a fixed cartesian coordinate
system .x; y; z/ with the z-axis parallel to the wiggler axis to describe the wiggler
field, rather than a curvilinear system that would follow the oscillatory deflection
of the reference path in the wiggler. The origin of the coordinate system is placed
in the middle of one of the wiggler magnets. The whole magnet may be composed
of N equal and symmetric pole pieces placed along the z-axis at a distance �p=2

from pole center to pole center as shown in Fig. 6.21. Each pair of adjacent wiggler
poles forms one wiggler period with a period length �p and the whole magnet is
composed of N=2 periods. Since all periods are assumed to be the same and the
beam deflection is compensated within each period no net beam deflection occurs
for the complete magnet.

Upon closer inspection of the precise beam trajectory we observe a lateral
displacement of the beam within a wiggler magnet. To compensate this lateral beam
displacement, the wiggler magnet should begin and end with only a half pole of
length �p=4 to allow the beams to enter and exit the wiggler magnet parallel with
the unperturbed beam path.

The individual magnets comprising a wiggler magnet are in general very short
and the longitudinal field distribution differs considerable from a hard-edge model.
In fact most of the field will be fringe fields. We consider only periodic fields which
can be expanded into a Fourier series along the axis including a strong fundamental
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Fig. 6.21 Field distribution
in a wiggler magnet
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component with a period length �p and higher harmonics expressed by the ansatz
[14]

By D B0
X

n�0
b2nC1.x; y/ cosŒ.2n C 1/kpz	 ; (6.109)

where the wave number kp D 2�=�p. The functions bi.x; y/ describe the variation
of the field amplitude orthogonal to the beam axis for the harmonic i. The content
of higher harmonics is greatly influenced by the particular design of the wiggler
magnet and the ratio of the period length to the pole gap aperture. For very
long periods relative to the pole aperture the field profile approaches that of a
hard-edge dipole field with a square field profile along the z-axis. For very short
periods compared to the pole aperture, on the other hand, we find only a significant
amplitude for the fundamental period and very small perturbations due to higher
harmonics.

We may derive the full magnetic field from Maxwell’s equations based on a
sinusoidal field along the axis. Each field harmonic may be determined separately
due to the linear superposition of fields. To eliminate a dependence of the magnetic
field on the horizontal variable x; we assume a pole width which is large compared
to the pole aperture. The fundamental field component is then

By.y; z/ D B0b1.y/ cos kpz : (6.110)

Maxwell’s curl equation is in the wiggler aperture r � B D 0, @Bz
@y D @By

@z and with
(6.110) we have

@Bz

@y
D @By

@z
D �B0b1.y/kp sin kpz : (6.111)
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Integration of (6.111) with respect to z gives the vertical field component

By D �B0kpb1.y/
Z z

0
sin kpNz dNz : (6.112)

We have not yet determined the y-dependence of the amplitude function b1.y/. From
rB D 0 and the independence of the field on the horizontal position we get with
(6.110)

@Bz

@z
D �@By

@y
D �B0

@b1.y/

@y
cos kpz : (6.113)

Forming the second derivatives @2 Bz=.@y @z/ from (6.111), (6.113) we get for the
amplitude function the differential equation

@2b1.y/

@y2
D k2pb1.y/ ; (6.114)

which can be solved by the hyperbolic functions

b1.y/ D a cosh kpy C b sinh kpy : (6.115)

Since the magnetic field is symmetric with respect to y D 0 and b1.0/ D 1, the
coefficients are a D 1 and b D 0. Collecting all partial results, the wiggler magnetic
field is finally determined by the components

Bx D 0 ;

By D B0 cosh kpy cos kpz ;
Bz D �B0 sinh kpy sin kpz ;

(6.116)

where Bz is obtained by integration of (6.111) with respect to y.
The hyperbolic dependence of the field amplitude on the vertical position intro-

duces higher-order field-errors which we determine by expanding the hyperbolic
functions

cosh kpy D 1C .kpy/2

2Š
C .kpy/4

4Š
C .kpy/6

6Š
C .kpy/8

8Š
C : : : ; (6.117)

sinh kpy D C.kpy/C .kpy/3

3Š
C .kpy/5

5Š
C .kpy/7

7Š
C : : : : (6.118)

Typically the vertical gap in a wiggler magnet is much smaller than the period
length or y � �p to avoid drastic reduction of the field strength. Due to the
fast convergence of the series expansions (6.117) only a few terms are required
to obtain an accurate expression for the hyperbolic function within the wiggler
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aperture. The expansion (6.117) displays higher-order field components explicitly
which, however, do not have the form of higher-order multipole fields and we cannot
treat these fields just like any other multipole perturbation but must consider them
separately.

To determine the path distortion due to wiggler fields, we follow the reference
trajectory through one quarter period starting at a symmetry plane in the middle of a
pole. At the starting point z D 0 in the middle of a wiggler pole the beam direction
is parallel to the reference trajectory and the deflection angle at a downstream point
z is given by

#.z/ D e

p

Z z

0

By .Nz/ dNz D e

p
B0 cosh kpy

Z z

0

cos kpNz dNz (6.119)

D e

p
B0
1

kp
cosh kpy sin kpz :

The maximum deflection angle is equal to the deflection angle for a quarter period
or half a wiggler pole and is from (6.119) for y D 0 and kpz D �=2

� D e

p
B0
�p

2 �
: (6.120)

This deflection angle is used to define the wiggler strength parameter

K D ˇ�� D ce

2�mc2
B0�p ; (6.121)

where m c2 is the particle rest energy and � the particle energy in units of the rest
energy. In more practical units this strength parameter is

K D CKB0 .T/ �p .cm/ � B0 .T/ �p .cm/ ; (6.122)

where

CK D ce

2� mc2
D0:93373T�1cm�1 :

The parameter K is a characteristic wiggler constant defining the wiggler strength
and is not to be confused with the general focusing strength K D �2 C k. Coming
back to the distinction between wiggler and undulator magnet, we speak of a wiggler
magnet if K 	 1 and of an undulator if K � 1: Of course, many applications
happen in a gray zone of terminology when K � 1:
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6.8 Electrostatic Quadrupole

A different focusing device based on electrostatic fields can be designed very much
along the strategy for a magnetic quadrupole. We pick the first term on the r.h.s.
of (6.25) and modify the expression to reflect the beam rigidity (6.12) for electric
fields

V2.x; y/ D �RbˇA20 12 .x
2 � y2/ D �g 1

2
.x2 � y2/; (6.123)

where the field gradient, g D @Ex=@x . Such a device can be constructed by placing
metallic surfaces in the form of a hyperbola

x2 � y2 D ˙R D const. (6.124)

where R is the aperture radius of the device as shown in Fig. 6.22 (left)
The potential of the four electrodes is alternately V D ˙ 1

2
gR2: This design can

be somewhat simplified by replacing the hyperbolic metal surfaces by equivalently
sized metallic tubes as shown in Fig. 6.22 (right). Numerical computer simulation
programs can be used to determine the degradation of the quadrupole field due to
this simplification.

+V

+V

-V-V
R

r = R

Fig. 6.22 Electric field quadrupole, ideal pole profile (left), and an example of a practical approach
with cylindrical metallic tubes (right)
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Problems

6.1 (S). Show that the electrical power in the excitation coil is independent of the
number of turns. Show also that the total electrical power in a copper coil depends
only on the total weight of the copper used and the current density.

6.2 (S). Design an electrostatic quadrupole which provides a focal length of 10 m
in the horizontal plane for particles with a kinetic energy of 10 MeV. The device
shall have an aperture with a diameter of 10 cm and an effective length of 0.1 m.
What is the form of the electrodes, their orientation and potential?

6.3 (S). In the text, we have derived the fields from a scalar potential. We could
also derive the magnetic fields from a vector potential A through the differentiation
B D r � A. For purely transverse magnetic fields, show that only the longitudinal
component Az ¤ 0 must be non zero. Derive the vector potential for a dipole
and quadrupole field and compare with the scalar potential. What is the difference
between the scalar potential and the vector potential?

6.4 (S). Derive the pole profile (aperture radius r D 1 cm) for a combined function
magnet including a dipole field to produce for a particle beam of energy E D
50GeV a bending radius of � D 300m, a focusing strength k D 0:45m�2 and a
sextupole strength of m D 23:0m�3.

6.5 (S). Strong mechanical forces exist between the magnetic poles when a magnet
is energized. Are these forces attracting or repelling the poles? Why? Consider a
dipole magnet ` D1 m long, a pole width w D 0:2m and a field of B D 1:5T .
Estimate the total force between the two magnet poles ?

6.6 (S). Following the derivation of (5.7) for a bending magnet, derive a similar
expression for the electrical excitation current in A�turns of a quadrupole with an
aperture radius R and a desired field gradient g. What is the total excitation current
necessary in a quadrupole with an effective length of ` D1 m and R D 3 cm to
produce a focal length of f D 50m for particles with an energy of cp D 500GeV?

6.7 (S). Consider a coil in the aperture of a magnet as shown in Fig. 6.14. All n
windings are made of very thin wires and are located exactly on the radius R. We
rotate now the coil about its axis at a rotation frequency 
. Such rotating coils are
used to measure the multipole field components in a magnet. Show analytically that
the recorded signal is composed of harmonics of the rotation frequency 
. What is
the origin of the harmonics?

6.8 (S). Explain why a quadrupole with finite pole width does not produce a pure
quadrupole field. What are the other allowed multipole field components ignore
mechanical tolerances and why?

6.9 (S). Through magnetic measurements the following vertical magnetic multi-
pole field components in a quadrupole are determined. At x D 1:79 cm and y D 0

cm: B2 D 0:3729 T, B3 D 1:25� 10�4 T, B4 D 0:23� 10�4 T, B5 D 0:36� 10�4 T,
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B6 D 0:726�10�4 T, B7 D 0:020�10�4 T, B8 D 0:023�10�4 T, B9 D 0:0051�10�4
T, B10 D 0:0071 � 10�4 T. Calculate the relative multipole strengths at x D 1 cm
normalized to the quadrupole field at 1 cm. Why do the 12-pole and 20-pole
components stand out with respect to the other multipole components?

6.10 (S). Derive the equation for the pole profile of an iron dominated upright
octupole with a bore radius R. Ignore longitudinal variations. To produce a field
of 0.2 T at the pole tip .R D 3cm/ what total current per coil is required?

6.11 (S). Calculate and design the current distribution for a pure air coil, super-
conducting dipole magnet to produce a field of B0 D 5T in an aperture of radius
R D 3 cm without exceeding an average current density of O| D 1;000A/mm2.

6.12. Derive an expression for the current distribution in air coils to produce a
combination of a dipole, quadrupole and sextupole field. Express the currents in
terms of fields and field gradients.
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