
Chapter 4
Elements of Classical Mechanics*

Based on d’Alembert’s principle, we formulate Hamilton’s integral principle by
defining a function L D L.qi; Pqi; t/ such that for any mechanical system the variation
of the integral

R t1
t0

Ldt vanishes along any real path (Fig. 4.1) so that
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L.t/dt D 0: (4.1)

Here, the variables .qi; Pqi; t/ are the coordinates and velocities, respectively, and
t is the independent variable time. We may expand this function and get
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The second term can be modified using the assumption of the variational theorem
which requires that ıqi D 0 at the beginning and end of the path. The second term
can be integrated by parts and is
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Both terms can now be combined for
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Fig. 4.1 Variational principle

L(t0)

L(t1)

This integral is zero for any arbitrary path if and only if the integrand vanishes
for each component i independently. The resulting equations are called the Euler-
Lagrange equations

d

dt

@L

@Pqi
� @L

@qi
D 0: (4.5)

Bypassing a more accurate discussion [1], we guess at the nature of the Euler-
Lagrange equations by considering a falling mass m: The kinetic energy is T D
1
2
mv2 and the potential energy V D gx; where g is the gravitational force. If we

set L D T � V D 1
2
mv2 � gx and apply (4.5), we get m Pv D g which is the well

known classical equation of motion for a falling mass in a gravitational field. The
time independent Lagrangian can be defined by

L D T � V (4.6)

and the Lagrange function therefore has the dimension of an energy. Furthermore,
in analogy with basic mechanics like a falling mass, we can define the momenta of
a system by

Pi D @L

@Pqi
(4.7)

and call them the generalized canonical momenta. We use a capital P for the
canonical momentum to distinguish it from the ordinary momentum p. Both are
different only when electromagnetic fields are involved.
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4.1 How to Formulate a Lagrangian?

To formulate an expression for the Lagrangian is a creative process of physics.
Whatever expression one might propose, it should be independent of a particular
reference system and therefore Lorentz invariant. Earlier, we have learned that the
product of two 4-vectors is Lorentz invariant and the product of two, not necessarily
different, 4-vectors is therefore a good choice to form a Lagrangian. We investi-
gate, for example, the product of the momentum-energy

�
cp�

x ; cp�
y ; cp�

z ; iE
�� D�

0; 0; 0; imc2
�

and the differential space-time 4-vectors .dx�;dy�;dz�;icd�/ in the
particle rest frame and get

1

c

�
dx�; dy�; dz�; icd�

� �
cp�

x ; cp�
y ; cp�

z ; iE
�� D �mc2d� D �mc2

p
1 � ˇ2dt:

(4.8)

This expression has the dimension of an energy and is Lorentz invariant. We
consider therefore this as the Lagrangian for a particle at rest being observed from
a relatively moving laboratory system

L D �mc2
p
1 � ˇ2: (4.9)

The conjugate momentum is from (4.7) for the x-component

Px D �m
�vxp
1 � ˇ2

D �mvx (4.10)

and the equation of motion d
dt
@L
@vx

� @L
@x becomes

dPx

dt
D 0 (4.11)

indicating that the particle is in uniform motion with velocity ˇ.
The Lagrangian (4.9) is consistent with classical experience if we set ˇ � 1

and L D �mc2
p
1 � ˇ2 � �mc2 C 1

2
mv2: Since we use only derivatives of the

Lagrangian, we may ignore the constant �mc2 and end up with the kinetic energy
of the free particle.

4.1.1 The Lagrangian for a Charged Particle in an EM-Field

The interaction between charged particle and electromagnetic field depends only on
the particle charge and velocity and on the field. We try therefore the product of field
and velocity 4-vector. Formulating this product in the laboratory system, where the
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fields have been generated, we get.

e
�
Ax;Ay;Az; i�

�
�
�
vx; vy; vz; i

� D e� .Av � �/ . (4.12)

Noting that �d� Ddt; the extension to the Lagrange function in the presence of
electromagnetic fields is

L D �mc2
p
1 � ˇ2 C eAv � e�: (4.13)

The canonical momentum is from (4.7)

P D mv
p
1 � ˇ2

C eA D �mv C eA D p C eA; (4.14)

where p is the ordinary momentum. Equation (4.13) is consistent with L D T � V;
where the potential V D e� � eAv:

4.2 Lorentz Force

The conjugate momenta in Cartesian coordinates r D .x; y; z/ can be derived from
(4.5) with (4.13)

PP D @L

@r
D er .Av/� er� D e .vr/A C e Œv � .r � A/�� er�; (4.15)

where we used the algebraic relation (A.18). Insertion into

d
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@L

@Pr D dP
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D d

dt
.p C eA/ D e .vr /A C e Œv � .r � A/� � er�

results with Pr D v and dA
dt D @A

@t C .vr /A in an expression for the ordinary
momentum p

d p
dt

D �e
@A
@t

C e Œv � .r � A/� � er�: (4.16)

Converting potentials to fields, we recover the Lorentz force FL D d p
dt or

FL D eE C e .v � B/ : (4.17)
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4.3 Frenet-Serret Coordinates

A particle trajectory follows a path described by

r.z/ D r0.z/C ır.z/: (4.18)

Here r0.z/ is the ideal path for beam dynamics and an orthogonal coordinate system
moves along this path with its origin at r0.z/ as shown in Fig. 4.2. For this Frenet-
Serret coordinate system we define three vectors

ux.z/ unit vector ? to trajectory
uz.z/ D dr0.z/

dz unit vector k to trajectory
uy.z/ D uz.z/ � ux.z/ unit binormal vector

(4.19)

to form an orthogonal coordinate system moving along the trajectory with a
reference particle at r0.z/. In beam dynamics, we identify the plane defined by
vectors ux and uz.z/ as the horizontal plane and the plane orthogonal to it as the
vertical plane, parallel to uy. Change in vectors are determined by curvatures.

dux.z/

dz
D �xuz.z/; and

duy.z/

dz
D �yuz.z/; (4.20)

where
�
�x; �y

�
are the curvatures in the horizontal and vertical plane respectively.

The particle trajectory can now be described by

r.x; y; z/ D r0.z/C x.z/ux.z/C y.z/uy.z/; (4.21)

individual particle trajectory
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Fig. 4.2 Frenet-Serret coordinate system
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where r0.z/ is the location of the coordinate system’s origin (reference particle)
and .x; y/ are the deviations of a particular particle from r0.z/: The derivative with
respect to z is then

d

dz
r.x; y; z/ D dr0

dz
C x.z/

dux.z/

dz
C y.z/

duy.z/

dz
C x0.z/ux.z/C y0.z/uy.z/ (4.22)

or with (4.19) and (4.20)

dr D uxdx C uydy C uzhdz; (4.23)

where

h D 1C �0xx C �0yy: (4.24)

Using these Frenet-Serret coordinates, we are able to describe particle trajectories
much more efficient than we could do in Cartesian coordinates. Essentially, we
have transformed away the ideal path or the geometry of the design beam transport
line which is already well known to us from the placement of beam guidance
elements. The new coordinates measure directly the deviation of any particles from
the reference particle.

We may use these relations to introduce a transformation, from the Cartesian
coordinate system to curvilinear Frenet-Serret coordinates, in the Lagrangian
L D �mc2

p
1 � ˇ2 C ePrA � e� : In the new coordinates,

p
1 � ˇ2 Dq

1 � 1
c2
.Px2 C Py2 C h2Pz2/, PrA D PxAx C PyAy C hPzAz and the Lagrangian becomes in

curvilinear coordinates of beam dynamics

L D �mc2
q
1 � 1

c2
.Px2 C Py2 C h2Pz2/C e

�PxAx C PyAy C hPzAz
�� e�: (4.25)

4.4 Hamiltonian Formulation

Like any other mechanical system, particle beam dynamics in the presence of
external electromagnetic fields can be described and studied very generally through
the Hamiltonian formalism. The motion of particles in beam transport systems,
expressed in normalized coordinates, is that of a harmonic oscillator and deviations
caused by nonlinear restoring forces appear as perturbations of the harmonic
oscillation. Such systems have been studied extensively in the past and powerful
mathematical tools have been developed to describe the dynamics of harmonic
oscillators under the influence of perturbations. Of special importance is the
Hamiltonian formalism which we will apply to the dynamics of charged particles.
Although this theory is well documented in many text books, for example in [1, 2],
we will shortly recall the Hamiltonian theory with special attention to the application
in charged particle dynamics.
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The canonical variables in the Hamiltonian theory are the coordinates and
momenta rather than coordinates and velocities used in the Lagrangian. We use
a coordinate transformation .qi; Pqi; t/ H) .qi;Pi; t/ through the definition of the
momenta Pi D @L=@Pqi and define the Hamiltonian function by

H.qi; pi/ D
X

Pqi Pi � L.qi; Pqi/: (4.26)

In analogy to the Lagrangian, we find that PqiPi D 2T and the Hamiltonian which
does not depend on the time explicitly is therefore the sum of kinetic and potential
energy

H D T C V: (4.27)

This will become useful later since we often know forces acting on particles
which can be derived from a potential. Similar to the Euler-Lagrange equations, we
define Hamiltonian equations by

@H

@qi
D � PPi; and

@H

@Pi
D CPqi: (4.28)

With L D �mc2
p
1 � ˇ2 C eAv � e� and replacing velocities with momenta the

Hamiltonian becomes

H.qi;Pi/ D
X

PqiPi C mc2
p
1 � ˇ2 � eAPq C e�; (4.29)

where q D .q1; q2; ::; qi; ::/ and A D .A1;A2; ::;Ai; ::/ ; etc. and the canonical
momentum is defined in (4.14). The canonical momentum P is from (4.14) the
combination of the ordinary particle momentum p D �mPq and field momentum
eA. Insertion into the Hamiltonian and reordering gives .H � e�/2 D m2c4 C
c2 .P � eA/2 ; or

c2 .P � eA/2 � .H � e�/2 D �m2c4; (4.30)

The Hamiltonian (4.30) is equal to the square of the length of the energy
momentum 4-vector ŒcP;iE� ; where E D H �e�, and is therefore Lorentz invariant.
A more familiar form is

H D e� C
q

c2 .P � eA/2 C m2c4: (4.31)

In nonrelativistic mechanics, the Hamiltonian becomes with ˇ � 1 and ignoring
the constant mc2

Hclass � 1
2
mv2 C e�; (4.32)

which is the sum of kinetic and potential energy.
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4.4.1 Cyclic Variables

The solution of the equations of motion become greatly simplified in cases, where
the Hamiltonian does not depend on one or more of the coordinates or momenta.
In this case one or more of the Hamiltonian equations (4.28) are zero and the
corresponding conjugate variables are constants of motion. Of particular interest
for particle dynamics or harmonic oscillators are the cases where the Hamiltonian
does not depend on say the coordinate qi but only on the momenta Pi. In this case
we have

H D H.q1; : : : qi�1; qiC1 : : : ;P1;P2 : : : ;Pi; : : :/ (4.33)

and the first Hamiltonian equation becomes

@H

@qi
D � PPi D 0 or Pi D const : (4.34)

Coordinates qi which do not appear in the Hamiltonian are called cyclic coordinates
and their conjugate momenta are constants of motion. From the second Hamiltonian
equation we get with Pi D const.

@H

@pi
D Pqi D ai D const ;

which can be integrated immediately for

qi.t/ D ait C ci; (4.35)

where ci is the integration constant. It is obvious that the complexity of a mechanical
system can be greatly reduced if by a proper choice of canonical variables some or
all dependence of the Hamiltonian on space coordinates can be eliminated. We will
derive the formalism that allows the transformation of canonical coordinates into
new ones, where some of them might be cyclic.

Example: Assume that the Hamiltonian does not depend explicitly on the time,
then @H

@t D 0 and the momentum conjugate to the time is a constant of motion.
From the second Hamilton equation, we have @H

@pi
D d

dt t D 1 and the momentum
conjugate to the time is therefore the total energy pi D H Dconst. The total energy
of a system with a time independent Hamiltonian is constant and equal to the value
of the Hamiltonian.

4.4.2 Canonical Transformations

For mechanical systems which allow in principle a formulation in terms of cyclic
variables, we need to derive rules to transform one set of variables to another
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set, while preserving their property of being conjugate variables appropriate to
formulate the Hamiltonian for the system. In other words, the coordinate transfor-
mation must preserve the variational principle (4.1). Such transformations are called
canonical transformations Nqk D fk.qi;Pi; t/ and NPk D gk.qi;Pi; t/, where .qi;Pi; t/
are the old and .Nqk; NPk; t/ the new coordinates. The variational principle reads now

ı

Z  
X

k

PqkPk � H

!

dt D 0 and ı

Z  
X

k

PNqk
NPk � H

!

dt D 0: (4.36)

The new Hamiltonian H need not be the same as the old Hamiltonian H nor need
both integrands be the same. Both integrands can differ, however, only by a total
time derivative of an otherwise arbitrary function G

X

k

PqkPk � H D
X

k

PNqk
NPk � H C dG

dt
: (4.37)

After integration
R

dG
dt dt becomes a constant and the variation of the integral

obviously vanishes under the variational principle (Fig. 4.1). The arbitrary function
G is called the generating function and may depend on some or all of the old and
new variables

G D G.qk; Nqk; Pk; NPk; t/ with 0 � k � N: (4.38)

The generating functions are functions of only 2N variables, coordinates and
momenta. Of the 4N variables only 2N are independent because of another 2N
transformation equations (4.36). We may now choose any two of four variables to be
independent keeping only in mind that one must be an old and one a new variable.
Depending on our choice for the independent variables, the generating function may
have one of four forms

G1D G1.q; Nq; t/; G3D G3.P; Nq; t/;
G2D G2.q; NP; t/; G4D G4.P; NP; t/; (4.39)

where we have set q D .q1; q2; : : : qN/ etc. We take, for example, the generating
function G1, insert the total time derivative

dG1

dt
D
X

k

@G1

@qk

@qk

@t
C
X

k

@G1

@pk

@Pk

@t
C @G1

@t
(4.40)

in (4.37) and get after some sorting

X

k

Pqk

�

Pk � @G1

@qk

�

�
X

k

PNqk

�
NPk C @G1

@Nqk

�

�
�

H � H C @G1

@t

�

D 0: (4.41)
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Both, old and new variables are independent and the expressions in the brackets
must therefore vanish separately leading to the defining equations

Pk D @G1

@qk
; NPk D �@G1

@Nqk
; H D H�@G1

@t
: (4.42)

Variables for which (4.42) hold are called canonical variables and the transforma-
tions (4.36) are called canonical.

Generating functions for other pairings of new and old canonical variables can
be obtained from G1 by Legendre transformations of the form

G2.q; NP; t/ D G1.q; Nq; t/C q NP: (4.43)

Equations (4.42) can be expressed in a general form for all four different
types of generating functions. We write the general generating equation as G D
G.xk; Nxk; t/;where the variables xk and Nxk can be either coordinates or momenta.
Furthermore, xk and Nxk are the old and new coordinates or momenta respectively
and the .yk;Nyk/ are the conjugate coordinates or momenta to .xk; Nxk/ : Then

yk D ˙ @

@xk
G.xk; Nxk; t/;

Nyk D � @

@Nxk
G.xk; Nxk; t/; (4.44)

H D NH � @

@t
G.xk; Nxk; t/:

The upper signs are to be used if the derivatives are taken with respect to coordinates
and the lower signs if the derivatives are taken with respect to momenta. It is not
obvious which type of generating function should be used for a particular problem.
However, the objective of canonical transformations is to express the problem at
hand in as many cyclic variables as possible. Any form of generating function
that achieves this goal is therefore appropriate. To illustrate the use of generating
functions for canonical transformations, we will discuss a few very examples. For
an identity transformation we use a generating function of the form

G D q1 NP1 C q2 NP2 C : : : (4.45)

and get with (4.44) and i D 1; 2; : : :N the identities

Pi D �@G

@qi
D NPi; and Nqi D C @G

@ NPi
D qi: (4.46a)



4.4 Hamiltonian Formulation 93

A transformation from rectangular .x; y; z/ to cylindrical .r; '; z/ coordinates is
defined by the generating function

G.P; Nq/ D �Pxr cos' � Pyr sin ' � Pzz (4.47)

and the transformation relations are

x D � @G
@px

D r cos'; Pr D � @G
@r D C Px cos' C Py sin ';

y D � @G
@py

D r sin'; P' D � @G
r@' D � Px sin ' C Py cos';

z D � @G
@pz

D z; Pz D � @G
@z D Pz:

(4.48)

Similarly, relations for the transformation from rectangular to polar coordinates
can be derived from the generating function

G D �Pxr cos' sin# � Pyr sin' sin# � Pzr cos#: (4.49)

It is not always obvious if a coordinate transformation is canonical. To identify a
canonical transformation, we use Poisson brackets [1] defined by

�
fk.qi;Pj/; gk.qi;Pj/

� D
X

i

�
@fk
@qi

@gk

@Pj
� @fk
@Pj

@gk

@qi

�

: (4.50)

It can be shown [1] that the new variables Nqk; NPk or (4.36) are canonical if and only
if the Poisson brackets

Œ NPi; NPj� D 0 ŒNqi; Nqj� D 0 ŒNqi; NPj� D �ıij; (4.51)

where ıij is the Kronecker symbol and the factor � is a scale factor for the
transformation. To preserve the scale in phase space, the scale factor must be
equal to unity, � D 1. While the formalism for canonical transformation is
straight-forward, we do not get a hint as to the optimum set of variables for a
particular mechanical system. In the next sections we will see, however, that specific
transformations have been identified and developed which prove especially useful
for a whole class of mechanical systems.

4.4.3 Curvilinear Coordinates

The choice of a particular coordinate system, of course, must not alter the physical
result and from this point of view any coordinate system could be used. However, it
soon becomes clear that the pursuit of physics solutions can be mathematically much
easier in one coordinate system that in another. For systems which are symmetric
about a point we would use polar coordinates, for systems which are symmetric
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about a straight line we use cylindrical coordinates. In beam dynamics there is no
such symmetry, but we have a series of magnets and other components aligned along
some, not necessarily straight, line. The collection of these elements is what we call
a beam line. The particular arrangement of elements is in most cases not determined
by physics but other more practical considerations. The matter of fact is that we
know about the “ideal” path and that all particle should travel along a path being
defined by the physical centers of the beam line elements. In a Cartesian coordinate
system fixed to the stars the result of “ideal” beam dynamics would be a complicated
mathematical expression trying to describe the “ideal” path in which we have no
interest, since we already know where it is. What we are interested in is the deviation
a particular particle might have from the ideal path. The most appropriate coordinate
system would therefore be one which moves along the ideal path. In Sect. 4.3 we
have introduced such a curvilinear reference system also known as the Frenet-Serret
reference system. The transformation from Cartesian to Frenet-Serret coordinates
can be derived from the generating function formed from the old momenta and the
new coordinates

G.z; x; y;Pc,z;Pc,x;Pc,y/ D � .cPc � ecAc/
�
r0.z/C xux.z/C yuy.z/

�
: (4.52)

The momenta and fields in the old Cartesian coordinate system are designated with
the index c and the new canonical momenta P in the Frenet-Serret system are then
in both systems while noting that the transverse momenta are the same

.cPz � ecAzh/ D �@G

@z
D .cPz � ecAz/c h;

.cPx � ecAx/ D �@G

@x
D .cPx � ecAx/c ; (4.53)

�
cPy � ecAy

� D �@G

@y
D �

cPy � ecAy
�

c ;

with h as defined in (4.24). The Hamiltonian Hc D e� C c
q

m2c2 C .P � eA/2c
in Cartesian coordinates transforms to the one in curvilinear coordinates of beam
dynamics

H D e� C c

s

m2c2 C .Pz � eAzh/

h2

2

C .Px � eAx/
2 C �

Py � eAy
�2
: (4.54)

For a particle travelling through a uniform field By, we have A D .0; 0;Az/ D�
0; 0;�Byx

�
; Px;y D px;y; and the Hamiltonian is with Az D Ac,zh

Hh D e� C c

r

m2c2 C p2x C p2y C 1

h2
�
Pz C eByhx

�2
: (4.55)
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The distinction, we make here on fields in curvilinear and Cartesian coordinates
stems from the practice to build magnets in a certain way. Dipole magnets are
designed carefully to have a uniform field in the beam area along the curved path,
which is not consistent with the transformation of a uniform dipole field in Cartesian
coordinates.

4.4.4 Extended Hamiltonian

The Hamiltonian as derived so far depends on the canonical variables .qi;Pi/

and the independent variable t or z defined for individual particles. This separate
treatment of the independent variable can be eliminated by formulating an extended
Hamiltonian in which all coordinates are treated the same.

Starting with H.q1; q2 : : : qf;P1;P2;P3 : : :Pf; t/; we introduce the independent
variables .q0;P0/ by setting

q0 D t and P0 D �H (4.56)

and obtain a new Hamiltonian

H.q0; q1; q2 : : : qf;P0;P1;P2;P3 : : :Pf/ D H C P0 D 0 (4.57)

and Hamilton’s equations are then

dqi
dt D @H

@Pi
dPi
dt D � @H

@qi

)

for i D 0; 1; 2 : : : (4.58)

In particular for i D 0 the equations are

dq0
dt

D 1 ! q0 D t C C1 (4.59)

and

dP0
dt

D �@H
@q0

D �dH
dt

H) P0 D �H C C2 : (4.60)

The momentum conjugate to the time is equal to the Hamiltonian and since H ¤
H .t/ for static fields, it follows that

dP0
dt

D 0 H) H D const. (4.61)
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Now, the independent variable is no more distinguishable from all other coordi-
nates, the Hamiltonian is expressed as a function of coordinates and momenta only.

4.4.5 Change of Independent Variable

Since no particular coordinate is designated as the independent variable, we may use
any of the coordinates as that. For example, we prefer often to use the longitudinal
coordinate z as the independent variable rather than the time t. More generally,
consider to change the independent variable from qi to qj : Defining, for example, q3
as the new independent variable, we solve H for P3

P3 D �K.q0; q1; q2; q3 : : : qf; P0;P1;P2;P4; : : :Pf/ (4.62)

and define a new extended Hamiltonian

K D P3 C K D 0 : (4.63)

Then the equations

@K
@P3

D dq3
dq3

D 1; (4.64a)

� @K
@q3

D dP3
dq3

D � @K

@q3
; (4.64b)

@K
@Pi¤3

D dqi¤3
dq3

D @K

@Pi¤3
; (4.64c)

� @K
@qi¤3

D dPi¤3
dP3

D � @K

@qi¤3
(4.64d)

with the Hamiltonian

K D �p3 : (4.65)

As an example, to use the longitudinal coordinate z rather than the time t as the
independent variable, we start with (4.54)

H .x; y; z; t/ D e� C
r
1

h2
.cPz � ecAzh/

2 C c2p2? C m2c4; (4.66)
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where p2? D p2x C p2y : The longitudinal momentum is

cPz D ceAzh C h
q
.H � e�/2 � .cp?/2 � m2c4 D ceAzh C h

q
c2p2 � c2p2?;

(4.67)

where E2 D .H � e�/2 D .cp/2 C �
mc2

�2
has been used. We further normalize to

the momentum p and use trajectory slopes, x0 D dx=dz D px=pz etc. rather than
momenta. With this, the new Hamiltonian is K .x; x0; y; y0; z/ D �Pz=p or using

Pz=p D eAz=p C h
q
1 � p2?=p2 and p2?=p2 � x0 2 C y0 2

K.x; x0; y; y0; z/ D �eAzh

p
� h

p
1 � x02 � y02: (4.68)

In beam dynamics, we restrict ourselves to paraxial beams, where x0 � 1 and
y0 � 1; and the momentum p � pz. Note, p may not be the canonical momentum
if there is an electromagnetic field present, but P D pC eA is canonical. In this last
step, we seem to have lost terms involving transverse vector potential components.
This meets with the requirements of almost all beam transport lines, where we
use predominantly transverse fields which can be derived from the Az-component
only. This is not true when we consider, for example, solenoid fields which occur
rather seldom and will be treated separately as perturbations. Finally, we separate
the ideal particle momentum p0 from the momentum deviation ı D �p=p0 and
while ignoring higher order terms in ı replace 1=p D 1= Œp0 .1C ı/� � 1

p0
.1 � ı/

in the Hamiltonian for

K.x; x0; y; y0; z/ � �eAzh

p0
.1 � ı/� h

p
1 � x02 � y02: (4.69)

As discussed before, magnetic fields for particle beam dynamics can be derived
from a single component Az of the vector potential and the task to determine
equations of motion is now reduced to that of determining the vector potential for
the magnets in use. The equations of motion are from (4.69)

@K
@x D �x00 D � ec

cp0
@Azh
@x .1 � ı/ � �0x

p
1 � x02 � y02;

@K
@y D �y00 D � ec

cp0
@Azh
@y .1 � ı/� �0y

p
1 � x02 � y02:

(4.70)

With hBy D � @Azh
@x and hBx D @Azh

@y the equations of motion become finally in
paraxial approximation

x00 C ec
cp0

Byh .1 � ı/� �0x D 0;

y00 � ec
cp0

Bxh .1 � ı/� �0y D 0:
(4.71)
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These are the equations of motion in curvilinear coordinates under the influence of
the magnetic field

�
Bx;By

�
.

Problems

4.1 (S). Show that the Hamiltonian transforms like H' D dt
d'Ht, if the independent

variable is changed from t to '.

4.2 (S). Derive from the Lagrangian (4.25) the equation of motion.

4.3. Show that the transformations [a.), c.) for upper signs, d.) for 	 D 0� are
canonical and [b.), c.) for lower signs, d.) for 	 ¤ 0 ] are not:

a:/
q1 D x1 p1 D Px1
q2 D x2 p2 D Px2 b:/ q D r cos ; p D r sin 

c:/
q1 D x1; p1 D Px1 ˙ Px2;
q2 D x1 ˙ x2; p2 D Px2 d:/ q D q0e	; p D p0e	

Show the formalism you use.
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