
Chapter 26
Insertion Device Radiation

Synchrotron radiation from bending magnets is characterized by a wide spectrum
from microwaves up to soft or hard x-rays as determined by the critical photon
energy. To optimally meet the needs of basic research with synchrotron radiation,
it is desirable to provide radiation characteristics that cannot be obtained from ring
bending magnets but require special magnets. The field strength of bending magnets
and the maximum particle beam energy in circular accelerators like a storage ring
is fixed leaving no adjustments to optimize the synchrotron radiation spectrum for
particular experiments. To generate specific synchrotron radiation characteristics,
radiation is often produced from insertion devices installed along the particle beam
path. Such insertion devices introduce no net deflection of the beam and can
therefore be incorporated in a beam line without changing its geometry. Motz [1]
proposed first the use of wiggler magnets to optimize characteristics of synchrotron
radiation. By now, such magnets have become the most common insertion devices
consisting of a series of alternating magnet poles deflecting the beam periodically
in opposite directions as shown in Fig. 26.1.

In Chap. 24 the properties of wiggler radiation were discussed shortly in an
introductory way. Here we concentrate on more detailed and formal derivations
of radiation characteristics from relativistic electrons passing through periodic
magnets.

There is no fundamental difference between wiggler and undulator radiation.
One is the stronger/weaker version of the other. The deflection in an undulator is
weak and the transverse particle momentum remains nonrelativistic. The motion is
purely sinusoidal in a sinusoidal field, and the emitted radiation is monochromatic at
the particle oscillation frequency which is the Lorentz-contracted periodicity of the
undulator period. Since the radiation is emitted from a moving source the observer in
the laboratory frame of reference then sees a Doppler shifted frequency. We call this
monochromatic radiation the fundamental radiation or radiation at the fundamental
frequency of the undulator.
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Fig. 26.1 Trajectory of a
particle beam in a flat wiggler
magnet
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As the undulator field is increased, the transverse motion becomes stronger and
the transverse momentum starts to become relativistic. As a consequence, the so far
purely sinusoidal motion becomes periodically distorted causing the appearance of
harmonics of the fundamental monochromatic radiation. These harmonics increase
in number and density with further increase of the magnetic field and, at higher
frequencies, eventually merge into one broad spectrum characteristic for wiggler
or bending magnet radiation. At very low frequencies, the theoretical spectrum is
still a line spectrum showing the harmonics of the revolution frequency. Of course,
there is a low frequency cut-off at a wavelength comparable or longer than vacuum
chamber dimensions which therefore do not show-up as radiation.

An insertion device does not introduce a net deflection of the beam and we
may therefore choose any arbitrary field strength which is technically feasible to
adjust the radiation spectrum to experimental needs. The radiation intensity from
a wiggler magnet also can be made much higher compared to that from a single
bending magnet. A wiggler magnet with say ten poles acts like a string of ten
bending magnets or radiation sources aligned in a straight line along the photon
beam direction. The effective photon source is therefore ten times more intense than
the radiation from a single bending magnet with the same field strength.

Wiggler magnets come in a variety of types with the flat wiggler magnet being
the most common. In this wiggler type only the component By is nonzero deflecting
the beam in the horizontal plane. To generate circularly or elliptically polarized
radiation, a helical wiggler magnet [2] may be used or a combination of several flat
wiggler magnets deflecting the beam in orthogonal planes which will be discussed
in more detail in Sect. 26.3.2.

26.1 Particle Dynamics in a Periodic Field Magnet

Insertion devices are characterized by the requirement that

Z
B?dz D 0:

As discussed in Chap. 15 this requirement demands that the first and second integral
must be made zero with the use of steering magnets before and after the undulator.
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This correction is sufficient from the beam stability point of view. However, it does
not address the effect of field tolerances on the intensity of radiation into harmonics.
For example, the curved trajectory in Fig. 15.4 can reduce the radiation intensity
because not all periods radiate in the same direction and constructive interference of
light emitted by individual periods is not optimum. Therefore the overall trajectory
curvature in Fig. 15.4 should be corrected as discussed in Chap. 15. Furthermore,
variations in field strength and period length from period to period in the undulator
can seriously diminish the radiation intensity especially in the higher harmonics.
The effect of such errors on individual harmonic intensities have been studied [3].
A special shimming procedure has been proposed by Elleaume [4] to transform an
undulator with construction tolerances to an almost ideal undulator giving close to
perfect intensities for about a dozen harmonics. If the shimming is done correctly
the long coil mentioned in Chap. 15 is not necessary anymore. In the following
discussion we assume that the integrals have been corrected and that the undulator
has been shimmed.

Particle dynamics and resulting radiation characteristics for an undulator have
been derived first by Motz [1] and later in more detail by other authors [5, 6].
A sinusoidally varying vertical field causes a periodic deflection of particles in
the .x; z/-plane shown in Fig. 26.1. To describe the particle trajectory, we use the
equation of motion

n
�

D ec

mc2�ˇ2
Œˇ � B�; (26.1)

where ˇ is the particle velocity and get with (6.110) the equations of motion in
component form

d2x
dt2

D � eB0
�ˇm

dz
dt cos

�
kpz
�

d2z
dt2

D C eB0
�ˇm

dx
dt cos

�
kpz
�
;

(26.2)

where we have set kp D 2�=�p and d z D ˇcdt with ˇ D v=c.
Equations (26.2) describe the coupled motion of a particle in the sinusoidal field

of a flat wiggler magnet. This coupling is common to the particle motion in any
magnetic field but generally in beam dynamics we set dz=dt � v and dx=dt � 0

because dx=dt � dz=dt. This approximation is justified in most beam transport
applications for relativistic particles, but here we have to be cautious not to neglect
effects that might be of relevance on a very short time or small geometric scale
comparable to the oscillation period and wavelength of synchrotron radiation.

We will keep the dx=dt-term and get from (26.2) with dz=dt � v and after
integrating twice that the particle trajectory follows the magnetic field in the sense
that the oscillatory motion reaches a maximum where the magnetic field reaches a
maximum and crosses the beam axis where the field is zero. We start at the time
t D 0 in the middle of a magnet pole where the transverse velocity Px0 D 0 while
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the longitudinal velocity Pz0 D ˇc and integrate both equations (26.2) utilizing the
integral of the first equation in the second to get

dx
dt D �ˇc K

ˇ�
sin
�
kpz
�
;

dz
dt D ˇc

h
1 � K2

2ˇ2�2
sin2

�
kpz
�i
:

(26.3)

The transverse motion describes the expected oscillatory motion and the longitu-
dinal velocity v exhibits a periodic modulation reflecting the varying projection of
the velocity vector to the z-axis. Closer inspection of this velocity modulation shows
that its frequency is twice that of the periodic motion. It is convenient to describe
the longitudinal particle motion with respect to a Cartesian reference frame moving
uniformly along the z-axis with the average longitudinal particle velocity Ňc D hPzi
which can be derived from (26.3b)

Ň D ˇ
�
1 � K2

4ˇ2�2

�
: (26.4)

In this reference frame the particle follows a figure-of-eight trajectory composed
of the transverse oscillation and a longitudinal oscillation with twice the frequency.
We will come back to this point since both oscillations contribute to the radiation
spectrum. A second integration of (26.3b) results finally in the equation of motion
in component representation

x.t/ D K
ˇ�kp

cos
�
kp

Ňct
�
;

z.t/ D Ňct C K2

8ˇ2�2kp
sin
�
2kp

Ňct
�
;

(26.5)

where we set z D Ňct. The maximum amplitude a of the transverse particle
oscillation is finally

a D K

ˇ�kp
D �pK

2�ˇ�
: (26.6)

This last expression gives another simple relationship between the wiggler
strength parameter and the transverse displacement of the beam trajectory

a .�m/ D 0:8133
�p .cm/K

E .GeV/
: (26.7)

For most cases, this beam displacement is very small.
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26.2 Undulator Radiation

The physical process of undulator radiation is not different from the radiation
produced from a single bending magnet. However, the radiation received at great
distances from the undulator exhibits special features which we will discus in
more detail. Basically, we observe an electron performing Np oscillations while
passing through an undulator with Np undulator periods. The observed radiation
spectrum is the Fourier transform of the electron motion and therefore quasi-
monochromatic with a finite line width inversely proportional to the number of
oscillations performed.

26.2.1 Fundamental Wavelength

Undulator radiation can also be viewed as a superposition of radiation fields from Np

sources yielding quasi-monochromatic radiation as a consequence of interference.
To see that, we observe the radiation at an angle # with respect to the path of the
electron as shown in Fig. 26.2.

The electron travels on its path at an average velocity given by (26.4) and it takes
the time

� D �p

c Ň D �p

cˇŒ1 � K2=.4�2/�
(26.8)

to move along one undulator period. During that same time, the radiation front
proceeds a distance

sph D �c D �p

ˇŒ1 � K2=.4�2/�
(26.9)

moving ahead of the particle since sph > �c Ň. For constructive superposition of
radiation from all undulator periods, we require that the difference sph � �p cos#
be equal to an integer multiple of the wavelength �k or for small observation angles
# � 1

k�k D �p

ˇŒ1 � K2=.4�2/�
� �p.1 � 1

2
#2/: (26.10)

Fig. 26.2 Interference of
undulator radiation
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After some manipulations, we get with K2=�2 � 1 and ˇ � 1 for �k

�k D �p

2�2k

�
1C 1

2
K2 C �2#2

�
: (26.11)

The lowest harmonics is defined by k D 1 and is called the fundamental undulator
wavelength.

From an infinitely long undulator, the radiation spectrum consists of spectral
lines at a wavelength determined by (26.11). In particular, we note that the shortest
wavelength is emitted into the forward direction while the radiation at a finite angle
# appears red shifted by the Doppler effect. For an undulator with a finite number
of periods, the spectral lines are widened to a width of about 1=Np or less as we will
discuss in the next section.

26.2.2 Radiation Power

The radiation power is from (25.41)

P D 2
3
rcmcj P̌�j2r ; (26.12)

where � indicates quantities to be evaluated in the particle reference system. We
may use this expression in the particle system to calculate the total radiated energy
from an electron passing through an undulator. The transverse particle acceleration
is expressed by mPv� D dp?=dt� D �dp?=dt where we used t� D t=� and inserting
into (26.12) we get

P D 2
3

rc �
2

mc

�
dp?
dt

�2
: (26.13)

The transverse momentum is determined by the particle deflection in the
undulator with a period length �p and is for a particle of momentum cp0

p? D Op sin!pt ; (26.14)

where Op D p0	 and !p D ckp D 2�c=�p. The angle 	 D K=� is the maximum
deflection angle defined in (6.121). With these expressions and averaging over one
period, we get from (26.13) for the instantaneous radiation power from a charge e
traveling through an undulator

Pinst D 1
3
crcmc2�2K2k2p ; (26.15)

where rc is the classical electron radius. The duration of the radiation pulse is equal
to the travel time through an undulator of length Lu D �pNp and the total radiated
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energy per electron is therefore


E D 1
3
rcmc2�2K2k2pLu : (26.16)

In more practical units


E.eV/ D Cu
E2K2

�2p
Lu D 725:69

E2K2

�2p.cm/
Lu (26.17)

with

Cu D 4�2rc

3mc2
D 7:2569 � 10�20 m

eV
: (26.18)

The average total undulator radiation power for an electron beam circulating in a
storage ring is then just the radiated energy (26.16) multiplied by the number of
particles Nb in the beam and the revolution frequency or

Pavg D 1
3
rccmc2�2K2k2pNb

Lu

2� NR (26.19)

or

Pavg.W/ D 633:6E2B20I Lu ; (26.20)

where I is the circulating electron beam current. The total angle integrated radiation
power from an undulator in a storage ring is proportional to the square of the beam
energy and maximum undulator field B0 and proportional to the beam current and
undulator length.

26.2.3 Spatial and Spectral Distribution

For bending magnet radiation, the particle dynamics is relatively simple being
determined only by the particle velocity and the bending radius of the magnet.
In a wiggler magnet, the magnetic field parameters are different from those
in a constant field magnet and we will therefore derive again the synchrotron
radiation spectrum for the beam dynamics in a general wiggler magnet. No special
assumptions on magnetic field configurations have been made to derive the radiation
spectrum (25.71) and we can therefore use this expression together with the
appropriate beam dynamics to derive the radiation spectrum from a wiggler magnet

d2W

d! d˝
D rc mc!2

4�2

ˇ̌
ˇ̌Z 1

�1
n � Œn � ˇ�e�i! .trC R

c /dtr

ˇ̌
ˇ̌2 : (26.21)
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Fig. 26.3 Particle trajectory
and radiation geometry in a
wiggler magnet
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The integrand in (26.21) can be evaluated from known particle dynamics in a
wiggler magnet noting that all quantities are to be taken at the retarded time tr.
The unit vector from the observer to the radiating particle is from Fig. 26.3

n D � cos' sin# Ox � sin ' sin# Oy � cos# Oz; (26.22)

where .Ox; Oy; Oz/ are coordinate unit vectors. The exponent in (26.21) includes the
term R=c D nR=c. We express again the vector R from the observer to the particle
by the constant vector r from the origin of the coordinate system to the observer and
the vector rp from the coordinate origin to the particle for R D �r C rp as shown in
Fig. 26.3.

The r-term gives only a constant phase shift and can therefore be ignored. The
location vector rp of the particle with respect to the origin of the coordinate system
is

rp.tr/ D x.tr/Ox C z.tr/Oz

and with the solutions (26.5) we have

rp.tr/ D K

kp�
cos.!ptr/Ox C

�
Ňctr C K2

8�kp
sin.2!ptr/

	
Oz; (26.23)

where

!p D kp
Ňc: (26.24)

The velocity vector finally is just the time derivative of (26.23)

ˇ.tr/ D �K

�
Ň sin.!ptr/Ox C Ň

�
1C K2

4�2
cos.2!ptr/

	
Oz: (26.25)
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We use these vector relations to evaluate the integrand in (26.21). First, we express
the triple vector product n� Œn � ˇ� by its components and get with (26.22), (26.25)

n � Œn � ˇ� D COx
�
�K

�
Ň sin2 # cos2 ' cos!ptr C K

�
Ň sin!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

�
sin# cos# cos'

	

C Oy
�
�K

�
Ň sin2 # sin ' cos' sin!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

�
sin# cos# sin '

	
(26.26)

C Oz
�
�K

�
Ň sin# cos# cos' cos!ptr

C Ň
�
1C K2

4�2
cos 2!ptr

� �
cos2 # � 1

�	
:

This expression can be greatly simplified considering that the radiation is emitted
into only a very small angle # � 1. Furthermore, we note that the deflection due
to the wiggler field is in most practical cases very small and therefore K � � and
Ň D ˇ

�
1 � K2

4�2

�
� ˇ. Finally, we carefully set ˇ � 1 where this term does not

appear as a difference to unity. With this and ignoring second order terms in # and
K=� we get from (26.26)

n � Œn � ˇ � D
�

Ň# cos' C Ň K

�
sin
�
!ptr

�� Ox C � Ň# sin '
� Oy : (26.27)

The vector product in the exponent of the exponential function is just the product
of (26.22) and (26.23)

1

c
nrp.tr/ D � K Ň

�!p
sin# cos' cos

�
!ptr

� �
 

Ňtr C K2N̨
8�2!p

sin 2!p tr

!
cos# :

(26.28)
Employing again the approximation # � 1 and keeping only linear terms we get
from (26.28)

tr C 1

c
nrp.tr/ D tr.1 � Ň cos#/ � K N̨#

�!p
cos' cos

�
!ptr

� � K2N̨
8�2!p

sin
�
2!p tr

�
:

(26.29)

With (26.4) and cos# � 1 � 1
2
#2, the first term becomes
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1 � Ň cos# D 1

2�2

�
1C 1

2
K2 C �2#2

� D !p

!1
; (26.30)

where we have defined the fundamental wiggler frequency !1 by

!1 D !p
2�2

1C 1
2
K2 C �2#2

(26.31)

or the fundamental wavelength of the radiation

�1 D �p

2�2

�
1C 1

2
K2 C �2#2

�
(26.32)

in full agreement with (26.11). At this point, it is worth to remember that the term
1
2
K2 becomes K2 for a helical wiggler [2]. With (26.30), the complete exponential

term �i!


tr C 1

c nrp.tr/
�

in (26.21) can be evaluated to be equal to

� i
!

!1

"
!ptr � K Ň#

�

!1

!p
cos' cos

�
!ptr

�� K2 Ň
8�2

!1

!p
sin
�
2!ptr

�#
; (26.33)

and (26.21) can be modified with this expression into a form suitable for integration
by inserting (26.27) and (26.30) into (26.21) for

d2W

d! d˝
D rc mc!2

4�2
Ň
2

(26.34)

�
ˇ̌
ˇ̌Z 1

�1

�
# cos' C K

�
sin
�
!ptr

�	
x C .# sin '/ y eXdtr

ˇ̌
ˇ̌2 ;

where

X D
�

�i
!

!1

�
!ptr � K#

�

!1

!p
cos' cos

�
!ptr

� � K2

8�2
!1

!p
sin
�
2!p tr

�	

:

We are now ready to perform the integration of (26.34) noticing that the
integration over all times can be simplified by separation into an integral along the
wiggler magnet alone and an integration over the rest of the time while the particle
is traveling in a field free space. We write symbolically

Z 1

�1
D
Z �Np=!p

��Np=!p

.K ¤ 0/C
Z 1

�1
.K D 0/�

Z �Np=!p

��Np=!p

.K D 0/ : (26.35)

First, we evaluate the second integral for K D 0 which is of the form

Z 1

�1
ei�!t dt D 2�

j�j ı.!/ ;
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where ı.!/ is the Dirac ı-function. The value of the integral is nonzero only for
! D 0 in which case the factor !2 in (26.34) causes the whole expression to vanish.
The second integral is therefore zero.

The third integral has the same form as the second integral, but since the
integration is conducted only over the length of the wiggler magnet we get

Z �Np=!p

��Np=!p

e
�i !

2�2
tr dtr D 2�Np

!p

sin �Np

2�2
!
!p

�Np

2�2
!
!p

: (26.36)

The value of this integral reaches a maximum of 2� Np

!p
for ! ! 0. From (26.34)

we note the coefficient of this integral to include the angle # & 1=� and the whole
integral is therefore of the order or less than Lu=.c�/; where Lu D Np�p is the total
length of the wiggler magnet. This value is in general very small compared to the
first integral and can therefore be neglected. Actually, this statement is only partially
true since the first integral, as we will see, is a fast varying function of the radiation
frequency with a distinct line spectrum. Being, however, primarily interested in the
peak intensities of the spectrum we may indeed neglect the third integral. Only
between the spectral lines does the radiation intensity from the first integral become
so small that the third integral would be a relatively significant although absolutely
a small contribution.

To evaluate the first integral in (26.35) with K ¤ 0 we follow Alferov [5] and
introduce with (26.31) the abbreviations

C D 2K Ň �# cos'

1C 1
2
K2 C �2#2

; (26.37a)

S D K2 Ň
4
�
1C 1

2
K2 C �2#2

� (26.37b)

to get from (26.34) the exponential functions in the form

e�i !
!1
!ptr ei !

!1
C cos!ptr ei !

!1
S sin 2!ptr : (26.38)

The integral in the radiation power spectrum (26.34) has two distinct forms, one
where the integrand is just the exponential function multiplied by a time independent
factor while the other includes the sine function sin!ptr as a factor of the exponential
function. To proceed further we replace the exponential functions by an infinite sum
of Bessel’s functions

ei� sin D
pD1X

pD�1
Jp.�/ eip (26.39)
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and apply this identity to the first integral type in (26.34). Applying the iden-
tity (26.39) also to the second and third exponential factors in (26.38), we get with
ea cos x D ea sin.xC�=2/ the product of the exponential functions

e�i
�
!
!1
!ptr� !

!1
C cos!ptr� !

!1
S sin 2!ptr

�
D

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �ne�i R!!ptr ; (26.40)

where

R! D !

!1
� n � 2m ; u D !

!1
S; and v D !

!1
C : (26.41)

The time integration along the length of the wiggler magnet is straight forward
for this term since no other time dependent factors are involved and we get

Z �Np=!p

��Np=!p

e�i
�
!
!1

�n�2m
�
!ptr dtr D 2�Np

!p

sin
�
�NpR!

�
�NpR!

: (26.42)

In the second form of the integrand, we replace the trigonometric factor, sin!ptr,
by exponential functions and get with (26.42) integrals of the form

Z �Np=!p

��Np=!p

sin!ptr e�iR!!ptr dtr

D �i
1

2

Z �Np=!p

��Np=!p

�
ei!ptr � e�i!ptr

�
e�iR!!ptr dtr (26.43)

D i
�Np

!p

sin


�Np.R! C 1/

�
�Np.R! C 1/

� i
�Np

!p

sin


�Np.R! � 1/�
�Np.R! � 1/

:

Both integrals (26.42) and (26.43) exhibit the character of multibeam interference
spectra well known from optical interference theory. The physical interpretation
here is that the radiation from the Np wiggler periods consists of Np photon beamlets
which have a specific phase relationship such that the intensities are strongly
reduced for all frequencies but a few specific frequencies as determined by the sin x

x -
factors. The resulting line spectrum, characteristic for undulator radiation, is the
more pronounced the more periods or beamlets are available for interference. To get
a more complete picture of the interference pattern, we collect now all terms derived
separately so far and use them in (26.34) which becomes with (26.38)

d2W

d! d˝
D a

ˇ̌
ˇ̌
ˇ
Z �Np=!p

��Np=!p


�
A0 C A1 sin!ptr

� Ox C B0Oy
�

�e�i !
!1
!ptr ei v cos!ptr ei u sin 2!ptr dtr

ˇ̌
ˇ2 ; (26.44)



26.2 Undulator Radiation 907

where a D rc mc Ň2
4�2

!2; A0 D # cos';A1 D K
�
; and B0 D # sin ': Introducing the

identity (26.38), the photon energy spectrum becomes

d2W

d! d˝
D a

ˇ̌
ˇ̌
ˇ
Z �Np=!p

��Np=!p


�
A0 C A1 sin!ptr

� Ox C B0 Oy
�

�
1X

mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �ne�iR!!ptrdtr

ˇ̌
ˇ̌
ˇ
2

(26.45)

and after integration with (26.42) and (26.43)

d2W

d! d˝
D a

ˇ̌
ˇ̌
ˇ̌x A0

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �n 2�Np

!p

sin
�
�NpR!

�
�NpR!

C Ox A1

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �n (26.46)

� i
�Np

2!p

"
sin


�Np.R! C 1/

�
�Np.R! C 1/

� i
�Np

!p

sin


�Np.R! � 1/�
�Np.R! � 1/

#

COy B0

1X
mD�1

1X
nD�1

Jm.u/ Jn.v/ ei 12 �n 2�Np

!p

sin
�
�NpR!

�
�NpR!

ˇ̌
ˇ̌
ˇ̌
2

:

To determine the frequency and radiation intensity of the line maxima, we
simplify the double sum of Bessel’s functions by selecting only the most dominant
terms. The first and third sums in (26.46) show an intensity maximum for R! D 0

at frequencies

! D .n C 2m/ !1 ; (26.47)

and intensity maxima appear therefore at the frequency !1 and harmonics thereof.
The transformation of a lower frequency to very high values has two physical
components. In the system of relativistic particles, the static magnetic field of the
wiggler magnet appears Lorentz contracted by the factor � , and particles passing
through the wiggler magnet oscillate with the frequency �!p in its own system
emitting radiation at that frequency. The observer in the laboratory system receives
this radiation from a source moving with relativistic velocity and experiences
therefore a Doppler shift by the factor 2� . The wavelength of the radiation emitted in
the forward direction, # D 0, from a weak wiggler magnet, K � 1, with the period
length �p is therefore reduced by the factor 2�2. In cases of a stronger wiggler
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magnet or when observing at a finite angle # , the wavelength is somewhat longer as
one would expect from higher order terms of the Doppler effect.

From (26.46) we determine two more dominant terms originating from the
second term for R! ˙ 1 D 0 at frequencies

! D .n C 2m � 1/ !1 (26.48a)

! D .n C 2m C 1/ !1 ; (26.48b)

respectively. The summation indices n and m are arbitrary integers between �1
and 1. Among all possible resonant terms we collect such terms which contribute
to the same harmonic k of the fundamental frequency !1. To collect these dominant
terms for the same harmonic we set ! D !k D k!1 where k is the harmonic number
of the fundamental and express the index n by k and m to get

from (26.47): n D k � 2m;

from (26.48a): n D k � 2m C 1 (26.49)

and from (26.48b): n D k � 2m � 1 :

Introducing these conditions into (26.46) all trigonometric factors assume the

form
sin.�Np 
!k=!1/
�Np 
!k=!1

; where


!k

!1
D !

!1
� k (26.50)

and we get the photon energy spectrum of the kth harmonic for radiation from a
single electron passing through an undulator

d2Wk.!/

d! d˝
D rc mc Ň2N2

p

�2
!2

!2p

"
sin
�
�Np
!k=!1

�
�Np
!k=!1

#2

�
ˇ̌
ˇ̌
ˇCOxA0

1X
mD�1

Jm.u/ Jk�2m.v/ ei 12 �.k�2m/

C OyB0

1X
mD�1

Jm.u/ Jk�2m.v/ ei 12 �.k�2m/ (26.51)

C i Ox 1
2

A1

1X
mD�1

Jm.u/ Jk�2mC1.v/ ei 12 �.k�2mC1/

�i Ox1
2

A1

1X
mD�1

Jm.u/ Jk�2m�1.v/ ei 12 �.k�2m�1/
ˇ̌
ˇ̌
ˇ
2

:
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Fig. 26.4
sin.�Npx/
�Npx distribution for Np D 5 and Np D 100

All integrals exhibit the resonance character defining the locations of the spectral
lines. The .sin x=x/-terms represents the line spectrum of the radiation. Specifically,
the number Np of beamlets, here source points, determines the spectral purity of the
radiation. In Fig. 26.4 the .sin x=x/-function is shown for Np D 5 and Np D 100. It
is clear that the spectral purity improves greatly as the number of undulator periods
is increased. This is one of the key features of undulator magnets to gain spectral
purity by maximizing the number of undulator periods.

The spectral purity or line width is determined by the shape of the .sin x=x/-
function. We define the line width by the frequency at which sin x=x D 0 or where
�Np
!k=!1 D � defining the line width for the kth harmonic


!k

!k
D ˙ 1

kNp
: (26.52)

The spectral width of the undulator radiation is reduced proportional to the
number of undulator periods, but reduces also proportional to the harmonic number.

The Bessel functions Jm.u/ determine mainly the intensity of the line spectrum.
For an undulator with K � 1, the argument u / K2 � 1 and the contributions
of higher order Bessel’s functions are very small. The radiation spectrum consists
therefore only of the fundamental line. For stronger undulators with K > 1, higher
order Bessel’s functions grow and higher harmonic radiation appears in the line
spectrum of the radiation.
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Summing over all harmonics of interest, one gets the total power spectrum. In the
third and fourth terms of (26.51) we use the identities i e˙i�=2 D �1 ; Jm.u/ ei�m D
J�m.u/ and abbreviate the sums of Bessel’s functions by the symbols

X
1

D
1X

mD�1
J�m.u/ Jk�2m.v/ (26.53a)

X
2

D
1X

mD�1
J�m.u/ ŒJk�2m�1.v/C Jk�2mC1.v/� : (26.53b)

The total number of photons Nph emitted into a spectral band width 
!=!
by a single electron moving through a wiggler magnet is finally with Nph.!/ D
W.!/=.„!/

dNph.!/

d˝
D ˛�2 Ň2N2

p

!

!

1X
kD1

k2
"

sin
�
�Np
!k=!1

�
�Np
!k=!1

#2
(26.54)

�
�
2�#

P
1 cos' � K

P
2

�2 Ox2 C �
2�#

P
1 sin '

�2 Oy2�
1C 1

2
K2 C �2#2

�2 ;

where ˛ is the fine structure constant and where we have kept the coordinate unit
vectors to keep track of the polarization modes. The vectors x and y are orthogonal
unit vectors indicating the directions of the electric field or the polarization of the
radiation. Performing the squares does therefore not produce cross terms and the
two terms in (26.54) with the expressions (26.53) represent the amplitude factors
for both polarization directions, the �-mode and �-mode respectively.

We also made use of (26.50) and the resonance condition

!

!p
D k!1 C
!k

!p
� k

!1

!p
D 2�2 k

1C 1
2
K2 C �2#2

; (26.55)

realizing that the photon spectrum is determined by the .sin x=x/2-function. For not
too few periods, this function is very small for frequencies away from the resonance
conditions.

Storage rings optimized for very small beam emittance are being used as modern
synchrotron radiation sources to reduce the line width of undulator radiation and
concentrate all radiation to the frequency desired. The progress in this direction is
demonstrated in the spectrum of Fig. 26.5 derived from the first electron storage ring
operated at a beam emittance below 10 nm at 7.1 GeV [7]. In Fig. 26.5 a measured
undulator spectrum is shown as a function of the undulator strength K [8]. For a
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Fig. 26.5 Measured frequency spectrum from an undulator for different strength parameters K [8]

strength parameter K � 1 there is only one line at the fundamental frequency.
As the strength parameter increases, additional lines appear in addition to being
shifted to lower frequencies. The spectral lines from a real synchrotron radiation
source are not infinitely narrow as (26.66) would suggest. Because of the finite size
of the pinhole opening, some light at small angles with respect to the axis passes
through, and we observe therefore also some signal of the even order harmonic
radiation.

Even for an extremely small pin hole, we would observe a similar spectrum as
shown in Fig. 26.5 because of the finite beam divergence of the electron beam. The
electrons follow oscillatory trajectories due not only to the undulator field but also
due to betatron oscillations. We observe therefore always some radiation at a finite
angle given by the particle trajectory with respect to the undulator axis. Figure 26.5
also demonstrates the fact that all experimental circumstances must be included to
meet theoretical expectations. The amplitudes of the measured low energy spectrum
is significantly suppressed compared to theoretical expectations which is due to a
Be-window being used to extract the radiation from the ultra high vacuum chamber
of the accelerator. This material absorbs radiation significantly below a photon
energy of about 3 keV.

While we observe a line spectrum expressed by the .sin x=x/2-function, we also
notice that this line spectrum is red shifted as we increase the observation angle
# . Only, when we observe the radiation though a very small aperture (pin hole)
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Fig. 26.6 Actual radiation spectra from an undulator with a maximum field of 0.2 T and a beam
energy of 7.1 GeV through a pin hole and angle-integrated after removal of the pin hole [7]

do we actually see this line spectrum. Viewing the undulator radiation through a
large aperture integrates the linespectra over a finite range of angles # producing
an almost continuous spectrum with small spikes at the locations of the harmonic
lines.

The difference between a pin hole undulator spectrum and an angle-integrated
spectrum becomes apparent from the experimental spectra shown in Fig. 26.6 [7].
While the pin hole spectrum demonstrates well the line character of undulator
radiation, much radiation appears between these spectral lines as the pin hole is
removed and radiation over a large solid angle is collected by the detector. The pin
hole undulator line spectrum shows up as mere spikes on top of a broad continuous
spectrum.

The overall spatial intensity distribution includes a complex set of different radi-
ation lobes depending on frequency, emission angle and polarization. In Fig. 26.7
the radiation intensity distributions described by the last factor in (26.54)

I�;k D .2�#˙1 cos' � K˙2/
2

.1C 1
2
K2 C �2#2/2

for the �-mode polarization and

I�;k D .2�#˙1 sin '/2

.1C 1
2

K2 C �2#2/2

for the �-mode polarization are shown for the lowest order harmonics.
We note clearly the strong forward lobe at the fundamental frequency in �-mode

while there is no emission in �-mode along the path of the particle. The second
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Fig. 26.7 Undulator radiation distribution in � - and �-mode for the lowest order harmonics

harmonic radiation vanishes in the forward direction, an observation that is true for
all even harmonics. By inspection of (26.54), we note that v D 0 for # D 0 and
the square bracket in (26.53b) vanishes for all odd indices or for all even harmonics
k. There is therefore no forward radiation for even harmonics of the fundamental
undulator frequency.

A contour plot of the first harmonic �- and �-mode radiation is shown in
Fig. 26.8. There is a slight asymmetry in the radiation distribution between the
deflecting and nondeflecting plane as one might expect. It is obvious that the pin hole
radiation is surrounded by many radiation lobes not only from the first harmonics
but also from higher harmonics compromising the pure line spectrum for larger
apertures.
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Fig. 26.8 Contour plot of the
first harmonic � -mode (solid)
and �-mode (dashed)
undulator radiation
distribution

26.2.4 Line Spectrum

To exhibit other important and desirable features of the radiation spectrum (26.54),
we ignore the actual frequency distribution in the vicinity of the harmonics and set

!k D 0 because the spectral lines are narrow for large numbers of wiggler periods
Np: Further, we are interested for now only in the forward radiation where # D 0

keeping in mind that the radiation is mostly emitted into a small angle h#i D 1=� .
There is no radiation for the �-mode in the forward direction and the only

contribution to the forward radiation comes from the second term in (26.54) of the
�-mode. From (26.41) we get for this case with ! =!1 D k

u0 D kK2

4C 2K2
and v0 D 0 : (26.56)

The sums of Bessel’s functions simplify in this case greatly because only the lowest
order Bessel’s function has a nonvanishing value for v0 D 0. In the expression for
˙2 all summation terms vanish except for the two terms for which the index is zero
or for which

k � 2m � 1 D 0; or k � 2m C 1 D 0 (26.57)

and

X
2

D
1X

mD�1
J�m.u/ ŒJk�2m�1.0/C Jk�2mC1.0/�

D J� k�1
2
.u0/C J� kC1

2
.u0/: (26.58)
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The harmonic condition (26.57) implies that k is an odd integer. For even
integers, the condition cannot be met as we would expect from earlier discussions
on harmonic radiation in the forward direction. Using the identity J�n D .�1/nJn

and (26.56), we get finally with Nph D W=„! the photon flux per unit solid angle
from a highly relativistic particle passing through an undulator

dNph.!/

d˝

ˇ̌
ˇ̌
	D0

D ˛�2N2
p

!

!

K2

�
1C 1

2
K2
�2

1X
kD1

k2
�

sin�Np
!k=!1

�Np
!k=!1

�2
JJ2;

(26.59)
where the JJ-function is defined by

JJ D
�

J 1
2 .k�1/

�
kK2

4C 2K2

�
� J 1

2 .kC1/
�

kK2

4C 2K2

�	
: (26.60)

The amplitudes of the harmonics are given by

Ak.K/ D k2K2

.1C1
2
K2/2

JJ2 : (26.61)

The strength parameter greatly determines the radiation intensity as shown
in Fig. 26.9 for the lowest order harmonics. For the convenience of numerical
calculations the values Ak.K/ are tabulated for odd harmonics in Table 26.1. For
weak magnets .K � 1/ the intensity increases with the square of the magnet field or
undulator strength parameter. There is an optimum value for the strength parameter
for maximum photon flux depending on the harmonic under consideration. In
particular, radiation in the forward direction at the fundamental frequency reaches
a maximum photon flux for strength parameters K � 1:3. The photon flux per unit
solid angle increases like the square of the number of wiggler periods Np; which is
a result of the interference effect of many beams concentrating the radiation more
and more into one frequency and its harmonics as the number of interfering beams
is increased.

Fig. 26.9 Undulator
radiation intensity Ak.K/ in
the forward direction as a
function of the strength
parameter K for the six
lowest order odd harmonics
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Table 26.1 Amplitudes
Ak.K/ for k D 1; 3; 5; 7; 9; 11

K A1 A3 A5 A7 A9 A11
0.1 0.010 0 0 0 0 0

0.2 0.038 0 0 0 0 0

0.4 0.132 0:004 0 0 0 0

0.6 0.238 0:027 0:002 0 0 0

0.8 0.322 0:087 0:015 0:002 0 0

1.0 0.368 0:179 0:055 0:015 0:004 0:001

1.2 0.381 0:276 0:128 0:051 0:019 0:007

1.4 0.371 0:354 0:219 0:118 0:059 0:028

1.8 0.320 0:423 0:371 0:286 0:206 0:142

2.0 0.290 0:423 0:413 0:354 0:285 0:220

5.0 0.071 0:139 0:188 0:228 0:261 0:290

10.0 0.019 0:037 0:051 0:064 0:075 0:085

20.0 0.005 0:010 0:013 0:016 0:019 0:022

The radiation opening angle is primarily determined by the .sin x=x/2-term. We
define the opening angle for the kth harmonic radiation by #k being the angle for
which sin x=x D 0 for the first time. In this case x D � or Np
!k=!1 D 1. With

!1 D !p
2�2

1C 1
2 K2

, !k D k!p
2�2

1C 1
2K2C�2#2k and 
!k

!1
D
ˇ̌
ˇ!k
!1

� k
ˇ̌
ˇ ; we get Np k �2#2k

1C 1
2K2C�2#2k D

1 or after solving for #k

#2k D 1C 1
2
K2

�2.kNp � 1/
: (26.62)

Assuming an undulator with many periods
�
kNp � 1

�
the rms opening angle of

undulator radiation is finally

�r � 1p
2
#k D 1

�

s
1C 1

2
K2

2kNp
: (26.63)

Radiation emitted into a solid angle defined by this small opening angle


˝ D ��2r (26.64)

is referred to as the forward radiation cone. The opening angle of undulator radiation
becomes more collimated as the number of periods and the order of the harmonic
increases. On the other hand, the radiation cone opens up as the undulator strength
K is increased. We may use this opening angle to calculate the total photon flux of
the kth harmonic within a bandwidth 
!

!
into the forward cone

Nph.!k/
ˇ̌
#D0 D 1

2
�˛Np


!

!k

k K2

1C 1
2
K2

JJ2; (26.65)
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where !k D k!1. The radiation spectrum from an undulator magnet into the
forward direction has been reduced to a simple form exhibiting the most important
characteristic parameters. Utilizing (26.61) the number of photons emitted into a
band width 
!

!k
from a single electron passing through an undulator in the kth

harmonic is

Nph.!k/
ˇ̌
#D0 D 1

2
�˛Np


!

!k

1C 1
2
K2

k
A.K/: (26.66)

Equation (26.66) is to be multiplied by the number of particles in the electron
beam to get the total photon intensity. In case of a storage ring, particles circulate
with a high revolution frequency and we get from (26.66) by multiplication with
I=e, where I is the circulating beam current, the photon flux

dNph.!k/

dt

ˇ̌
ˇ̌
#D0

D 1
2
�˛Np

I

e


!

!k

1C 1
2
K2

k
A.K/: (26.67)

The spectrum includes only odd harmonic since all even harmonics are suppressed
through the cancellation of Bessel’s functions. This photon flux represents fully
spatial coherent radiation as long as the beam divergence does not significantly
contribute to the photon divergence (26.63).

26.2.5 Spectral Undulator Brightness

Similar to Chap. 27 we define the spectral brightness of undulator radiation as the
photon density in six-dimensional phase space. The actual photon brightness is
reduced from the diffraction limit due to betatron motion of the particles, transverse
beam oscillation in the undulator, apparent source size on axis and under an oblique
angle. All of these effects tend to increase the source size and reduce brightness.

The particle beam cross section varies in general along the undulator. We assume
here for simplicity that the beam size varies symmetrically along the undulator with
a waist in its center. From beam dynamics it is then known that, for example, the
horizontal beam size varies like �2b D �2b0 C� 02

b0s2, where �b0 is the beam size at the
waist, � 0

b0 the divergence of the beam at the waist and � 1
2
L 5 s 5 1

2
L the distance

from the waist. The average beam size along the undulator length L is then

h�2b i D �2b0 C 1
12
� 02

b0L2: (26.68)

Similarly, due to an oblique observation angle # with respect to the .y; z/-plane
or with respect to the .x; z/-plane we get a further additive contribution 1

6
#L to the

apparent beam size. Finally, the apparent source size is widened by the transverse
beam wiggle in the periodic undulator field. This oscillation amplitude is from (26.6)
a D �pK=.2��/.
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Collecting all contributions and adding them in quadrature, the total effective
beam-size parameters are given by

�2t;x D 1
2
�2r C �2b0;x C

�
�pK

2��

�2
C 1

12
�2b0;x0

L2 C 1
36
#2L2; (26.69a)

�2t;x0

D 1
2
�2r0

C �2b0;x0

; (26.69b)

�2t;y D 1
2
�2r C �2b0;y C

�
�pK

2��

�2
C 1

12
�2b0;y0

L2 C 1
36
 2L2; (26.69c)

�2t;y0

D 1
2
�2r0

C �2b0;y0

; (26.69d)

where the particle beam sizes can be expressed by the beam emittance and betatron
function as �2b D �ˇ, � 0

b
2 D �=ˇ, and the diffraction limited beam parameters are

�r0 D p
�=L, and �r D p

�L=.2�/.

26.3 Elliptical Polarization

During the discussion of bending magnet radiation in Chap. 25 and insertion
radiation in this chapter, we noticed the appearance of two orthogonal components
of the radiation field which we identified with the �-mode and �-mode polarization.
The �-mode radiation is observable only at a finite angle with the plane defined
by the particle trajectory and the acceleration force vector, which is in general
the horizontal plane. As we will see, both polarization modes can, under certain
circumstances, be out of phase giving rise to elliptical polarization. In this section,
we will shortly discuss such conditions.

26.3.1 Elliptical Polarization from Bending Magnet Radiation

The direction of the electric component of the radiation field is parallel to the
particle acceleration. Since radiation is the perturbation of electric field lines from
the charge at the retarded time to the observer, we must take into account all
apparent acceleration. To see this more clear, we assume an electron to travel counter
clockwise on an orbit travelling from say a 12-o’clock position to 9-o’clock and then
6-o’clock. Watching the particle in the plane of deflection, the midplane, we notice
only a horizontal acceleration which is maximum at 9-o’clock. Radiation observed
in the midplane is therefore linearly polarized in the plane of deflection.

Now we observe the same electron at a small angle above the midplane. Apart
from the horizontal motion, we notice now also an apparent vertical motion. Since
the electron follows pieces of a circle this vertical motion is not uniform but exhibits
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acceleration. Specifically, at 12-o’clock the particle seems to be accelerated only
in the vertical direction (downward), horizontally it is in uniform motion; at 9-
o’clock the acceleration is only horizontal (towards 3-o’clock) and the vertical
motion is uniform; finally, at 6-o’clock the electron is accelerated only in the vertical
plane again (upward). Because light travels faster than the electron, we observe
radiation first coming from the 12-o’clock position, then from 9-o’clock and finally
from 6-o’clock. The polarization of this radiation pulse changes from downward to
horizontal (left-right) to upward which is what we call elliptical polarization where
the polarization vector rotates with time. Of course, in reality we do not observe
radiation from half the orbit, but only from a very short arc segment of angle ˙1=� .
However, if we consider Lorentz contraction the 9-o’clock trajectory in the particle
system looks very close to a half circle radiation into ˙180 degrees which appears in
the laboratory system within ˙1=�: Therefore the short piece of arc from which we
observe the radiation has all the features just used to explain elliptical polarization
in a bending magnet.

If we observe the radiation at a small angle from below the midplane, the
sequence of accelerations is opposite, upward-horizontal (left-right)-downward.The
helicity of the polarization is therefore opposite for an observer below or above the
midplane. This qualitative discussion of elliptical polarization must become obvious
also in the formal derivation of the radiation field. Closer inspection of the radiation
field (25.87) from a bending magnet

Er.!/ D �
p
3

4��0

e

cR

!

!c
�.1C �2#2/

"
sign

�
1

�

�
K2=3.�/ u� � i

�#K1=3.�/p
1C �2#2

u�

#

(26.70)
shows that both polarization terms are 90ı out of phase. As a consequence, the
combination of both terms does not just introduce a rotation of the polarization
direction but generates a time dependent rotation of the polarization vector which
we identify with circular or elliptical polarization. In this particular case, the
polarization is elliptical since the �-mode radiation is always weaker than the
�-mode radiation. The field rotates in time just as expected from the qualitative
discussion above. The linear dependence of the second term in (26.70) also defines
the helicity proportional to the sign of #:

We may quantify the polarization property considering that the electrical field is
proportional to the acceleration vector P̌. Observing radiation at an angle with the
horizontal plane, we note that the acceleration being normal to the trajectory and
in the midplane can be decomposed into two components P̌

x and P̌
z as shown in

Fig. 26.10a.
The longitudinal acceleration component together with a finite observation angle

# gives rise to an apparent vertical acceleration with respect to the observation
direction and the associated vertical electric field component is

Ey / P̌
y D ny

P̌
z C nxny

P̌
x :
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Fig. 26.10 Acceleration along an arc-segment of the particle trajectory in (a) a bending magnet,
(b) polarization as a function of time, and (c) radiation field components as a function of time

An additional component appears, if we observe the radiation also at an angle with
respect to the .x; y/-plane which we, however, ignore here for this discussion. The
components nx; ny are components of the observation unit vector from the observer
to the source with ny D � sin# . We observe radiation first from an angle # > 0.
The horizontal and vertical radiation field components as a function of time are
shown in Fig. 26.10b. Both being proportional to the acceleration (Fig. 26.10a), we
observe a symmetric horizontal field Ex and an antisymmetric vertical field Ey. The
polarization vector (Fig. 26.10c) therefore rotates with time in a counter clockwise
direction giving rise to elliptical polarization with lefthanded helicity. Observing
the radiation from below with # < 0; the antisymmetric field switches sign and
the helicity becomes righthanded. The visual discussion of the origin of elliptical
polarization of bending magnet radiation is in agreement with the mathematical
result (26.70) displaying the sign dependence of the �-mode component with # .

The intensities for both polarization modes are shown in Fig. 26.11 as a function
of the vertical observation angle # for different photon energies. Both intensities
are normalized to the forward intensity of the �-mode radiation. From Fig. 26.11
it becomes obvious that circular polarization is approached for large observation
angles. At high photon energies both radiation lobes are confined to very small
angles but expand to larger angle distributions for photon energies much lower than
the critical photon energy.

The elliptical polarization is left or right handed depending on whether we
observe the radiation from above or below the horizontal mid plane. Furthermore,
the helicity depends on the direction of deflection in the bending magnet or the sign
of the curvature sign.1=�/. By changing the sign of the bending magnet field the
helicity of the elliptical polarization can be reversed. This is of no importance for
radiation from a bending magnet since we cannot change the field without loss of
the particle beam but is of specific importance for elliptical polarization state of
radiation from wiggler and undulator magnets.
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Fig. 26.11 Relative intensities of � -mode and �-mode radiation as a function of vertical
observation angle 	 for different photon energies

26.3.2 Elliptical Polarization from Periodic Insertion Devices

We apply the visual picture for the formation of elliptically polarized radiation in
a bending magnet to the periodic magnetic field of wiggler and undulator magnets.
The acceleration vectors and associated field vectors are shown in Fig. 26.12a, b
for one period and similar to the situation in bending magnets we do not expect
any elliptical polarization in the mid plane where # D 0. Off the mid-plane, we
observe now the radiation from a positive and a negative pole. From each pole we
get elliptical polarization but the combination of lefthanded polarization from one
pole with righthanded polarization from the next pole leads to a cancellation of
elliptical polarization from periodic magnets (Fig. 26.12c). In bending magnets, this
cancellation did not occur for lack of alternating deflection. Since there are generally
an equal number of positive and negative poles in a wiggler or undulator magnet
the elliptical polarization is completely suppressed. Ordinary wiggler and undulator
magnets do not produce elliptically polarized radiation.

Asymmetric Wiggler Magnet

The elimination of elliptical polarization in periodic magnets results from a
compensation of left and righthanded helicity and we may therefore look for an
insertion device in which this symmetry is broken. Such an insertion device is
the asymmetric wiggler magnet which is designed similar to a wavelength shifter
with one strong central pole and two weaker poles on either side such that the
total integrated field vanishes or

R
By ds D 0. A series of such magnets may be
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Fig. 26.12 Acceleration vectors along one period of (a) a wiggler magnet, (b) associated
polarization vectors, and (c) corresponding radiation fields
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Fig. 26.13 Asymmetric wiggler magnet

aligned to produce an insertion device with many poles to enhance the intensity. The
compensation of both helicities does not work anymore since the radiation depends
on the magnetic field and not on the total deflection angle. A permanent magnet
rendition of an asymmetric wiggler magnet is shown schematically in Fig. 26.13

The degree of polarization from an asymmetric wiggler depends on the desired
photon energy. The critical photon energy is high for radiation from the high field
pole

�
�C

c

�
and lower for radiation from the low field pole

�
��

c

�
. For high photon

energies
�
�ph � �C

c

�
the radiation from the low field poles is negligible and the

radiation is essentially the same as from a series of bending magnets with its
particular polarization characteristics. For lower photon energies

�
��

c < �ph < �
C
c

�
the radiation intensity from high and low field pole become similar and cancellation
of the elliptical polarization occurs. At low photon energies

�
�ph < �

�
c

�
the intensity

from the low field poles exceeds that from the high field poles and we observe again
elliptical polarization although with reversed helicity.

Elliptically Polarizing Undulator

The creation of elliptically and circularly polarized radiation is important for
a large class of experiments using synchrotron radiation and special insertion
devices have therefore been developed to meet such needs in an optimal way.
Different approaches have been suggested and realized as sources for elliptically
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λλ

Fig. 26.14 Permanent magnet arrangement to produce elliptically polarized undulator radia-
tion [11]
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Fig. 26.15 3-D view of an elliptically polarizing undulator, EPU [11]

polarized radiation, among them for example, those described in [9, 10]. All
methods are based on permanent magnet technology, sometimes combined with
electromagnets, to produce vertical and horizontal fields shifted in phase such that
elliptically polarized radiation can be produced. Utilizing four rows of permanent
magnets which are movable with respect to each other and magnetized as shown in
Fig. 26.14, elliptically polarized radiation can be obtained.

Figure 26.15 shows the arrangement in a three dimensional rendition to visualize
the relative movement of the magnet rows [9, 11].



924 26 Insertion Device Radiation

Fig. 26.16 Undulator for elliptically polarized radiation [10]

The top as well as the bottom row of magnet poles are split into two rows, each of
which can be shifted with respect to each other. This way, a continuous variation of
elliptical polarization from left to linear to right handed helicity can be obtained. By
shifting the top magnet arrays with respect to the bottom magnets the fundamental
frequency of the undulator radiation can be varied as well. Figure 26.16 shows a
photo of such a magnet [10].

Problems

26.1 (S). Consider an undulator magnet with a period length of �p D 5 cm in a
7GeV storage ring. The strength parameter be K D 1: What is the maximum
oscillation amplitude of an electron passing through this undulator? What is the
maximum longitudinal oscillation amplitude with respect to the reference system
moving with velocity Ň?

26.2 (S). An undulator with 50 poles, a period length of �p D 5 cm and a strength
parameter of K D 1 is to be installed into a 1 GeV storage ring. Calculate the
focal length of the undulator magnet. Does the installation of this undulator require
compensation of its focusing properties? How about a wiggler magnet with K D 5?
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26.3 (S). Consider the expression (26.67) for the photon flux into the forward cone.
We also know that the band width of undulator radiation scales like
!=! / 1=Np.
With this, the photon flux (26.67) becomes independent of the number of undulator
periods!? Explain in words, why this expression for the photon flux is indeed a
correct scaling law.

26.4 (S). A hybrid undulator is to be installed into a 7 GeV storage ring to produce
undulator radiation in a photon energy range of 4 keV to 15 keV. The maximum
undulator field shall not exceed a value of B0 � 2 T at a gap aperture of 10 mm. The
available photon flux in the forward cone shall be at least 10% of the maximum flux
within the whole spectral range. Specify the undulator parameters and show that the
required photon energy range can be covered by changing the magnet gap only.

26.5 (S). Consider an electron colliding head-on with a laser beam. What is the
wavelength of the laser as seen from the electron system. Derive from this the
wavelength of the “undulator“ radiation in the laboratory system.

26.6 (S). An electron of energy 2 GeV performs transverse oscillations in a wiggler
magnet of strength K D 1:5 and period length �p D 7:5 cm. Calculate the maximum
transverse oscillation amplitude. What is the maximum transverse velocity in units
of c during those oscillations. Define and calculate a transverse relativistic factor
�?. Note, that for K & 1 the transverse relativistic effect becomes significant in the
generation of harmonic radiation.

26.7 (S). Calculate for a 3 GeV electron beam the fundamental photon energy for
a 100 period-undulator with K D 1 and a period length of �p D 5 cm. What is
the maximum angular acceptance angle # (as determined by adjustable slits) of the
beam line, if the radiation spectrum is to be restricted to a bandwidth of 10%?

26.8 (S). Strong mechanical forces exist between the magnetic poles of an undu-
lator when energized. Are these forces attracting or repelling the poles? Why?
Consider a ` D1 m long undulator with a pole width w D 0:1m, 15 periods each
�p D 7 cm long and a maximum field of B0 D 1:5T. Estimate the total force
between the two magnet poles ?

26.9 (S). In Chap. 23 we mentioned undulator radiation as a result of Compton
scattering of the undulator field by electrons. Derive the fundamental undulator
wavelength from the process of Compton scattering.

26.10 (S). The undulator radiation intensity is a function of the strength parameter
K: Find the strength parameter K for which the fundamental radiation intensity
is a maximum. Determine the range of K-values for which the intensity of the
fundamental radiation is within 10% of the maximum.

26.11 (S). Show from (26.54) that along the axis .# D 0/ radiation is emitted only
in odd harmonics.

26.12 (S). Show from (26.51) that undulator radiation does not produce elliptically
polarized radiation in the forward direction .# D 0/.
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26.13 (S). Try to design a hybrid undulator for a 3 GeV storage ring to produce
4 keV to 15 keV photon radiation. Is it possible? Why not? Optimize the undulator
parameters such that this photon energy range can be covered with the highest flux
possible and utilizing lower order harmonics (order 7 or less). Plot the radiation
spectrum that can be covered by changing the gap height of the undulator.

26.14 (S). An undulator is constructed from hybrid permanent magnet material
with a period length of �,p D 5:0 cm. What is the fundamental wavelength range
in a 800 MeV storage ring and in a 7 GeV storage ring if the undulator gap is to be
at least 10 mm?

26.15 (S). Determine the tuning range for a hybrid magnet undulator in a 2.5 GeV
storage ring with an adjustable gap g 	 10mm. Plot the fundamental wavelength
as a function of magnet gap for two different period lengths, �,p D 15mm and
�,p D 75mm. Why are the tuning ranges so different?

26.16. Consider a 26-pole wiggler magnet with a field By .T/ D 1:5 sin
�
2�
�,p

z
�

and

a period length of �,p D 15 cm as the radiation source for a straight through photon
beam line and two side stations at an angle # D 4mr and # D 8mr in a storage ring
with a beam energy of 2.0 GeV. What is the critical photon energy of the photon
beam in the straight ahead beam line and in the two side stations?

26.17. Verify the relative intensities of �-mode and �-mode radiation in Fig.26.12
for two quantitatively different pairs of observation angles # and photon energies
"="c.

26.18. Design an asymmetric wiggler magnet assuming hard edge fields and
optimized for the production of elliptical polarized radiation at a photon energy of
your choice. Calculate and plot the photon flux of polarized radiation in the vicinity
of the optimum photon energy.

26.19. Calculate the total undulator
�
Np D 50; �p D 4:5 cm, K D 1:0

�
radiation

power from a 200 mA, 6 GeV electron beam. Pessimistically, assume all radiation
to come from a point source and be contained within the central cone. This is a safe
assumption for the design of the vacuum chamber or mask absorbers. Determine the
power density at a distance of 15 m from the source. Compare this power density
with the maximum acceptable of 10 W/mm2. How can you reduce the power density,
on say a mask, to the acceptable value or below?

26.20. Use the beam and undulator from problem 26.19 and estimate the total
radiation power into the forward cone alone. What percentage of all radiation falls
within the forward cone? [hint: make reasonable approximations to simplify the
math but keep the result reasonably close to the correct answer].

26.21. Derive an expression for the average velocity component Ň D Nv=c of a
particle traveling through an undulator magnet of strength K:
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