
Chapter 19
Beam-Cavity Interaction*

The proper operation of the rf-system in a particle accelerator depends more than
any other component on the detailed interaction with the particle beam. This results
from the observation that a particle beam can induce fields in the accelerating
cavities of significant magnitude compared to the generator produced voltages and
we may therefore not neglect the presence of the particle beam. This phenomenon
is called beam loading and can place severe restrictions on the beam current that
can be accelerated. In this section, main features of such interaction and stability
conditions for most efficient and stable particle acceleration will be discussed.

19.1 Coupling Between rf-Field and Particles

In our discussions about particle acceleration we have tacitly assumed that particles
would gain energy from the fields in accelerating cavities merely by meeting the
synchronicity conditions. This is true for a weak particle beam which has no
significant effect on the fields within the cavity. As we try, however, to accelerate
an intense beam, the actual accelerating fields become modified by the presence
of considerable electrical particle beam currents. This beam loading can ultimately
limit the maximum beam intensity.

The phenomenon of beam loading will be defined and characterized in this
section leading to conditions and parameters to assure positive energy flow from
the rf-power source to the beam. Fundamental consideration to this discussion are
the principles of energy conservation and linear superposition of fields which allow
us to study field components from one source independent of fields generated by
other sources. Specifically, we may treat beam induced fields separately from fields
generated by rf-power sources.
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19.1.1 Network Modelling of an Accelerating Cavity

The electrical excitation of a rf-cavity can be accurately described by an oscillator
as discussed in Sect. 18.2.4 and we will use therefore characteristic parameters
and terminology of externally driven, damped oscillators in our further discussions
of rf-systems. Electrically, an accelerating cavity can be represented by a parallel
resonant circuit (Fig. 19.1) which is driven by an external rf-current source Ig from
a generator and the particle beam Ib.

The amount of rf-power available from the generator in the accelerating cavity
depends greatly on the relative impedance of cavity and generator. Both have to be
matched to assure optimum power transfer. To derive conditions for that we define
the internal impedance of the current source or rf-generator in terms of the cavity
shunt impedance Rs of an empty cavity as defined in (18.74)

Rg D Rs

ˇ
; (19.1)

where ˇ is the coupling coefficient still to be defined. This coefficient depends on
the actual hardware of the coupling arrangement for the rf-power from the generator
at the entrance to the cavity and quantifies the generator impedance as seen from the
cavity in units of the cavity shunt impedance Rs (Fig. 19.1). Since this coupling
coefficient depends on the hardware, we need to specify the desired operating
condition to determine the proper adjustment of the coupling during assembly. This
adjustment is done by either rotating a loop coupler with respect to the cavity axis
or adjustment of the aperture in case of capacitive coupling through a hole.

The inductance L and capacitance C form a parallel resonant circuit with the
resonant frequency

!r D 1p
LC

: (19.2)

The rf-power available at the cavity from the generator is

Pg D 1
2
YLV 2

g ; (19.3)

Fig. 19.1 Network model for
an rf generator and an
accelerating cavity
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where YL is the loaded cavity admittance including energy transfer to the beam
and Vg is the generator voltage. Unless otherwise noted, the voltages, currents and
power used in this section are the amplitudes of otherwise oscillating quantities. At
resonance where all reactive power vanishes we use the generator current Ig and
network admittance Y D Yg C YL to replace the generator voltage

Vg D Ig

Y
D Ig

Yg C YL

and get after insertion into (19.3) the generator power in the form

Pg D 1

2

YL
�
Yg C YL

�2 I2g : (19.4)

Noting that the generator power has a maximum, which can be determined from
@Pg=@YL D 0, we obtain the well-known result that the rf-power transfer from the
generator becomes a maximum if the load is matched to the internal impedance of
the generator by adjusting

Yg D YL or RL D Rs

ˇ
; (19.5)

replacing the admittances by the respective impedances. The maximum available
rf-power at the cavity is therefore with Yg D ˇ=Rs

Pg D 1

8

Rs

ˇ
I2g : (19.6)

To calculate the quality factor for a cavity, we note the stored energy is W D
1
2
CV2 and the energy loss rate Pcy D 1

2
V2=R: Using the definition (18.80) the

unloaded quality factor becomes with R D Rs at resonance

Q0 D !rCRs : (19.7)

The admittance for the total circuit as seen by the beam is that of cavity plus
generator or

1

Rb
D ˇ

Rs
C 1

Rs
D 1C ˇ

Rs
: (19.8)

From this and (19.7) we get the loaded quality factor

Q D !rCRb D Q0

1C ˇ
: (19.9)
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Off resonance the generator voltage and current are no more in phase. The phase
difference can be derived from the complex impedance of the network, which is the
same seen from the generator as well as seen from the beam

1

Z
D 1

Rb
C i!C C 1

i!L
: (19.10)

The complex impedance becomes with (19.2), (19.9)

1

Z
D 1

Rb

�
1C iQ

!2 � !2r
! !r

�
(19.11)

and with Ig D Vg=Z the generator current is

Ig D Vg

Rb

�
1C iQ

!2 � !2r
! !r

�
D Vg

Rb
.1 � i tan�/ : (19.12)

Close to resonance the tuning angle � becomes from (19.12) with ! � !r

tan� � �Q
!2 � !2r
! !r

� �2Q
! � !r

!r
(19.13)

in agreement with (18.64) except for a phase shift of �90ı, which was introduced
here to be consistent with our definition of the synchronous phase  s. The variation
of the tuning angle is shown in Fig. 19.2 as a function of the generator frequency.
From (19.12), the generator voltage at the cavity is finally

Vg D IgRb

1 � i tan�
D IgRb cos� ei� : (19.14)

Fig. 19.2 Tuning angle  as a function of the generator frequency
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At frequencies below the resonance frequency the tuning angle is positive and
therefore the generator current lags the voltage by the phase � . This case is also
called inductive detuning since the impedance looks mainly inductive. Conversely,
the detuning is called capacitive detuning because the impedance looks mostly
capacitive for frequencies above resonance frequency.

A bunched particle beam passing through a cavity acts as a current just like the
generator current and therefore the same relationships with respect to beam induced
voltages exist. In case of capacitive detuning, for example, the beam induced voltage
Vb lags in phase behind the beam current Ib.

The effective accelerating voltage in the cavity is a composition of the generator
voltage, the induced voltage, and the phase relationships between themselves and
relative to the particle beam. To assure a stable beam, the resulting cavity voltage
must meet the requirements of particle acceleration to compensate, for example, lost
energy into synchrotron radiation. We determine the conditions for that by deriving
first the generator voltage Vgr at resonance and without beam loading while voltage
and current are in phase. From Fig. 19.1 we get

Vgr D Ig

Yg C YL
D Ig

1
Rs

C ˇ

Rs

D RsIg

1C ˇ
(19.15)

and with (19.6) the generator voltage at resonance becomes

Vgr D 2
p
2ˇ

1C ˇ

p
RsPg : (19.16)

The generator voltage at the cavity is therefore with (19.6)

Vg D Vgr cos� ei� : (19.17)

This is the cavity voltage seen by a negligibly small beam and can be adjusted to
meet beam stability requirements by varying the tuning angle � and rf-power Pg.

19.2 Beam Loading and Rf-System

For more substantial beam currents the effect of beam loading must be included
to obtain the effective cavity voltage. Similar to the derivation of the generator
voltage in a cavity, we may derive the induced voltage from the beam current passing
through that cavity. Since there is no fundamental difference between generator and
beam current, the induced voltage is in analogy to (19.17)

Vb D �Vbr cos� ei� ; (19.18)
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where the negative sign indicates that the induced voltage is decelerating the beam.
The particle distribution in the beam occurs in bunches and the beam current
therefore can be expressed by a Fourier series. Here we are only interested in the
harmonic Ih of the beam current and find for bunches short compared to the rf-
wavelength

Ih D 2Ib (19.19)

where Ib is the average beam current and h the harmonic number. The approximation
for short bunches with ` � �rf- holds as long as sin krf-` � krf-` with krf- D 2�=�rf-.
For longer bunches the factor 2 becomes a more complicated formfactor as can be
derived from an appropriate Fourier expansion. At the resonance frequency !r D
h!0; the beam induced voltage in the cavity is then with (19.8) from (19.15)

Vbr D RsIh

1C ˇ
D 2RsIb

1C ˇ
: (19.20)

The resulting cavity voltage is the superposition of both voltages, the generator
and the induced voltage. This superposition, including appropriate phase factors, is
often represented in a phasor diagram. In such a diagram a complex quantity Qz is
represented by a vector of length jQzj with the horizontal and vertical components
being the real and imaginary part of Qz, respectively. The phase of this vector
increases counter clockwise and is given by tan' DIm.Qz/ =Re.Qz/. In an application
to rf-parameters we represent voltages and currents by vectors with a length equal
to the magnitude of voltage or current and a counter clockwise rotation of the vector
by the phase angle '.

The particle beam current can be chosen as the reference being parallel to the
real axis and we obtain from the quantities derived so far the phasor diagram as
shown in Fig. 19.3. First we determine the relationships between individual vectors
and phases and then the correct adjustments of variable rf-parameters. In Fig. 19.3
the generator current is assumed to have the still to be determined phase # with
respect to the beam current while the generator voltage and beam induced voltage
lag by the phase � behind the beam current. The resulting cavity voltage QVcy is the
phasor addition of both voltages QVg C QVb as shown in Fig. 19.3.

The adjustment of the rf-system must now be performed in such a way as to
provide the desired gain in kinetic energy U0 D e OVcy sin s where OVcy is the
maximum value of the cavity voltage and  s the synchronous phase. To maximize
the energy flow from the generator to the cavity the load must be matched such that
it appears to the generator purely resistive. This is achieved by adjusting the phase
 g to get the cavity voltage Vcy and generator current Ig in phase which occurs for

 g D 1
2
� �  s (19.21)

as shown in Fig. 19.4. Obviously, this is only true for a specific value of the beam
current. General operation will deviate from this value and therefore we often match
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Fig. 19.3 Phasor diagram for an accelerating cavity and arbitrary tuning angle
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Fig. 19.4 Phasor diagram with optimum tuning angle

to the maximum desired beam current. For lower currents, where the energy transfer
is not optimum anymore, some loss of efficiency is acceptable.

The tuning angle adjustment for optimum matching can be derived from Fig. 19.4
and applying the law of sines we have with (19.17)

Vb

Vcy
D Vbr cos�m

Vcy
D sin�m

sin g
D sin�m

cos s
: (19.22)

The optimum tuning angle is from (19.22)

tan�m D Vbr

Vcy
cos s : (19.23)

This tuning is effected by a shift in the resonant frequency of the cavity
with respect to the generator frequency by, for example, moving a tuner in or
out. From (19.13) we get with (19.9), (19.20), (19.23) for the frequency shift or
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frequency tuning

ı! D ! � !r D � !r

2Q0

Pb

Pcy
cot s ; (19.24)

where the cavity power is defined by

Pcy D V2
cy

2Rs
(19.25)

and the beam power by

Pb D IbVcy sin s : (19.26)

To determine the required generator power the components of the cavity voltage
vector can be expressed by other quantities and we get from Fig. 19.4

Vcy sin s D Vgr cos�m cos
�
 g � �m

� � Vbr cos2 �m (19.27)

and

Vcy cos s D Vgr cos�m sin
�
 g � �m

�C Vbr cos�m sin�m : (19.28)

Combining both equations to eliminate the phase
�
 g � �m

�
; we get

V2
gr D

�
Vcy

sin s

cos�m
C Vbr cos�m

�2
C
�

Vcy
cos s

cos�m
� Vbr sin�m

�2
(19.29)

and with (19.16), (19.20) the required generator power for the condition of optimum
matching is

Pg D V2
cy

2Rs

.1C ˇ/2

4ˇ

"�
sin s

cos�m
C 2RsIb

Vcy .1C ˇ/
cos�m

�2
(19.30)

C
�

cos s

cos�m
� 2RsIb

Vcy .1C ˇ/
sin�m

�2#

:

This expression can be greatly simplified with (19.23) to become

Pg,opt D .1C ˇ/2

8ˇRs

�
Vcy C 2RsIb

1C ˇ
sin s

�2
: (19.31)

Equation (19.31) represents a combination of beam current through Ib; rf–
generator power Pg, coupling coefficient ˇ, and shunt impedance Rs to sustain
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a cavity voltage Vcy. Specifically, considering that the rf-power Pg and coupling
coefficientˇ is fixed by the hardware installed a maximum supportable beam current
can be derived as a function of the desired or required cavity voltage. Solving for
the cavity voltage, (19.31) becomes after some manipulation

Vcy D
p
2ˇRs

1C ˇ

 
p

Pg,opt C
s

Pg,opt � 1C ˇ

ˇ
Pb

!

: (19.32)

This expression exhibits a limit for the beam current above which the second
square root becomes imaginary. The condition for real solutions requires that

Pb � ˇ

1C ˇ
Pg,opt (19.33)

leading to a limit of the maximum sustainable beam current of

Ib � ˇ

1C ˇ

Pg

Vcy sin s
: (19.34)

Inspection of (19.31) shows that the required generator power can be further
minimized by adjusting for the optimum coupling coefficient ˇ. Optimum coupling
can be derived from @Pg=@̌ D 0 with the solution

ˇopt D 1C 2RsIb

Vcy
sin s D 1C Pb

Pcy
: (19.35)

The minimum generator power required to produce an accelerating voltage
Vcy sin s is therefore from (19.31) with (19.35)

Pg,min D V2
cy

2Rs
ˇopt D ˇoptPcy (19.36)

and the optimum tuning angle from (19.23)

tan�opt D ˇopt � 1
ˇopt C 1

cot s : (19.37)

In this operating condition all rf-power from the generator is absorbed by the
beam loaded cavity and no power reflection occurs. The maximum beam power is
therefore Pb D Pg � Pcy and the maximum beam current

Ib � Pg

Vcy sin s
� Vcy

2Rs sin s
: (19.38)
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Conditions have been derived assuring most efficient power transfer to the beam
by proper adjustment of the cavity power input coupler to obtain the optimum
coupling coefficient. Of course this coupling coefficient is optimum only for a
specific beam current which in most cases is chosen to be the maximum desired
beam current.

We are now in a position to determine the total rf-power flow. From conservation
of energy we have

Pg D Pcy C Pb C Pr ; (19.39)

where Pr is the reflected power which vanishes for the case of optimum coupling.

19.3 Higher-Order Mode Losses in an Rf-Cavity

The importance of beam loading for accurate adjustments of the rf-system has been
discussed qualitatively but not yet quantitatively. In this paragraph, quantitative
expressions will be derived for beam loading. Accelerating cavities constitute an
impedance to a particle current and a bunch of particles with charge q passing
through a cavity induces electromagnetic fields into a broad frequency spectrum
limited at the high frequency end by the bunch length. The magnitude of the
excited frequencies in the cavity depends on the frequency dependence of the
cavity impedance, which is a function of the particular cavity design and need not
be known for this discussion. Fields induced within a cavity are called modes,
oscillating at different frequencies with the lowest mode being the fundamental
resonant frequency of the cavity. Although cavities are designed primarily for one
resonant frequency, many higher-order modes or HOM’scan be excited at higher
frequencies. Such modes occur above the fundamental frequency first at distinct
well-separated frequencies with increasing spectral densities at higher frequencies.

For a moment we consider here only the fundamental frequency and deal with
higher-order modes later. Fields induced by the total bunch charge act back on
individual particles modifying the overall accelerating voltage seen by the particle.
To quantify this we use the fundamental theorem of beam loading formulated by
Wilson [1] which states that each particle within a bunch sees one half of the induced
field while passing through the cavity.

We prove this theorem by conducting a Gedanken experiment proposed by
Wilson. Consider a bunch of particles with charge q passing through a lossless cavity
inducing a voltage Vi1 in the fundamental mode. This induced field is opposed to the
accelerating field since it describes a loss of energy. While the bunch passes through
the cavity this field increases from zero reaching a maximum value at the moment
the particle bunch leaves the cavity. Each particle will have interacted with this field
and the energy loss corresponds to a fraction f of the induced voltage Vi;h, where
the index h indicates that we consider only the fundamental mode. The total energy
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lost by the bunch of charge q is

�E1 D �q1f Vi;h : (19.40)

This energy appears as field energy proportional to the square of the voltage

W1 D c1V
2

i;h ; (19.41)

where c1 is a constant.
Now consider another bunch with the same charge q2 D q1 D q following

behind the first bunch at a distance corresponding to half an oscillation period
at the fundamental cavity frequency. In addition to its own induced voltage this
second bunch will see the field from the first bunch, now being accelerating, and
will therefore gain an energy

�E2 D q1Vi;h � q2f Vi;h D qVi;h .1 � f / : (19.42)

After passage of the second charge, the cavity returns to the original state before
the first charge arrived because the field from the first charge having changed sign
exactly cancels the induced field from the second charge. The cavity has been
assumed lossless and energy conservation requires therefore that �E1 C �E2 D 0

or �q f Vi;h C qVi;h .1 � f / D 0 from which we get

f D 1
2

(19.43)

proving the statement of the fundamental theorem of beam loading. The energy loss
of a bunch of charge q due to its own induced field is therefore

�E1 D � 1
2
qVi;h : (19.44)

This theorem will be used to determine the energy transfer from cavity fields to
a particle beam. To calculate the induced voltages in rf-cavities, or in arbitrarily
shaped vacuum chambers providing some impedance for the particle beam can
become very complicated. For cylindrically symmetric cavities the induced voltages
can be calculated numerically with programs like SUPERFISH [2], URMEL[3] or
MAFIA [3].

For a more practical approach Wilson [1] introduced a loss parameter k which can
be determined either by electronic measurements or by numerical calculations. This
loss parameter for the fundamental mode loss of a bunch with charge q is defined by

�Eh D khq2 (19.45)

and together with (19.44) we get the induced voltage

Vi;h D �2khq (19.46)
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or after elimination of the charge

�Eh D V2
i;h

4kh
; (19.47)

where the index h indicates that the parameter should be taken at the fundamental
frequency. The loss parameter can be expressed in terms of cavity parameters. From
the definition of the cavity quality factor (18.80) and cavity losses from (18.77) we
get

2Rcy

Q
D V2

!W
; (19.48)

where ! is the frequency and W the stored field energy in the cavity. Applying
this to the induced field, we note that �Eh is equal to the field energy Wh and
combining (19.47), (19.48) the loss parameter to the fundamental mode in a cavity
with shunt impedance Rh and quality factor Qh is

kh D !h

4

Rh

Qh
: (19.49)

The excitation of higher-order mode fields by the passing particle bunch leads
to additional energy losses which are conveniently expressed in units of the energy
loss to the fundamental mode

�Ehom D .rhom � 1/�Eh ; (19.50)

where rhom is the ratio of the total energy losses into all cavity modes to the loss into
the fundamental mode only. The induced higher order field energy in the cavity is
therefore

Whom D .rhom � 1/Wh : (19.51)

Again we may define a loss parameter kn for an arbitrary nth-mode and get
analogous to (19.49)

kn D !n

4

2Rn

Qn
; (19.52)

where Rn and Qn are the shunt impedance and quality factor for the nth-mode or
frequency !n, respectively. The total loss parameter due to all modes is by linear
superposition

k D
X

n

kn : (19.53)
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The task to determine the induced voltages has been reduced to the determination
of the loss parameters for individual modes or if this is not possible or desirable we
may use just the overall loss parameter k as may be determined experimentally. This
is particularly convenient for cases where it is difficult to calculate the mode losses
but much easier to measure the overall losses by electronic measurements.

The higher-order mode losses will become important for discussion of beam
stability since these fields will act back on subsequent particles and bunches thus
creating a coupling between different parts of one bunch or different bunches.

19.3.1 Efficiency of Energy Transfer from Cavity to Beam

Higher-order mode losses affect the efficiency by which energy is transferred to the
particle beam. Specifically, since the higher-order mode losses depend on the beam
current we must expect some limitation in the current capability of the accelerator.

With these preparations we have now all information to calculate the transfer
of energy from the cavity to the particle beam. Just before the arrival of a particle
bunch let the cavity voltage as generated by the rf-power source be

Vcy D �Vg ei�g ; (19.54)

where Vg is the generator voltage and �g the generator voltage phase with respect
to the particle beam. To combine the generator voltage with the induced voltage we
use phasor diagrams in the complex plane.

The generator voltage is shown in Fig. 19.5 as a vector rotated by the angle �g

from the real axis representing the cavity state just before the beam passes. The
beam induced voltage is parallel and opposite to the real axis. Both vectors add up
to the voltage V just after the beam has left the cavity.

The difference of the fundamental field energy before and after passage of the
particle bunch is equal to the energy transferred to the passing particle bunch minus

Fig. 19.5 Phasor diagram for
cavity voltages with beam
loading

V

Vb

ψg

Vcy

ψg
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the higher-order field energy and is from the phasor diagram

�Ehom D ˛
�

V2
cy � V2

�
� Whom D ˛

�
2VcyVb cos�g � V2

b

� � Whom ; (19.55)

where ˛ is the proportionality factor between the energy gain �E and the square of
the voltage defined by ˛ D �E=V2: With (19.45), (19.46), we get from (19.55) the
net energy transfer to a particle bunch [4]

�Ehom D ˛
�
2VcyVb cos�g � rhomV2

b

�
: (19.56)

The energy stored in the cavity before arrival of the beam is Wcy D ˛V2
cy and the

energy transfer efficiency to the beam becomes

� D �Eh

Wcy
D 2

Vb

Vcy
cos�g � rhom

V2
b

V2
cy
: (19.57)

It is obvious from (19.57) that energy transfer is not guaranteed by the syn-
chronicity condition or the power of the generator alone. Specifically, the second
term in (19.57) becomes dominant for a large beam intensity and the efficiency may
even become negative indicating reversed energy transfer from the beam to cavity
fields. The energy transfer efficiency has a maximum for Vb D cos�g

rhom
Vcy and is

�max D cos2 �g

rhom
; (19.58)

a result first derived by Keil et al. [5] and is therefore frequently called the Keil-
Schnell-Zotter criterion. The maximum energy transfer efficiency is limited by the
phase of the generator voltage and the higher-order mode losses in the cavity.

19.4 Beam Loading

Only one passage of a bunch through a cavity has been considered in the previous
section. In circular accelerators, however, particle bunches pass periodically through
the accelerating cavities and we have to consider the cumulative build up of induced
fields. Whenever a particle bunch is traversing a cavity the induced voltage from this
passage is added to those still present from previous bunch traversals. For simplicity,
we assume a number of equidistant bunches along the circumference of the ring,
where adjacent bunches are separated by an integer number mb of the fundamental
rf-wavelength. The induced voltage decays exponentially by a factor e�� between
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Fig. 19.6 Phasor diagram for
the superposition of induced
voltages in an accelerating
cavity

V i,2

V i,1

V i,4

V i

V i,3

two consecutive bunches with

� D tb
td
; (19.59)

where tb is the time between bunches and td the cavity voltage decay time for the
fundamental mode. The phase of the induced voltage varies between the passage of
two consecutive bunches by

' D !htb � 2�mb : (19.60)

At the time a bunch passes through the cavity the total induced voltages are then
the superposition of all fields induced by previous bunches

Vi D Vi;h
�
1C e��ei' C e�2�ei2' C � � � � (19.61)

shown in Fig. 19.6 as the superposition of all induced voltages in form of a phasor
diagram together with the resultant induced voltage Vi. The sum (19.61) can be
evaluated to be

Vi D Vi;h
1

1 � e��ei'
; (19.62)

which is the total induced voltage in the cavity just after the last bunch passes;
however, the voltage seen by this last bunch is only half of the induced voltage and
the total voltage Vb acting back on the bunch is therefore

Vb D Vi;h

�
1

1 � e��ei'
� 1

2

�
: (19.63)

The voltage Vi;h can be expressed in more practical units. Considering the
damping time (18.62) for fields in a cavity we note that two damping times exist,
one for the empty unloaded cavity td0 and a shorter damping time td when there is
also a beam present. For the unloaded damping time we have from (18.62)
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td0 D 2Q0h

!h
; (19.64)

where Q0h is the unloaded quality factor. From (19.45), (19.47) we get with q D I0tb,
where I0 is the average beam current,

Vi;h D !h

2Q0h
RhI0tb

and with (19.64)

Vi;h D RhI0
tb
td0
: (19.65)

Introducing the coupling coefficient ˇ; we get from (19.9), (19.64)

td0 D .1C ˇ/ tb : (19.66)

In analogy to (19.59) we define

�0 D �

1C ˇ
D tb

td0
(19.67)

and (19.65) becomes

Vi;h D �0RhI0 : (19.68)

We are finally in a position to calculate from (19.63), (19.68) the total beam
induced cavity voltage Vb in the fundamental mode for circular accelerators.

19.5 Phase Oscillation and Stability

In the course of discussing phase oscillations we found it necessary to select
carefully the synchronous phase depending on the particle energy being below or
above the transition energy. Particularly, we found that phase stability for particles
above transition energy requires the rf-voltage to decrease with increasing phase.
From the derivative of (19.27) with respect to  s we find with (19.21) and since
Vgr cos� > 0 the condition for phase stability sin. g � �m/ < 0 or

1
2
� <  s C �m <

3
2
� : (19.69)
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From (19.28) and (19.69) we get

�Vcy jcos sj � Vbr sin�m cos�m < 0

or with (19.23)

Vbr sin s < Vcy ; (19.70)

which is Robinson’s phase-stability criterion or the Robinson condition [6] for the
tuning angle of the accelerator cavity. The maximum current that can be accelerated
in a circular accelerator with stable phase oscillations is limited by the effective
cavity voltage. In terms of rf-power, (19.70) is with (19.20) equivalent to

Pb � .1C ˇ/Pcy (19.71)

and the stability condition for the coupling coefficient is from (19.35)

ˇ > ˇopt � 2 : (19.72)

The stability condition is always met for rf-cavities with optimum coupling ˇ D
ˇopt.

19.5.1 Robinson Damping

Correct tuning of the rf-system is a necessary but not a sufficient condition for
stable phase oscillations. In Chap. 12 we found the occurrence of damping or anti-
damping due to forces that depend on the energy of the particle. Such a case occurs
in the interaction of bunched particle beams with accelerating cavities or vacuum
chamber components which act like narrow band resonant cavities. The revolution
time of a particle bunch depends on the average energy of particles within a bunch
and the Fourier spectrum of the bunch current being made up of harmonics of the
revolution frequency is therefore energy dependent. On the other hand by virtue
of the frequency dependence of the cavity impedance, the energy loss of a bunch
in the cavity due to beam loading depends on the revolution frequency. We have
therefore an energy dependent loss mechanism which can lead to damping or worse
anti-damping of coherent phase oscillation and we will therefore investigate this
phenomenon in more detail. Robinson [6] studied first the dynamics of this effect
generally referred to as Robinson damping or Robinson instability.

Above transition energy the revolution frequency is lower for higher bunch
energies compared to the reference energy and vice versa. To obtain damping of
coherent phase oscillations, we would therefore tune the cavity such that the bunch
would loose more energy in the cavity while at higher energies (lower frequency)
during the course of coherent synchrotron oscillation and loose less energy at
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a) b)

Fig. 19.7 Cavity tuning for positive Robinson damping below and above transition energy. (a)
Below transition. (b) Above transition

lower energies (higher frequency). In this situation, the impedance of the cavity
should decrease with increasing frequency for damping to occur as demonstrated in
Fig. 19.7.

Here the resonance curve or impedance spectrum is shown for the case of a
resonant frequency above the beam frequency h!0 in Fig. 19.7a and below the beam
frequency in Fig 19.7b. Consistent with the arguments made above we would expect
damping in case of Fig. 19.7b for a beam above transition and anti-damping in case
of Fig. 19.7a. Adjusting the resonance frequency of the cavity to a value below
the beam frequency h!0where !0is the revolution frequency, is called capacitive
detuning. Conversely, we would tune the cavity resonance frequency above the beam
frequency (!r > h!0) or inductively detune the cavity for damping below transition
energy (Fig. 19.7a).

In a more formal way we fold the beam-current spectrum with the impedance
spectrum of the cavity and derive scaling laws for the damping as well as the
shift in synchrotron frequency. During phase oscillations the revolution frequency
is modulated and as a consequence the beam spectrum includes in addition to the
fundamental frequency two side bands or satellites. The beam-current spectrum is
composed of a series of harmonics of the revolution frequency up to frequencies
with wavelength of the order of the bunchlength

I.t/ D Ib C
X

n>0

In cos .n!0t � '/ ; (19.73)

where Ib is the average circulating beam current and ' a phase shift with respect
to the reference particle. The Fourier coefficient for bunches short compared to the
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wavelength of the harmonic is given by

In D 2Ib : (19.74)

Here we restrict the discussion to the interaction between beam and cavity at
the fundamental cavity frequency and the only harmonic of interest in the beam
spectrum is therefore the hth harmonic

Ih.t/ D 2Ib cos .h!0t � '/ : (19.75)

By virtue of coherent synchrotron oscillations the phase oscillates for each
particle in a bunch like

'.t/ D '0 sin˝st ; (19.76)

where '0 is the maximum amplitude and ˝s the synchrotron oscillation frequency
of the phase oscillation. We insert this into (19.75) and get after expanding the
trigonometric functions for small oscillation amplitudes '0 � 1

Ih.t/ D 2Ib cos .h!0t/� Ib'0 Œcos .h!0t C˝st/ � cos .h!0t �˝st/� : (19.77)

This expression exhibits clearly sidebands or satellites in the beam spectrum at
h!0 ˙ ˝s. Folding the expression for the beam current with the cavity impedance
defines the energy loss of the particle bunch while passing through the cavity. The
cavity impedance is a complex quantity which was derived in (19.11) and its real
part is shown together with the beam spectrum in Fig. 19.8. The induced voltage in
the cavity by a beam Ih.t/ D Ih cos h!0t is

Vh D �ZIh.t/ D �ZrIh cos .h!0t/� ZiIh sin .h!0t/ ; (19.78)

Fig. 19.8 Cavity impedance
and beam spectrum in the
vicinity of the fundamental rf
frequency !rf D h!0

frequency
wwres
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where we have split the impedance in its real and imaginary part and have expressed
the imaginary part of the induced voltage by a ��=2 phase shift. Applying (19.78)
to all components of the beam current (19.77) we get the induced voltage in the
cavity

Vh D �Z0r 2Ib cos h!0t � Z0i 2Ib sin h!0t (19.79)

C ZC
r Ib'0 cos h!0t cos˝st � ZC

r Ib'0 sin h!0t sin˝st

C ZC
i Ib'0 sin h!0t cos˝st C ZC

i Ib'0 cos h!0t sin˝st

� Z�
r Ib'0 cos h!0t cos˝st � Z�

r Ib'0 sin h!0t sin˝st

� Z�
i Ib'0 sin h!0t cos˝st C Z�

i Ib'0 cos h!0t sin˝st ;

where Z0;ZC and Z� are the real r and imaginary i cavity impedances at the
frequencies h!0; h!0 C˝s; h!0 �˝s respectively. We make use of the expression
for the phase oscillation (19.76) and its derivative

P'.t/ D '0˝s cos˝st; (19.80)

multiply the induced voltage spectrum (19.79) by the current spectrum (19.77) and
get after averaging over fast oscillating terms at frequency h!0

hVhIhi D �2I2b

�
Z0r � 	

Z0i � 1
2

�
ZC

i C Z�
i

�

' � ZC

r � Z�
r

2˝s
P'
�
: (19.81)

This is the rate of energy loss of the particle bunch into the impedance of the
cavity. Dividing by the total circulating charge T0Ib we get the rate of relative energy
loss per unit charge

d"

dt
D �heVhIhi

T0IbE0
D C R'

ˇckh j�cj ; (19.82)

where T0 is the revolution time and Ib the average beam current.
We made use of the relation between the energy deviation from the ideal energy

and the rate of change of the phase (9.17) on the r.h.s. of the equation. From (19.81),
(19.82) and making use of the definition of the synchrotron frequency in (9.32)
˝2

s0 D ckhj�cj
E0T0

eVcy jcos sj ; we get a differential equation of the form

R' C 2˛R P' C�˝2' D 0 (19.83)

with a Robinson damping decrement

˛R D � ˇ˝s0

2Vcy jcos sj
�
ZC

r � Z�
r

�
Ib ; (19.84)
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and a shift in synchrotron oscillation frequency

�˝2 D � 2ˇ˝2
s0

Vcy jcos sj
	
Z0i � 1

2

�
ZC

i C Z�
i

�

Ib : (19.85)

The unperturbed phase equation (9.26) is

R' C 2˛s0 P' C˝2
s0 ' D 0 (19.86)

and combining both, we derive a modification of both the damping and oscillation
frequency. The combined damping decrement is

˛s D ˛s0 � ˇ˝s0

Vcy jcos sj
�
ZC

r � Z�
r

�
Ib > 0 (19.87)

where ˛s0 is the radiation damping in electron accelerators. The total damping
decrement must be positive for beam stability. The interaction of the beam with
the accelerating cavity above transition is stable for all values of the beam current
if ZC

r < Z�
r or if the cavity resonant frequency is capacitively detuned. Due to

the imaginary part of the impedance the interaction of beam and cavity leads to
a synchrotron oscillation frequency shift given by

˝2
s D ˝2

s0 � 2ˇ˝2
s0

Vcy jcos sj
	
Z0

i � 1
2

�
ZC

i C Z�
i

�

Ib: (19.88)

This frequency shift has two components, the incoherent frequency shift due
to the impedance Z0i at the fundamental beam frequency h!0 and a frequency
shift for coherent bunch-phase oscillations due to the imaginary part of the cavity
impedances. For small frequency shifts�˝s D ˝s �˝s0; (19.88) can be linearized
for

�˝s

˝s0
D � Ibˇ

Vcy jcos sj
	
Z0i � 1

2
.ZC

i C Z�
i /


: (19.89)

The cavity impedance is from (19.10)

Z D Rs

1 � iQ0
!2�!2r
!r!

1C Q2
0

�
!2�!2r
!r!

�2 : (19.90)

From the imaginary part of the cavity impedance and capacitive detuning we
conclude that above transition energy, the incoherent synchrotron tune shift is
positive

�˝s;incoh > 0 (19.91)
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while the coherent synchrotron tune shift is negative

�˝s;coh < 0: (19.92)

This conclusion may in special circumstances be significantly different due
to other passive cavities in the accelerator. The shift in the synchrotron tune is
proportional to the beam current and can be used as a diagnostic tool to determine
the cavity impedance or its deviation from the ideal model (19.90).

In the preceding discussion it was assumed that only resonant cavities contribute
to Robinson damping. This is correct to the extend that other cavity like structures
of the vacuum enclosure in a circular accelerator have a low quality factor Q for the
whole spectrum or at least at multiples of the revolution frequency and therefore do
not contribute significantly to this effect through a persistent energy loss over many
turns. Later we will see that such low-Q structures in the vacuum chamber may lead
to other types of beam instability.

19.5.2 Potential Well Distortion

The synchrotron frequency is determined by the slope of the rf-voltage at the
synchronous phase. In the last subsection the effect of beam loading at the cavity
fundamental frequency was discussed demonstrating the need to include the induced
voltages in the calculation of the synchrotron oscillation frequency. These induced
voltages cause a perturbation of the potential well and as a consequence a change
in the bunch length. In this subsection we will therefore also include higher-order
interaction of the beam with its environment.

It is not possible to derive a general expression for the impedance of all com-
ponents of a vacuum chamber in a circular accelerator. However, measurements [7]
have shown that the impedance spectrum of circular accelerator vacuum chambers,
while excluding accelerating cavities, has the form similar to that of the SPEAR
storage ring shown in Fig. 19.9.

Fig. 19.9 SPEAR impedance
spectrum [7]

43210
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Up to the transition frequency ft, which is determined by vacuum chamber dimen-
sions, the impedance is predominantly inductive and becomes capacitive above the
transition frequency. We are looking here only for fields with wavelength longer
than the bunch length which may distort the rf-voltage waveform such as to change
the slope for the whole bunch. Later we will consider shorter wavelength which
give rise to perturbations within the bunch. Because the bunch length is generally of
the order of vacuum chamber dimensions we only need to consider the impedance
spectrum below transition frequency which is predominantly inductive. To preserve
generality, however, we assume a more general but still purely imaginary impedance
defined by

Z.!/k D i!Zk: (19.93)

Studying the modification of a finite bunch length due to potential-well distor-
tions we use for mathematical simplicity a parabolic particle distribution [8] in phase
(Fig. 19.10) normalized to the bunch current

R '`
�'` I.'/ d' D Ib

I.'/ D 3Ib

4'`

�
1 � '2

'2`

�
; (19.94)

where 2'` is the bunch length expressed in terms of a phase with respect to the
fundamental rf-wavelength. The combined induced voltage in the whole vacuum
chamber is

VZ D Zk
dI

dt
D h!0Zk

dI

d'
D hIm

�
Zk=n

� dI

d'
; (19.95)

where we have introduced the normalized impedance

Zk
n

D i!0Zk ; (19.96)

which is the longitudinal impedance divided by the frequency in units of the
revolution frequency or by the mode number n D !=!0: Inserting (19.94)

Fig. 19.10 Current
distribution for potential-well
distortion

3Ib/4jl

-jl jl0
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into (19.95) we get the induced voltage

VZ D �3hIb Im
�
Zk=n

�

2'3`
' ; (19.97)

which must be added to the rf-voltage Vrf- D Vcy sin . s C '/. Forming an effective
voltage we get

Veff D Vcy cos s

 

1 � 3hIb Im
�
Zk=n

�

2'3`Vcy cos s

!

' C Vcy sin s : (19.98)

This modification of the effective cavity voltage leads to an incoherent shift of
the synchrotron oscillation frequency

˝2
s

˝2
s0

D 1 � 3�ceIb

4�'3`E	2s
Im
�
Zk=n

�
; (19.99)

where we used the definition of the synchrotron tune 	2s D �ceVcy cos s

2�hE .
Above transition energy �c cos s > 0 and therefore the frequency shift is

positive for Im.Z
k
=n/ < 0 and negative for ImfZ

k
=ng > 0. We note specifically

that the shift depends strongly on the bunch length and increases with decreasing
bunch length, a phenomenon we observe in all higher-order mode interactions.

Note that this shift of the synchrotron oscillation frequency does not appear for
coherent oscillations since the induced voltage also moves with the bunch oscil-
lation. The bunch center actually sees always the unaltered rf-field and oscillates
according to the slope of the unperturbed rf-voltage. The coherent synchrotron
oscillation frequency therefore need not be the same as the incoherent frequency.
This has some ramification for the experimental determination of the synchrotron
oscillation frequency.

The shift in incoherent synchrotron oscillation frequency reflects also a change
in the equilibrium bunch length which is different for proton or ion beams compared
to an electron bunch. The energy spread of radiating electron beams is determined
only by quantum fluctuations due to the emission of synchrotron radiation and
is independent of rf-fields. The electron bunch length scales therefore inversely
proportional to the synchrotron oscillation frequency and we get with ˝s=˝s0 D

`0=
` from (19.99) after solving for 
`=
`0


3`

3`0

� 
`


`0
� 8�ceIb

9�2
p
2�
3`0E	

2
s

Im

�
Zk
n

�
D 0 ; (19.100)

where we replaced the parabolic current distribution by a Gaussian distribution with
equal total bunch current and equal intensity in the bunch center by setting '` D
3
p
2�=4h
`=R and where 
`0 is the unperturbed bunch length.
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Non-radiating particles, in contrast, must obey Liouville’s theorem and the
longitudinal beam emittance `�p will not change due to potential-well distortions.
For proton or ion bunches we employ the same derivation for the bunch lengthening
but note that the bunch length scales with the energy spread in such a way that the
product of bunch length ` and momentum spread �p remains constant. Therefore
` / 1=

p
˝s and the perturbed bunch length is from (19.99) with ` D .R=h/ '`

`4

`40
� 3�ceIb

4�E 	2s

R
3

`30
Im

�
Zk
n

�
`

`0
� 1 D 0 : (19.101)

Of course, along with this perturbation of the proton or ion bunch length goes an
opposite perturbation of the energy spread.

Problems

19.1 (S). Consider an electron storage ring to be used as a damping ring for a linear
collider. The energy is E D 1:21GeV, circumference C D 35:27m, bending radius
� D 2:037m, momentum compaction factor ˛c D 0:01841, rf harmonic number
h D 84, cavity shunt impedance of Rcy D 8:4 M�. An intense bunch of Ne D
5 � 1010 particles is injected in a single pulse and is stored for only a few msec
to damp to a small beam emittance. Specify and optimize a suitable rf-system and
calculate the required rf-cavity power, cavity voltage, coupling factor first while
ignoring beam loading and then with beam loading. Assume a quantum lifetime
of 1 h.

19.2 (S). Show that for bunches short compared to the rf-wavelength the harmonic
amplitudes are Ih D 2Ib:
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