Chapter 17
Hamiltonian Nonlinear Beam Dynamics*

Deviations from linear beam dynamics in the form of perturbations and aberrations
play an important role in accelerator physics. Beam parameters, quality and stability
are determined by our ability to correct and control such perturbations. Hamiltonian
formulation of nonlinear beam dynamics allows us to study, understand and quantify
the effects of geometric and chromatic aberrations in higher order than discussed so
far. Based on this understanding we may develop correction mechanisms to achieve
more and more sophisticated beam performance. We will first discuss higher-order
beam dynamics as an extension to the linear matrix formulation followed by specific
discussions on aberrations. Finally, we develop the Hamiltonian perturbation theory
for particle beam dynamics in accelerator systems.

17.1 Higher-Order Beam Dynamics

Chromatic and geometric aberrations appear specifically in strong focusing trans-
port systems designed to preserve carefully prepared beam characteristics. As a
consequence of correcting chromatic aberrations by sextupole magnets, nonlinear
geometric aberrations are introduced. The effects of both types of aberrations on
beam stability must be discussed in some detail. Based on quantitative expressions
for aberrations, we will be able to determine criteria for stability of a particle beam.

17.1.1 Multipole Errors

The general equations of motion (6.95), (6.96) exhibit an abundance of driving
terms which depend on second or higher-order transverse particle coordinates
(x,x',y,y') or linear and higher-order momentum errors §. Magnet alignment and
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field errors add another multiplicity to these perturbation terms. Although the
designers of accelerator lattices and beam guidance magnets take great care to
minimize undesired field components and avoid focusing systems that can lead to
large transverse particle deviations from the reference orbit, we cannot completely
ignore such perturbation terms.

In previous sections we have discussed the effect of some of these terms and have
derived basic beam dynamics features as the dispersion function, orbit distortions,
chromaticity and tune shifts as a consequence of particle momentum errors or
magnet alignment and field errors. More general tools are required to determine the
effect of any arbitrary driving term on the particle trajectories. In developing such
tools we will assume a careful design of the accelerator under study in layout and
components so that the driving terms on the r.h.s. of (6.95), (6.96) can be treated
truly as perturbations. This may not be appropriate in all circumstances in which
cases numerical methods need to be applied. For the vast majority of accelerator
physics applications it is, however, appropriate to treat these higher-order terms as
perturbations.

This assumption simplifies greatly the mathematical complexity. Foremost, we
can still assume that the general equations of motion are linear differential equations.
We may therefore continue to treat every perturbation term separately as we have
done so before and use the unperturbed solutions for the amplitude factors in the
perturbation terms. The perturbations are reduced to functions of the location z along
the beam line and the relative momentum error § only and such differential equations
can be solved analytically as we will see. Summing all solutions for the individual
perturbations finally leads to the composite solution of the equation of motion in the
approximation of small errors.

The differential equations of motion (6.95), (6.96) can be expressed in a short
form by

WA KQu=" Y puopr (@) xx"yyP5, (7.1)
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where u = x or u = y and the quantities p,.,:(z) represent the coefficients of
perturbation terms. The same form of equation can be used for the vertical plane but
we will restrict the discussion to only one plane neglecting coupling effects.

Some of the perturbation terms p,.,5,r can be related to aberrations known from
geometrical light optics. Linear particle beam dynamics and Gaussian geometric
light optics works only for paraxial beams where the light rays or particle trajectories
are close to the optical axis or reference path. Large deviations in amplitude, as well
as fast variations of amplitudes or large slopes, create aberrations in the imaging
process leading to distortions of the image known as spherical aberrations, coma,
distortions, curvature and astigmatism. While corrections of such aberrations are
desired, the means to achieve corrections in particle beam dynamics are different
from those used in light optics. Much of the theory of particle beam dynamics is
devoted to diagnose the effects of aberrations on particle beams and to develop and
apply such corrections.
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The transverse amplitude x can be separated into its components which under the
assumptions made are independent from each other

X =Xxg+ xo + x5 + Zx,wapf . (17.2)

The first three components of solution (17.2) have been derived earlier and are
associated with specific lowest order perturbation terms:

xg(z) is the betatron oscillation amplitude and general solution of the homoge-
neous differential equation of motion with vanishing perturbations p,,,5,; = 0 for
all indices.

xc(z) is the orbit distortion and is a special solution caused by amplitude and
momentum independent perturbation terms like dipole field errors or displacements
of quadrupoles or higher multipoles causing a dipole-field error. The relevant
perturbations are characterized by 4 = v = 0 = p = t = 0 but otherwise
arbitrary values for the perturbation pgyooo. Note that in the limit poopoo — 0 we get
the ideal reference path or reference orbit x.(z) = 0.

xs(z) is the chromatic equilibrium orbit for particles with an energy different
from the ideal reference energy, § # 0, and differs from the reference orbit with or
without distortion x.(z) by the amount x5(z) which is proportional to the dispersion
function 7(z) and the relative momentum deviation &, xs(z) = 7 (z) §. In this case
u=v=o0c=p=0andt =1.

All other solutions x,,,,; are related to remaining higher-order perturbations.
The perturbation term pioog, for example, acts just like a quadrupole and may be
nothing else but a quadrupole field error causing a tune shift and a variation in the
betatron oscillations. Other terms, like pgpi100 can be correlated with linear coupling
or with chromaticity if pjgo01 7 0. Sextupole terms pygggo are used to compensate
chromaticities, in which case the amplitude factor x? is expressed by the betatron
motion and chromatic displacement

& (xp 4+ x5)2 = (xp + 1n8)? = 2nx48 . (17.3)

The x/zg-term, which we neglected while compensating the chromaticity, is the
source for geometric aberrations due to sextupolar fields becoming strong for large
oscillation amplitudes and the n*8%-term contributes to higher-order solution of
the n-function. We seem to make arbitrary choices about which perturbations to
include in the analysis. Generally therefore only such perturbations are included in
the discussion which are most appropriate to the problem to be investigated and
solved. If, for example, we are only interested in the orbit distortion x., we ignore
in lowest order of approximation the betatron oscillation xg and all chromatic and
higher-order terms. Should, however, chromatic variations of the orbit be of interest
one would evaluate the corresponding component separately. On the other hand, if
we want to calculate the chromatic variation of betatron oscillations, we need to
include the betatron oscillation amplitudes as well as the off momentum orbit x;.
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In treating higher-order perturbations we make an effort to include all perturba-
tions that contribute to a specific aberration to be studied or to define the order of
approximation used if higher-order terms are to be ignored. A careful inspection
of all perturbation terms close to the order of approximation desired is prudent
to ensure that no significant term is missed. Conversely such an inspection might
very well reveal correction possibilities. An example is the effect of chromaticity
which is generated by quadrupole field errors for off momentum particles but can be
compensated by sextupole fields at locations where the dispersion function is finite.
Here the problem is corrected by fields of a different order from those causing the
chromaticity.

To become more quantitative we discuss the analytical solution of (17.1). Since in
our approximation this solution is the sum of all partial solutions for each individual
perturbation term, the problem is solved if we find a general solution for an arbitrary
perturbation. The solution of, for example, the horizontal equation of motion

x + K(2)x = puvope XX Y7y 8" (17.4)

can proceed in two steps. First we replace the oscillation amplitudes on the r.h.s. by
their most significant components

xt— (xg +x0 + x5)*, ¥V — (x;g +x +x5)"

17.5

Y= g+ Y0 +35)7 . VP g + 3o+ 5" :

As discussed before, in a particular situation only those components are even-

tually retained that are significant to the problem. Since most accelerators are

constructed in the horizontal plane we may set the vertical dispersion ys = 0.

The decomposition (17.5) is inserted into the r.h.s of (17.4) and again only terms

significant for the particular problem and to the approximation desired are retained.

The solution x,,4,; can be further broken down into components each relating to

only one individual perturbation term. Whatever number of perturbation terms we
decide to keep, the basic differential equation for the perturbation is of the form

P" + K(2)P = p(xg, X, Xe, X0, X5, X5, Y Vs Yes Yo V55 Vs> 6, 2) (17.6)

for which we have discussed the solution in Sect. 5.5.4. Following these steps we
may calculate, at least in principle, the perturbations P(z) for any arbitrary higher-
order driving term p(z). In praxis, however, even principal solutions of particle
trajectories in composite beam transport systems can be expressed only in terms
of the betatron functions. Since the betatron functions cannot be expressed in a
convenient analytical form, we are unable to obtain an analytical solution and must
therefore employ numerical methods.
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17.1.2 Non-linear Matrix Formalism

In linear beam dynamics this difficulty has been circumvented by the introduction of
transformation matrices, a principle which can be used also for beam transport sys-
tems including higher-order perturbation terms. This non-linear matrix formalism
was developed by Karl Brown [1-3] and we follow his reasoning in the discussion
here. The solution to (17.1) can be expressed in terms of initial conditions. Similar
to discussions in the context of linear beam dynamics we solve (17.6) for individual
lattice elements only where K(z) = const. In this case (5.75) can be solved for any
piecewise constant perturbation along a beam line. Each solution depends on initial
conditions at the beginning of the magnetic element and the total solution can be
expressed in the form

/ 2 /
x(z) = cr10%o + 120 X + €130 80 + 111 X5 + cria Xoxy + ..., 177
X' (2) = c210X0 + €220 %) + €230 80 + €211 X + C212%0%) + -+ .,

where the coefficients c;x are functions of z. The nomenclature of the indices
becomes obvious if we set x; = x,x, = X/, and x3 = §. The coefficient cijx then
determines the effect of the perturbation term x;x; on the variable x;. In operator
notation we may write

ciik = (xilxj0xk0) - (17.8)
The first-order coefficients are the principal solutions

c110(z) = C(2), c10(z) = C'(2),
c120(z) = 8(2), c20(x) = 5(2), (17.9)
c130(z) = D(2), c230(z) =D'(2).

Before continuing with the solution process, we note that the variation of the
oscillation amplitudes (x’,y’) are expressed in a curvilinear coordinate system
generally used in beam dynamics. This definition, however, is not identical to the
intuitive assumption that the slope x’ of the particle trajectory is equal to the angle
® between the trajectory and reference orbit. In a curvilinear coordinate system the
slope x’ = dx/dz is a function of the amplitude x. To clarify the transformation, we
define angles between the trajectory and the reference orbit by

dx (] d =9

and

= — , 17.10
ds ds ( )

where

ds = (1 + kx)dz. (17.11)
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In linear beam dynamics there is no numerical difference between x” and ® which
is a second-order effect nor is there a difference in straight parts of a beam transport
line where k = 0. The relation between both definitions is from (17.10), (17.11)

/ /
a and b = Y ,
I+ kx I+ kx

(17.12)

where X' = dx/dz and y = dy/dz. We will use these definitions and formulate
second-order transformation matrices in a Cartesian coordinate system (x, Yy, ).
Following Brown’s notation [1], we may express the nonlinear solutions of (17.4)
in the general form

3 3
ui ="y cioujo + ) Tie() o o (17.13)
=1 =1
k=1
with
(u1, uz,u3) = (x,0,0), (17.14)

where 7 is the position along the reference particle trajectory. Nonlinear transforma-
tion coefficients Tjj are defined similar to coefficients c; in (17.8) by

Tije = (uilujouro) » (17.15)

where the coordinates are defined by (17.14). In linear approximation both
coefficients are numerically the same and we have

€110 €120 €130 C(z) S(z) D(2)
cen e | = CR@S@QDE |- (17.16)
€310 €320 €330 0 0 1

Earlier in this section we decided to ignore coupling effects which could be
included easily in (17.13) if we set for example x4 = y and x5 =y’ and expand
the summation in (17.13) to five indices. For simplicity, however, we will continue
to ignore coupling.

The equations of motion (6.95), (6.96) are expressed in curvilinear coordinates
and solving (5.75) results in coefficients c;; which are different from the coefficients
T if one or more variables are derivatives with respect to z. In the equations of
motion all derivatives are transformed like (17.12) generating a ®-term as well as
an x ®-term. If, for example, we were interested in the perturbations to the particle
amplitude x caused by perturbations proportional to xy ®, we are looking for the
coefficient 711, = (x |xp @y ). Collecting from (6.95) only second-order perturbation
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terms proportional to xx’, we find
X = Cllzxox(/) = c112x0 @y + O(3). (17.17)

An additional second-order contribution appears as a spill over from the linear
transformation

X = C120x6 = C120 (1 + KXX()) ®. (17.18)
Collecting all xy ®y—terms, we get finally
T2 = cr1i2 + cra0kx = c112 + k:5(2) (17.19)

To derive a coefficient like 7512 = (® |xp &y ) we also have to transform the
derivative of the particle trajectory at the end of the magnetic element. First, we
look for all contributions to x” from xox(-terms which originate from x’ = ¢250 x;, +
C212X0X,,. Setting in the first term x;; = @ (1 + k. X0) and in the second term xox, ~
X0 O , we get with ¢z50 = §'(z) and keeping again only second-order terms

X = [C212 + KXS/(Z)] X006y . (17.20)

On the Lh.s. we replace X’ by ® (1 + k,x) and using the principal solutions we
get

X0 =~ (Cyxp + Sy®p) (C)/CX() + S;@o) = (CXS; + C;Sx) x0®) (17.21)

keeping only the xo®-terms. Collecting all results, the second-order coefficient for
this perturbation becomes

Tor2 = (O 50 Op) = ca12 + kx§'(2) — K (CiSy + CLS5) (17.22)

In a similar way we can derive all second-order coefficients Tj. Equa-
tions (17.13) define the transformation of particle coordinates in second order
through a particular magnetic element. For the transformation of quadratic terms
we may ignore the third order difference between the coefficients c¢;x and T and
get

2 = (Coxo + Suxy + Dibo)”
xx = (Cxxo + Sexg + Dx&)) (C;xo + Sixgy + D;&))

17.23
x8 = (CXX() + Sxx6 + DXS()) 8o ( )

etc.
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All transformation equations can now be expressed in matrix form after correctly
ordering equations and coefficients and a general second-order transformation
matrix can be formulated in the form

X X0
() (ON)
8 8o
Xz X%
xO | =M|x06,|. (17.24)
x8 X0 80
©2 O2
X & &
52 82

where we have ignored the y-plane. The second-order transformation matrix is then

M = (17.25)
CSDTy T Tiie Tz Tie Ties
C'S'D Ty T Toie  Tap  Tog  Taes
001 O 0 0 0 0 0
000 C? 2CS 2CD S2 28D D?
000 CCCS+C'scD+C'D SS SD'+S'D DD’
000 O 0 C 0 S D
000 C?* 2c'S 20D §* 28§D D?
000 O 0 (o4 0 S’ D’
000 O 0 0 0 0 1

with C = C,,S = §,,...etc.

A similar equation can be derived for the vertical plane. If coupling effects are to
be included the matrix could be further expanded to include also such terms. While
the matrix elements must be determined individually for each magnetic element in
the beam transport system, we may in analogy to linear beam dynamics multiply
a series of such matrices to obtain the transformation matrix through the whole
composite beam transport line. As a matter of fact the transformation matrix has
the same appearance as (17.24) for a single magnet or a composite beam transport
line and the magnitude of the nonlinear matrix elements will be representative of
imaging errors like spherical and chromatic aberrations.

To complete the derivation of second-order transformation matrices we derive,
as an example, an expression of the matrix element 77;; from the equation of
motion (6.95). To obtain all x%-terms, we look in (6.95) for perturbation terms
proportional to x?, xx’ and x’2, replace these amplitude factors by principal solutions
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and collect only terms quadratic in x( to get the relevant perturbation
p@) =[— (Gm+ 2kck + &) C2 + 36,C2 + K,C.CL] x5 - (17.26)

First, we recollect that the theory of nonlinear transformation matrices is based
on the constancy of magnet strength parameters and we set therefore x| = 0. Where
this is an undue simplification like in magnet fringe fields one could approximate the
smooth variation of k, by a step function. Inserting (17.26) into (5.75) the second-
order matrix element

ciir = Tin 17.27)
P / "0 G 0t — L, / 2060
0 0

The integrands are powers of trigonometric functions and can be evaluated
analytically. In a similar way we may now derive any second-order matrix element
of interest. A complete list of all second order matrix elements can be found in [1].

This formalism is valuable whenever the effect of second-order perturbations
must be evaluated for particular particle trajectories. Specifically, it is suitable for
nonlinear beam simulation studies where a large number of particles representing
the beam are to be traced through nonlinear focusing systems to determine, for
example, the particle distribution and its deviation from linear beam dynamics at
a focal point. This formalism is included in the program TRANSPORT [4] allowing
the determination of the coefficients Tj; for any beam transport line and providing
fitting routines to eliminate such coefficients by proper adjustment and placement
of nonlinear elements like sextupoles.

17.2 Aberrations

From light optics we are familiar with the occurrence of aberrations which cause the
distortion of optical images. We have repeatedly noticed the similarity of particle
beam optics with geometric or paraxial light optics and it is therefore not surprising
that there is also a similarity in imaging errors. Aberrations in particle beam optics
can cause severe stability problems and must therefore be controlled.

We distinguish two classes of aberrations, geometric aberrations and for off
momentum particles chromatic aberrations. The geometric aberrations become
significant as the amplitude of betatron oscillations increases while chromatic
aberration results from the variation of the optical system parameters for different
colors of the light rays or in our case for different particle energies. For the
discussion of salient features of aberration in particle beam optics we study the
equation of motion in the horizontal plane and include only bending magnets,
quadrupoles and sextupole magnets. The equation of motion in this case becomes



574 17 Hamiltonian Nonlinear Beam Dynamics*

in normalized coordinates
W4 vaw = V2B %8 + v3 B hws — %véﬁs/zmwz , (17.28)

where § = B,. The particle deviation w from the ideal orbit is composed of two
contributions, the betatron oscillation amplitude wg and the shift in the equilibrium
orbit for particles with a relative momentum error §. This orbit shift w;s is determined

by the normalized dispersion function at the location of interest (ws =17é= %38)

and the particle position can be expressed by the composition
w=wg + ws = wg + 75. (17.29)

Inserting (17.29) into (17.28) and employing the principle of linear superposi-
tion (17.28) can be separated into two differential equations, one for the betatron
motion and one for the dispersion function neglecting quadratic or higher-order
terms in §. The differential equation for the dispersion function is then

7+ vaii = va B i + v3BPkiis — v B mis (17.30)

which has been solved earlier in Sect.9.4.1. All other terms include the betatron
oscillation wg and contribute therefore to aberrations of betatron oscillations
expressed by the differential equation

g + vowp = vy Bkwg 8 — vy Brmnwg § — Jv3 B mwy . (17.31)

The third term in (17.31) is of geometric nature causing a perturbation of beam
dynamics at large betatron oscillation amplitudes and, as will be discussed in
Sect. 17.3, also gives rise to an amplitude dependent tune shift. This term appears
as an isolated term in second order and no local compensation scheme is possible.
Geometric aberrations must therefore be expected whenever sextupole magnets are
used to compensate for chromatic aberrations.

The first two terms in (17.31) represent the natural chromaticity from
quadrupoles and the compensation by sextupole magnets, respectively. Whenever
it is possible to compensate the chromaticity at the location where it occurs both
terms would cancel for mn = k. Since the strength changes sign for both magnets
going from one plane to the other the compensation is correct in both planes. This
method of chromaticity correction is quite effective in long beam transport systems
with many equal lattice cells. An example of such a correction scheme are the
beam transport lines from the SLAC linear accelerator to the collision point of the
Stanford Linear Collider, SLC, [5]. This transport line consists of a dense sequence
of strong magnets forming a combined function FODO channel (for parameters
see example #2 in Table 10.1). In these magnets dipole, quadrupole and sextupole
components are combined in the pole profile and the chromaticity compensation
occurs locally.
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This method of compensation, however, does not work generally in circular
accelerators because of special design criteria which often require some parts of the
accelerator to be dispersion free and the chromaticity created by the quadrupoles in
these sections must then be corrected elsewhere in the lattice. Consequently both
chromaticity terms in (17.31) do not cancel anymore locally and can be adjusted to
cancel only globally.

The consequence of these less than perfect chromaticity correction schemes
is the occurrence of aberrations through higher-order effects. We get a deeper
insight for the effects of these aberrations in a circular accelerator by noting
that the coefficients of the betatron oscillation amplitude wg for both chromatic
perturbations are periodic functions in a circular accelerator and can therefore be
expanded into a Fourier series. Only non-oscillatory terms of these expansions
cancel if the chromaticity is corrected while all other higher harmonics still appear
as chromatic aberrations.

17.2.1 Geometric Aberrations

Geometric perturbations from sextupole fields scale proportional to the square of the
betatron oscillation amplitude leading to a loss of stability for particles oscillating
at large amplitudes. From the third perturbation term in (17.31) we expect this limit
to occur at smaller amplitudes in circular accelerators where either the betatron
functions are generally large or where the focusing and therefore the chromaticity
and required sextupole correction is strong or where the tunes are large. Most
generally this occurs in large proton and electron colliding-beam storage rings or
in electron storage rings with strong focusing.

Compensation of Nonlinear Perturbations

In most older circular accelerators the chromaticity is small and can be corrected
by two families of sextupoles. Although in principle only two sextupole magnets
for the whole ring are required for chromaticity compensation, this is in most
cases impractical since the strength of the sextupoles becomes too large exceeding
technical limits or leading to loss of beam stability because of intolerable geometric
aberrations. For chromaticity compensation we generally choose a more even
distribution of sextupoles around the ring and connect them into two families
compensating the horizontal and vertical chromaticity, respectively. This scheme
is adequate for most not too strong focusing circular accelerators. Where beam
stability suffers from geometric aberrations more sophisticated sextupole correction
schemes must be utilized.

To analyze the geometric aberrations due to sextupoles and develop correction
schemes we follow a particle along a beam line including sextupoles. Here we
understand a beam line to be an open system from a starting point to an image point
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Fig. 17.1 Linear particle '
motion in phase space

Fig. 17.2 Typical phase X'
space motion in the presence e
of nonlinear fields ’

at the end or one full circumference of a circular accelerator. Following any particle
through the beam line and ignoring for the moment nonlinear fields we expect the
particle to move along an ellipse in phase space as shown in Fig. 17.1. Travelling
through the length of a circular accelerator with phase advance v = 2wy a particle
moves Vg revolutions around the phase ellipse in Fig. 17.1.

Including nonlinear perturbations due to, for example, sextupole magnets the
phase space trajectory becomes distorted from the elliptical form as shown in
Fig. 17.2. An arbitrary distribution of sextupoles along a beam line can cause large
variations of the betatron oscillation amplitude leading to possible loss of particles
on the vacuum chamber wall even if the motion is stable in principle. The PEP
storage ring [6] was the first storage ring to require a more sophisticated sextupole
correction [7] beyond the mere compensation of the two chromaticities because
geometric aberrations were too strong to give sufficient beam stability. Chromaticity
correction with only two families of sextupoles in PEP would have produced large
amplitude dependent tune shifts leading to reduced beam stability.

Such a situation can be greatly improved with additional sextupole families
[7] to minimize the effect of these nonlinear perturbation. Although individual
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perturbations may not be reduced much by this method the sum of all perturbations
can be compensated to reduce the overall perturbation to a tolerable level.

In this sextupole correction scheme the location and strength of the individual
sextupoles are selected such as to minimize the perturbation of the particle motion
in phase space at the end of the beam transport line. Although this correction scheme
seems to work in not too extreme cases it is not sufficient to guarantee beam stability.
This scheme works only for one amplitude due to the nonlinearity of the problem
and in cases where sextupole fields are no longer small perturbations we must expect
a degradation of this compensation scheme for larger amplitudes. As the example
of PEP shows, however, an improvement of beam stability can be achieved beyond
that obtained by a simple two family chromaticity correction. Clearly, a more formal
analysis of the perturbation and derivation of appropriate correction schemes are
desirable.

Sextupoles Separated by a —Z-Transformation

A chromaticity correction scheme that seeks to overcomes this amplitude dependent
aberration has been proposed by Brown and Servranckx [8]. In this scheme possible
sextupole locations are identified in pairs along the beam transport line such that
each pair is separated by a negative unity transformation

-10 0 0
L (17.32)
0 0 —-10
0 0 0 —1

Placing sextupoles of equal strength at these two locations we get an additive
contribution to the chromaticity correction. The effect of geometric aberrations,
however, is canceled for all particle oscillation amplitudes. This can be seen if we
calculate the transformation matrix through the first sextupole, the —Z section, and
then through the second sextupole. The sextupoles are assumed to be thin magnets
inflicting kicks on particle trajectories by the amount

AxX = —Imol, (xz -, (17.33)
and

Ay = —molsxy, (17.34)
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where £ is the sextupole length. We form a 4 x 4 transformation matrix through a
thin sextupole and get

X X0
X X,
= M (x0,y0) | *°
y Yo
Y Y0
1 0 0 0 X0
—%moﬁsxo 1 %moesxo 0 xg

= 17.35
o o 1 offy (17.35)

0 0 molexy 1 Yo

To evaluate the complete transformation we note that in the first sextupole the
particle coordinates are (xg,y) and become after the —Z-transformation in the
second sextupole (—xp, —yp). The transformation matrix through the complete unit
is therefore

M, = M (x0, yo) (—=I) M (—x0, —Y0) - (17.36)

Independent of the oscillation amplitude we observe a complete cancellation of
geometric aberrations in both the horizontal and vertical plane. This correction
scheme has been applied successfully to the final focus system of the Stanford
Linear Collider [9], where chromatic as well as geometric aberrations must be
controlled and compensated to high accuracy to allow the focusing of a beam to
a spot size at the collision point of only a few micrometer.

The effectiveness of this correction scheme and its limitations in circular
accelerators has been analyzed in more detail by Emery [10] and we will discuss
some of his findings. As an example, we use strong focusing FODO cells for
an extremely low emittance electron storage ring [10] and investigate the beam
parameters along this lattice. Any other lattice could be used as well since the
characteristics of aberrations is not lattice dependent although the magnitude may
be. The particular FODO lattice under discussion as shown in Fig. 17.3 is a thin
lens lattice with 90° cells, a distance between quadrupoles of L; = 3.6m and an

|
| 900 cell | 90°cell 90° cell |

[ |
IW m m sextupole (I
| nﬁextupole I 1 1

|

|

|

/
1/2QF: uQD QF UQD QF HQD 1/2QF

|
—— 180° —————————

Fig. 17.3 FODO lattice and chromaticity correction
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-

| f)(
Fig. 17.4 Phase ellipses along a FODO channel including nonlinear aberrations due to thin
sextupole magnets separated by exactly 180° in betatron phase (consult text for details)

a) b) ©)

d)

dh

o

integrated half quadrupole strength of (k€y) ™' = V2 L. The horizontal and vertical
betatron functions at the symmetry points are 12.29 and 2.1088 m respectively.
Three FODO cells are shown in Fig. 17.3 including one pair of sextupoles separated
by 180° in betatron phase space. We choose a phase ellipse for an emittance of
€ = 200mm-mrad which is an upright ellipse at the beginning of the FODO
lattice, Fig. 17.4a. Due to quadrupole focusing the ellipse becomes tilted at the
entrance to the first sextupole, Fig. 17.4b. The thin lens sextupole introduces a
significant angular perturbation (Fig. 17.4c) leading to large lateral aberrations in
the quadrupole QF (Fig. 17.4d). At the entrance to the second sextupole the distorted
phase ellipse is rotated by 180° and all aberrations are compensated again by this
sextupole, Fig. 17.4e. Finally, the phase ellipse at the end of the third FODO cell is
again an upright ellipse with no distortions left, Fig. 17.4f. The range of stability
therefore extends to infinitely large amplitudes ignoring any other detrimental
effects.

The compensation of aberrations works as long as the phase advance between
sextupoles is exactly 180°. A shift of the second sextupole by a few degrees or a
quadrupole error resulting in a similar phase error between the sextupole pair would
greatly reduce the compensation. In Fig. 17.5 the evolution of the phase ellipse from
Fig. 17.4 is repeated but now with a phase advance between the sextupole pair of
only 175°. A distortion of the phase ellipse due to aberrations can be observed
which may build up to instability as the particles pass through many similar cells.
Emery has analyzed numerically this degradation of stability and finds empirically
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a)/\ b)f\ \\
Fig. 17.5 Thin sextupole magnets separated by 175° in betatron phase space. The unperturbed
phase ellipse (a) becomes slightly perturbed (b) at the end of the first triple FODO cell (Fig.17.3,

and more so after passing through many such triplets (c)
a) b) ¢) T
Fig. 17.6 Phase ellipses along a FODO channel including nonlinear aberrations due to finite

length sextupole magnets placed exactly 180 degrees apart. Phase ellipse (a) transforms to (b)
after one FODO triplet cell and to (c) after passage through many such cells

o
~—

Y

the maximum stable betatron amplitude to scale with the phase error like Agp ™02

[10]. The sensitivity to phase errors together with unavoidable quadrupole field
errors and orbit errors in sextupoles can significantly reduce the effectiveness of
this compensation scheme.

The single most detrimental arrangement of sextupoles compared to the perfect
compensation of aberrations is to interleave sextupoles which means to place other
sextupoles between two pairs of compensating sextupoles [8]. Such interleaved
sextupoles introduce amplitude dependent phase shifts leading to phase errors and
reduced compensation of aberrations. This limitation to compensate aberrations is
present even in a case without apparent interleaved sextupoles as shown in Fig. 17.6
for the following reason.

The assumption of thin magnets is sometimes convenient but, as Emery points
out, can lead to erroneous results. For technically realistic solutions, we must
allow the sextupoles to assume a finite length and find, as a consequence, a loss
of complete compensation for geometric aberrations because sextupoles of finite
length are only one particular case of interleaved sextupole arrangements. If we
consider the sextupoles made up of thin slices we still find that each slice of the first
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sextupole has a corresponding slice exactly 180° away in the second sextupoles.
However, other slices are interleaved between such ideal pairs of thin slices. In
Fig. 17.6 the sequence of phase ellipses from Fig. 17.4 is repeated with the only
difference of using now a finite length of 0.3 m for the sextupoles. From the last
phase ellipse it becomes clear that the aberrations are not perfectly compensated
as was the case for thin sextupoles. Although the —Z-transformation scheme to
eliminate geometric aberrations is not perfectly effective for real beam lines it is
still prudent to arrange sextupoles in that way, if possible, to minimize aberrations
and apply additional corrections.

17.2.2 Filamentation of Phase Space

Some distortion of the unperturbed trajectory in phase space due to aberrations
is inconsequential to beam stability as long as this distortion does not build up
and starts growing indefinitely. A finite or infinite growth of the beam emittance
enclosed within a particular particle trajectory in phase space may at first seem
impossible since we deal with macroscopic, non-dissipating magnetic fields where
Liouville’s theorem must hold. Indeed numerical simulations indicate that the total
phase space occupied by the beam does not seem to increase but an originally
elliptical boundary in phase space can grow, for example, tentacles like a spiral
galaxy leading to larger beam sizes without actually increasing the phase space
density. This phenomenon is called filamentation of the phase space and can evolve
like shown in Fig. 17.7.

For particle beams this filamentation is as undesirable as an increase in beam
emittance or beam loss. We will therefore try to derive the causes for beam
filamentation in the presence of sextupole non-linearities which are the most
important non-linearities in beam dynamics. In this discussion we will follow the
ideas developed by Autin [11] which observes the particle motion in action-angle
phase space under the influence of nonlinear fields.

Fig. 17.7 Filamentation of phase space after passage through an increasing number of FODO cells
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For simplicity of expression, we approximate the nonlinear sextupoles by thin
magnets. This does not restrict our ability to study the effect of finite length
sextupoles since we may always represent such sextupoles by a series of thin
magnets. A particle in a linear lattice follows a circle in action-angle phase space
with a radius equal to the action Jy. The appearance of a nonlinearity along the
particle trajectory will introduce an amplitude variation AJ to the action which is
from the Courant-Snyder invariant for both the horizontal and vertical plane

AJ, = viowAw + —wAw = LyAw,
0 vad (17.37)
AJy = vyovAv + V—OvAv = V—OvAv,

since Aw = Av = 0 for a thin magnet. Integration of the equations of motion in
normalized coordinates over the “length” £ of the thin magnet produces a variation
of the slopes

AW = vy ,Bx%mﬁ(xz -y,
Av = —vyo\/ﬁ_ymﬁxy.

We insert (17.38) into (17.37) and get after transformation into action-angle
variables and linearization of the trigonometric functions the variation of the action

(17.38)

Al = 2 BB (1B = 20,8, ) sin i + JBsin 3y
—J,ﬂ},f [sin(¥re + 29,) + sin(Yr, — Zl/fy)]} , (17.39)
AJy =" 2 g B [sin (Y + 29,) — sin(r — 29)]

Vx0

Since the action is proportional to the beam emittance, (17.39) allow us to study
the evolution of beam filamentation over time. The increased action from (17.39) is
due to the effect of one nonlinear sextupole magnet and we obtain the total growth
of the action by summing over all turns and all sextupoles. To sum over all turns
we note that the phases in the trigonometric functions increase by 2mvg ., every
turn and we have for the case of a single sextupole after an infinite number of turns
expressions of the form

> sin[(yg + 2w veon) + 2(Yy + 2wvyom)]. (17.40)
n=0

where ¥,; and v,; are the phases at the location of the sextupole j. Such sums of
trigonometric functions are best solved in the form of exponential functions. In this
case the sine function terms are equivalent to the imaginary part of the exponential
functions

el(Vn+2yy)) o270 (Vo +2vy50)n (17.41)



17.2  Aberrations 583

The second factor forms an infinite geometric series and the imaginary part of the
sum is therefore

Im el t2vy) _ cos[(Yj — mxo) + 2(¥y; — wvy0)] (17.42)
1 — ei27(vxo+2vy0) 2 sin[rr(vyxo + 2vy0)] ’ ’

This solution has clearly resonant character leading to an indefinite increase of
the action if v,y + 2vy9 is an integer. Similar results occur for the other three terms
and Autin’s method to observe the evolution of the action coordinate over many
turns allows us to identify four resonances driven by sextupolar fields which can
lead to particle loss and loss of beam stability if not compensated. Resonant growth
of the apparent beam emittance occurs according to (17.39) for

Vo = 41, or Vxo + 2Vy0 = g3, (17.43)

3V = q2, or Vxo — 2Vy0 = g4,
where the ¢; are integers. In addition to the expected integer and third integer
resonance in the horizontal plane, we find also two third order coupling resonances
in both planes where the sum resonance leads to beam loss while the difference
resonance only initiates an exchange of the horizontal and vertical emittances. The
asymmetry is not fundamental and is the result of our choice to use only upright
sextupole fields.

So far we have studied the effect of one sextupole on particle motion. Since no
particular assumption was made as to the location and strength of this sextupole, we
conclude that any other sextupole in the ring would drive the same resonances and
we obtain the beam dynamics under the influence of all sextupoles by adding the
individual contributions. In the expressions of this section we have tacitly assumed
that the beam is observed at the phase V0,0 = 0. If this is not the desired location
of observation the phases V,; need to be replaced by V¥; — ¥y, etc., where the
phases vy;,; define the location of the sextupole j. Considering all sextupoles in a
circular lattice we sum over all such sextupoles and get, as an example, for the sum
resonance used in the derivation above from (17.39)

Alui, == b 2By g Y G+ 20) (17.44)
r 4 Vx0 vy

Similar expressions exist for other resonant terms. Equation (17.44) indicates a
possibility to reduce the severity of driving terms for the four resonances. Sextupoles
are primarily inserted into the lattice where the dispersion function is nonzero to
compensate for chromaticities. Given sufficient flexibility these sextupoles can be
arranged to avoid driving these resonances. Additional sextupoles may be located
in dispersion free sections and adjusted to compensate or at least minimize the
four resonance driving terms without affecting the chromaticity correction. The
perturbation AJ is minimized by distributing the sextupoles such that the resonant
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driving terms in (17.39) are as small as possible. This is accomplished by harmonic
correction which is the process of minimization of expressions

> mitBY e 0. (17.45)

Z,- mili? e — 0, (17.46)

Z,» milipL2 B, eV — 0, (17.47)

Z,- mil;BL/2 B, e Vit 0, (17.48)
Z,- mi /2B, Vi) s (17.49)

The perturbations of the action variables in (17.39) cancel perfectly if we insert
sextupoles in pairs at locations which are separated by a —Z transformation as
discussed previously in this chapter. The distribution of sextupoles in pairs is
therefore a particular solution to (17.45) for the elimination of beam filamentation
and specially suited for highly periodic lattices while (17.45)—(17.49) provide more
flexibility to achieve similar results in general lattices and sextupole magnets of
finite length.

Cancellation of resonant terms does not completely eliminate all aberrations
caused by sextupole fields. Because of the existence of nonlinear sextupole fields
the phases v; depend on the particle amplitude and resonant driving terms are
therefore canceled only to first order. For large amplitudes we expect increasing
deviation from the perfect cancellation leading eventually to beam filamentation
and beam instability. Maximum stable oscillation amplitudes in (x, y)-space due to
nonlinear fields form the dynamic aperture which is to be distinguished from the
physical aperture of the vacuum chamber. This dynamic aperture is determined by
numerical tracking of particles. Given sufficiently large physical apertures in terms
of linear beam dynamics the goal of correcting nonlinear aberrations is to extend the
dynamic aperture to or beyond the physical aperture. Methods discussed above to
increase the dynamic aperture have been applied successfully to a variety of particle
storage rings, especially by Autin [11] to the antiproton cooling ring ACOL, where
a particularly large dynamic aperture is required.

17.2.3 Chromatic Aberrations

Correction of natural chromaticities is not a complete correction of all chromatic
aberrations. For sensitive lattices nonlinear chromatic perturbation terms must
be included. Both linear as well as nonlinear chromatic perturbations have been
discussed in detail in Sect. 9.4.1. Such terms lead primarily to gradient errors and
therefore the sextupole distribution must be chosen such that driving terms for half
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integer resonances are minimized. Together with tune shifts due to gradient field
errors we observe also a variation of the betatron function. Chromatic gradient errors
in the presence of sextupole fields are

p1(2) = (k—mn)é (17.50)

and the resulting variation of the betatron function has been derived in Sect. 15.3.
For the perturbation (17.50) the linear variation of the betatron function with
momentum is from (15.91)

AB(z) 1]
Bo "~ 2sin27yy

z+L
/ Bk — mn) cos2vo(g, — gr +200dE. (1751

where L is the length of the superperiod, ¢, = ¢(z) and ¢; = ¢({). The same result
can be expressed in the form of a Fourier expansion for N superperiods in a ring
lattice by

A F eiNsap
AB _ w0 ) (17.52)
B 4 Vo — (Nsq/2)?
where
Yo 2 ) )
F,= — B (k — mn)e™4 dgp . (17.53)
27 0

Both expressions exhibit the presence of half integer resonances and we must
expect the area of beam stability in phase space to be reduced for off momentum
particles because of the increased strength of the resonances. Obviously, this
perturbation does not appear in cases where the chromaticity is corrected locally
so that (k — mn) = 0 but few such cases exist. To minimize the perturbation
of the betatron function, we look for sextupole distributions such that the Fourier
harmonics are as small as possible by eliminating excessive “fighting” between
sextupoles and by minimizing the resonant harmonic g = 2v,. Overall, however,
it is not possible to eliminate this beta-beat completely. With a finite number of
sextupoles the beta-beat can be adjusted to zero only at a finite number of points
along the beam line.

In colliding-beam storage rings, for example, we have specially sensitive sections
just adjacent to the collision points. To maximize the luminosity the lattice is
designed to produce small values of the betatron functions at the collision points
and consequently large values in the adjacent quadrupoles. In order not to further
increase the betatron functions there and make the lattice more sensitive to errors,
one might choose to seek sextupole distributions such that the beta-beat vanishes at
the collision point and its vicinity.
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Having taken care of chromatic gradient errors we are left with the variation of
geometric aberrations as a function of particle momentum. Specifically, resonance
patterns vary and become distorted as the particle momentum is changed. Generally
this should not cause a problem as long as the dynamic aperture can be optimized
to exceed the physical aperture. A momentum error will introduce only a small
variation to the dynamic aperture as determined by geometric aberrations for on
momentum particles only. If, however, the dynamic aperture is limited by some
higher-order resonances even a small momentum change can cause a big difference
in the stable phase space area.

Analytical methods are useful to minimize detrimental effects of geometric
and chromatic aberrations due to nonlinear magnetic fields. We have seen how
by careful distribution of the chromaticity correcting sextupoles, resonant beam
emittance blow up and excessive beating of the betatron functions for off momentum
particles can be avoided or at least minimized within the approximations used. In
Sect. 17.3, we will also find that sextupolar fields can produce strong tune shifts
for larger amplitudes leading eventually to instability at nearby resonances. Here
again a correct distribution of sextupoles will have a significant stabilizing effect.
Although there are a number of different destabilizing effects, we note that they
are driven by only a few third order resonances. Specifically, in large circular
lattices a sufficient number of sextupoles and locations for additional sextupoles
are available for an optimized correction scheme. In small rings such flexibility
often does not exist and therefore the sophistication of chromaticity correction
is limited. Fortunately, in smaller rings the chromaticity is much smaller and
some of the higher-order aberrations discussed above are very small and need
not be compensated. Specifically, the amplitude dependent tune shift is generally
negligible in small rings while it is this effect which limits the dynamic aperture in
most cases of large circular accelerators.

The optimization of sextupole distribution requires extensive analysis of the
linear lattice and it is best to use a numerical program to do the well known but
cumbersome work. At present the program OPA [12] is widely used. This program
uses a linear lattice and adjusts the sextupoles such that chromaticities and some
harmonics are corrected. With the new sextupole strengths the dynamic aperture
can be obtained in the same program.

In trying to solve aberration problems in beam dynamics we are, however,
mindful of approximations made and terms neglected for lack of mathematical tools
to solve analytically the complete nonlinear dynamics in realistic accelerators. The
design goals for circular accelerators become more and more demanding on our
ability to control nonlinear aberrations. On one hand the required cross sectional
area in the vicinity of the ideal orbit for a stable beam remains generally constant
for most designs but the degree of aberrations is increased in an attempt to reach very
special beam characteristics. As a consequence, the nonlinear perturbations become
stronger and the limits of dynamic aperture occur for smaller amplitudes compared
to less demanding lattices and require more and more sophisticated methods of
chromaticity correction and control of nonlinear perturbations.
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17.2.4 Particle Tracking

No mathematical methods are available yet to calculate analytically the limits of the
dynamic aperture for any but the most simple lattices. High order approximations
are required to treat strong aberrations in modern circular accelerator designs. The
most efficient way to determine beam stability characteristics for a particular lattice
design is to perform numerical particle tracking studies.

Perturbations of localized nonlinear fields on a particle trajectory are easy to cal-
culate and tracking programs follow single particles along their path incorporating
any nonlinear perturbation encountered. Since most nonlinear fields are small, we
may use thin lens approximation and passage of a particle through a nonlinear field
of any order inflicts therefore only a deflection on the particle trajectory. During the
course of tracking the deflections of all non-linearities encountered are accumulated
for a large number of turns and beam stability or instability is judged by the particle
surviving the tracking or not, respectively. The basic effects of nonlinear fields
in numerical tracking programs are therefore reduced to what actually happens
to particles travelling through such fields producing results in an efficient way.
Of course from an intellectual point of view such programs are not completely
satisfactory since they serve only as tools providing little direct insight into actual
causes for limitations to the dynamic aperture and instability.

The general approach to accelerator design is to develop first a lattice in linear
approximation meeting the desired design goals followed by an analytical approach
to include chromaticity correcting sextupoles in an optimized distribution. Further
information about beam stability and dynamic aperture can at this point only
be obtained from numerical tracking studies. Examples of widely used computer
programs to perform such tracking studies are in historical order PATRICIA [7],
RACETRACK [13], OPA [12] and more.

Tracking programs generally require as input an optimized linear lattice and
allow then particle tracking for single particles as well as for a large number of
particles simulating a full beam. Nonlinear fields of any order can be included as thin
lenses in the form of isolated multipole magnets like sextupoles or a multipole errors
of regular lattice magnets. The multipole errors can be chosen to be systematic or
statistical and the particle momentum may have a fixed offset or may be oscillating
about the ideal momentum due to synchrotron oscillations.

Results of such computer studies contribute information about particle dynamics
which is not available otherwise. The motion of single particles in phase space can
be observed together with an analysis of the frequency spectrum of the particle
under the influence of all nonlinear fields included and at any desired momentum
deviation.

Further information for the dynamics of particle motion can be obtained from
the frequency spectrum of the oscillation. An example of this is shown in Fig. 17.8
as a function of oscillation amplitudes. For small amplitudes we notice only
the fundamental horizontal betatron frequency v,. As the oscillation amplitude is
increased this basic frequency is shifted toward lower values while more frequencies
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Fig. 17.8 Frequency spectrum for betatron oscillations with increasing amplitudes (x) as deter-
mined by particle tracking with PATRICIA
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appear. We note the appearance of higher harmonics of v, due to the nonlinear nature
of motion.

The motion of a particle in phase space and its frequency spectrum as a result of
particle tracking can give significant insight into the dynamics of a single particle.
For the proper operation of an accelerator, however, we also need to know the overall
stability of the particle beam. To this purpose we define initial coordinates of a large
number of particles distributed evenly over a cross section normal to the direction of
particle propagation to be tested for stability. All particles are then tracked for many
turns and the surviving particles are displayed over the original cross section at the
beginning of the tracking thus defining the area of stability or dynamic aperture.

17.3 Hamiltonian Perturbation Theory

The Hamiltonian formalism has been applied to derive tune shifts and to discuss
resonance phenomena. This was possible by a careful application of canonical
transformation to eliminate, where possible, cyclic variables from the Hamiltonian
and obtain thereby an invariant of the motion. We have also learned that this
“elimination” process need not be perfect. During the discussion of resonance
theory, we observed that slowly varying terms function almost like cyclic variables
giving us important information about the stability of the motion.

During the discussion of the resonance theory, we tried to transform perturbation
terms to a higher order in oscillation amplitude than required by the approximation
desired and where this was possible we could then ignore such higher-order fast-
oscillating terms. This procedure was successful for all terms but resonant terms.
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In this section we will ignore resonant terms and concentrate on higher-order
terms which we have ignored so far [14]. By application of a canonical identity
transformation we try to separate from fast oscillating terms those which vary only
slowly. To that goal, we start from the nonlinear Hamiltonian (16.30)

H = voJ + pu(p) J"*cos" ¥ . (17.54)

Fast-oscillating terms can be transformed to a higher order by a canonical transfor-
mation which can be derived from the generating function

n/2

=y Ji + gy, 9)J; (17.55)

where the function g(v, ¢) is an arbitrary but periodic function in ¥ and ¢ which
we will determine later. From (17.55) we get for the new angle variable y; and the
old action variable J

Y = i‘f,’; =V + 580, 0) 7

(17.56)
J=S =0+ BT
and the new Hamiltonian is
dG a "
H =14 20—y 800 (17.57)
de de

We replace now the old variables (,J) in the Hamiltonian by the new variables
(J1, 1) and expand

02 _ 02 up\'"? _ wp  m0g L
J Jl+81//1 =J +§3w1 +-- (17.58)

With (17.56), (17.58) the Hamiltonian (17.57) becomes

Iy

1| n n 0 n
+J7 ! I:Epn(go) cos™ £:| + O (J +l/2)

" og a
Hy =vyJ; + J1/2 |:v0— + pa(@) cos” ¥ + —z:| (17.59)

All terms of order n 4 1/2 or higher in the amplitude J as well as quadratic terms
in g(, @) or derivations thereof have been neglected. We still must express all terms
of the Hamiltonian in the new variables and define therefore the function

) 0
O, ¢) = Uoﬁ + pu(p) cos" ¥ + ﬁ. (17.60)
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In the approximation of small perturbations we have Y| ~ v or ¥ = ¥ + Ay and
may expand (17.60) like

d
0. 9) = 0w.9) + 2 Ay (17.61)

o
nj2—10
= 0.9+ 5.0 152

where we used the first equation of (17.56). The Hamiltonian can be greatly
simplified if we make full use of the periodic but otherwise arbitrary function
g1, ). With (17.62) we obtain from (17.59)

(17.62)

Hy = vy J +J¥/2Q1(1/f1,90)

0 0
+ gf?_l [Pn(fp) cos” Wlﬁ — 8. 9) %} +oe (17.63)

and we will derive the condition that

O(Y.p) =0. (17.64)
First we set
cos" Y1 = D ayme™”" (17.65)

and try an expansion of g(¥, ¢) in a similar way by setting

gW.@) = Y gulp)e" Vim0, (17.66)

m=—n

where the function g obviously is still periodic in ¢ and ¢ as long as g,,(¢) is
periodic. With

% _ i
== )" gulp)ime" V170 17.67
3y, mz_ng (p) ( )
and
0g Zn Igm im(y1—-vop)
% = I:% — lvomgm((p)i| € 1~ vop (1768)

m=—n
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we get instead of (17.60)

OWn,e) ~ 0, 9) =

n n
ivo Z Mg elmW1—voe) + pu(@) Z anmeimd/l

m=—n m=—n

+ Z (_ — ivomgm ) eimWi—voe) _

m=—n

noting from (17.62) that the difference AQ = Q(¥1,¢) — Q(V¥, ¢) contributes
nothing to the term of order J;l/ *forn > 2. The imaginary terms cancel and we
get

n

a m 1m v
01, 9) ~ pu(p) Z ame™ + Y 98m gimty—vog) — ¢ (17.69)

m=—n m=—n

This equation must be true for all values of ¢ and therefore the individual terms of
the sums must vanish independently

ogm _,
Pu( @) + —2emim0v = (17.70)
dg
for all values of m. After integration we have

4 .
gm((p) = &m0 — anm/o pn(¢)elmuo¢d¢ (1771)

and since the coefficients g,,(¢) must be periodic [gm(qo) = gm(p + 27”)] where N
is the super-periodicity, we are able to eventually determine the function g(v;, ¢).
With

gm((p)eim(lﬁl—vw) =gm ((P + zﬁﬂ) im (Y1 —vop—2E vo) (17.72)

and (17.71) we have

¢ -
eI g in(i—vo0) / pu(B)em™P
0

+271

= ) g —a) [ pu(lem 0.
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Solving for g,,0 we get

2

. om N - .=
gno (1= ¢"5) = a, /0 Pu(@)e™Pdgp . (17.73)

A solution for g, exists only if there are no perturbations and p(¢) = 0 or if

2. . o
(1 eV ”") # 0. In other words we require the condition

mvy % gN (17.74)

where ¢ is an integer number. The canonical transformation (17.55) leads to the
condition (17.64) only if the particle oscillation frequency is off resonance. We have
therefore the result that all nonresonant perturbation terms can be transformed to
higher-order terms in the oscillation amplitudes while the resonant terms lead to
phenomena discussed earlier. From (17.73) we derive g0, obtain the function g,,(¢)
from (17.71) and finally the function g(v1, ¢) from (17.66). Since Q(Y1, ) = O,
the Hamiltonian is from (17.63)

Hy = voJi + 7011, 9) (17.75)

20 ) cos' v 35— gt 52 |-

Nonresonant terms appear only in order J{‘_l. As long as such terms can be
considered small we conclude that the particle dynamics is determined by the linear
tune vy, a tune shift or tune spread caused by perturbations and resonances. Note that
the Hamiltonian (17.75) is not the complete form but addresses only the nonresonant
case of particle dynamics while the resonant case of the Hamiltonian has been
derived earlier.

We will now continue to evaluate (17.75) and note that the product

aQ(Wl ’ (p)
g, @) ——— a0, =0 (17.76)
in this approximation and get
T(Y.¢) = Pn(fp) cos” l/f A7.77)

31//

where we have dropped the index on ¥ and set from now on {; = ¥ which is not
to be confused with the variable y used before the transformation (17.55). Using
the Fourier spectrum for the perturbations and summing over all but resonant terms
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q # q; we get from (17.73)

gmo (1=€"%0) = ay, > / Puge "M dg

lal
V() — 1

= Gum 17.78
¢ qul(mvo—qN) e

97 4r

or

gmo = ia vao_qN (17.79)

a7 qr
Note that we have excluded in the sums the resonant terms ¢ = ¢, where

m,yvy — ¢:N = 0. These resonant terms include also terms ¢ = 0 which do not
cause resonances of the ordinary type but lead to tune shifts and tune spreads. After
insertion into (17.71) and some manipulations we find

¢ .
gm () = iay, Z L_anm Z / pnqel(mVO—qN)¢d¢ (17.80)
mvg — gN 0
a7 a7
1(mv0 gN)g
it Y p
a7
and with (17.66)
gV 9) =i Z Z _ QnmPng elmy o—iaN)e (17.81)
mmn st VO~ gN

From (17.77) we get with (17.65) and (17.81)

LN —i : im
TW@) =15 ) puge™™ 3 ame™ mg(y.¢). (17.82)

q7aqr m==n

This function T'(, ¢) is periodic in ¥ and ¢ and we may apply a Fourier expansion
like

(Y, ¢) = Z Z T, VN9 (17.83)

rvo
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where the coefficients T, are determined by

2 27 /N
N . .
Ty=— [ eV dy / eNT (Y, ) do . (17.84)
472
0 0

To evaluate (17.84) it is most convenient to perform the integration with respect
to the betatron phase ¥ before we introduce the expansions with respect to ¢.
Using (17.65), (17.66), (17.77), we get from (17.84) after some reordering

m=1— Z / Z Gnj elli+m— Y dyr

m=-—n j_—n
27 /N )
x / Pn(@) gml@)e ™0™ dg .
0

The integral with respect to v is zero for all values j + m — r # 0 and therefore
equal to ay, y—m

27 /N
Ty —1— Z L — / Pa(®) gnl) e M0N0 dg (17.85)
m=-—n 0

Expressing the perturbation p,(¢) by its Fourier expansion and replacing g,,(¢)
by (17.80), (17.85) becomes

-2 Z Ml y— manmz Pras— ‘“””’ (17.86)

m=—n m\)() -

With this expression we have fully defined the function T(y, ¢) and obtain for the
non-resonant Hamiltonian (17.75)

H=v ]+ " TeV=Ne), (17.87)

ros#FExvo

We note in this result a higher-order amplitude dependent tune spread which has
a constant contribution Ty as well as oscillatory contributions.

Successive application of appropriate canonical transformations has lead us
to derive detailed insight into the dynamics of particle motion in the presence
of perturbations. Of course, every time we applied a canonical transformation
of variables it was in the hope of obtaining a cyclic variable. Except for the
first transformation to action-angle variables, this was not completely successful.
However, we were able to extract from perturbation terms depending on both
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action-angle variables such elements that do not depend on the angle variable. As a
result, we are now able to determine to a high order of approximation shifts in the
betatron frequency caused by perturbations as well as the occurrence and nature of
resonances.

Careful approximations and simplifications had to be made to keep the math-
ematical formulation manageable. Specifically we had to restrict the perturbation
theory in this section to one order of multipole perturbation and we did not address
effects of coupling between horizontal and vertical betatron oscillations.

From a more practical view point one might ask to what extend this higher-
order perturbation theory is relevant for the design of particle accelerators. Is the
approximation sufficient or is it more detailed than needed? As it turns out so often
in physics we find the development of accelerator design to go hand in hand with the
theoretical understanding of particle dynamics. Accelerators constructed up to the
late sixties were designed with moderate focusing and low chromaticities requiring
no or only very weak sextupole magnets. In contrast more modern accelerators
require much stronger sextupole fields to correct for the chromaticities and as a
consequence, the effects of perturbations, in this case third-order perturbations,
become more and more important. The ability to control the effects of such
perturbations actually limits the performance of particle accelerators. For example,
in colliding-beam storage rings the strongly nonlinear fields introduced by the beam-
beam effect limit the attainable luminosity while a lower limit on the attainable beam
emittance for synchrotron light sources or damping rings is determined by strong
sextupole fields.

17.3.1 Tune Shift in Higher Order

In (16.36) we found the appearance of tune shifts due to even order multipole
perturbations only. Third-order sextupole fields, therefore, would not affect the
tunes. This was true within the degree of approximation used at that point. In this
section, however, we have derived higher-order tune shifts and should therefore
discuss again the effect of sextupolar fields on the tune.

Before we evaluate the sextupole terms, however, we like to determine the
contribution of a quadrupole perturbation to the higher-order tune shift. In lower
order we have derived earlier a coherent tune shift for the whole beam. We
use (17.86) and calculate Ty forn = 2

maZmaZ —m
Too = ) PrgPr— Z N (17.88)
q7#ar m==2
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With 4a,, = a»—» = 2a,9 = 1 and a1 = a;—; = 0 the term in the bracket
becomes

) 2 2gN
+ = 2 2
—2v9—gN  2v9—gN  (2v9)” — (gN)

and (17.88) is simplified to

2gN
T()() = — P2gP2—gq———> 5 - (1789)
q% T - V)

In this summation we note the appearance of the index ¢ in pairs as a positive
and a negative value. Each such pair cancels and therefore

To2 =0, (17.90)

where the index , indicates that this coefficient was evaluated for a second-
order quadrupole field. This result is not surprising since all quadrupole fields
contribute directly to the tune and formally a quadrupole field perturbation cannot
be distinguished from a “real” quadrupole field.

In a similar way we derive the Ty coefficient for a third-order multipole or a
sextupolar field. From (17.86) we get forn =3

masz m,m asz,—m
T = —— _ 17.91
003 = gmqm qu3 o —gN ( )

Since cos® ¥ is an even function we have a3, = a3z, as; = % and a33 = %
The second sum in (17.91) becomes now

1 3 q q 3
— + + +
64 \3v9g+gN vo+gN vo—gN  3vg—gN

1 18vg 4 18vy
T 64\ =@V Gy —(@N)?)

and after separating out the terms for g = 0, (17.91) becomes

Topr = ———— 17.92
00,3 32v0p3’0 ( )

27v0 1 1
D3.qD + .
,I;qr e [vé— (gN)? (3V0)3—(qN)2]
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This expression in general is nonzero and we found, therefore, that sextupole
fields indeed, contribute to a tune shift although in a high order of approximation.
This tune shift can actually become very significant for strong sextupoles and for
tunes close to an integer or third integer resonances. Although we have excluded
resonances (¢ = ¢;) , terms close to resonances become important. Obviously, the
tunes should be chosen such as to minimize both terms in the bracket of (17.92).
This can be achieved with vy = gN + %N and 3vg =rN + %N where g and r are
integers. Eliminating vy from both equations we get the condition 3¢ —r + 1 = 0
or r = 3q + 1. With this we finally get from the two tune conditions the relation
2vg =(2g+ 1)N or

2+ 1
Vopt = q; N. (17.93)

Of course, an additional way to minimize the tune shift is to arrange the sextupole
distribution in such a way as to reduce strong harmonics in (17.92). In summary, we
find for the non-resonant Hamiltonian in the presence of sextupole fields.

H; = voJ + T00,3.12 + higher order terms (17.94)
and the betatron oscillation frequency or tune is given by
V=19 + 2T00,3J. (1795)

In this higher-order approximation of beam dynamics we find that sextupole
fields cause an amplitude dependent tune shift in contrast to our earlier first-order
conclusion

Av vV — 1y

= T00,3 ()/Lt2 + 2M I/t/ + ﬂ u/Z) = T00,3 €, (1796)
Vo

where we have used (5.59) with € the emittance of a single particle oscillating with
a maximum amplitude a> = Be. We have shown through higher-order perturbation
theory that odd order nonlinear fields like sextupole fields, can produce amplitude
dependent tune shifts which in the case of sextupole fields are proportional to
the square of the betatron oscillation amplitude and therefore similar to the tune
shift caused by octupole fields. In a beam where particles have different betatron
oscillation amplitudes this tune shift leads to a tune spread for the whole beam.

In practical accelerator designs requiring strong sextupoles for chromaticity
correction it is mostly this tune shift which moves large amplitude particles onto
a resonance thus limiting the dynamic aperture. Since this tune shift is driven by
the integer and third-order resonance, it is imperative in such cases to arrange the
sextupoles such as to minimize this driving term for geometric aberration.
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Problems

17.1 (S). Derive the expression for the second-order matrix element 7' and give
a physical interpretation for this term.

17.2 (S). Show that the perturbation proportional to xj is p(z[x3) =
[(—%m — Kk —2ck) C + 3k C’z] x2, where C = C(z) = cos vkzand C' = C' (2)
and the second-order matrix element

Tin = (—3m— i = 2ck) & [kS* + (1 = O)] + tk [2(1 = C) — kS?].

17.3 (S). Consider a large circular accelerator made of many FODO cells with
a phase advance of 90° per cell. Locate chromaticity correcting sextupoles in
the center of each quadrupole and calculate the magnitude for one of the five
expressions (17.45)—(17.49). Now place non-interleaved sextupole in pairs 180°
apart and calculate the same two expressions for the new sextupole distribution.

17.4 (S). Use the lattice of Problem 17.3 and determine the tunes of the ring. Are
the tunes the best choices for the super-periodicity of the ring to avoid resonance
driven sextupole aberrations? How would you go about improving the situation?

17.5. Expand the second-order transformation matrix to include path length terms
relevant for the design of an isochronous beam transport system and derive expres-
sions for the matrix elements. Which elements must be adjusted and how would you
do this? Which parameters would you observe to control your adjustment?

17.6. Sextupoles are used to compensate for chromatic aberrations at the expense
of geometric aberrations. Derive a condition for which the geometric aberration
has become as large as the original chromatic aberration. What is the average
perturbation of geometric aberrations on the betatron motion? Try to formulate a
“rule of thumb” stability criteria for the maximum sextupole strength. Is it better to
place a chromaticity correcting sextupole at a high beta location (weak sextupole)
or at a low beta location (weak aberration)?

17.7. Consider both sextupole distributions of Problem 17.3 and form a phasor
diagram of one of expressions (17.45)—(17.49) for the first four or more FODO cells.
Discuss desirable features of the phasor diagram and explain why the —Z correction
scheme works well. A phasor diagram is constructed by adding vectorially each
term of an expression (17.45)—(17.49) going along a beam line.

17.8. The higher-order chromaticity of a lattice may include a strong quadratic
term. What dependence on energy would one expect in this case for the beta beat?
Why? Can your findings be generalized to higher-order terms?
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