
Chapter 11
Particle Beam Parameters

Particle beams are characterized by a set of quantifying parameters being either
constants of motion or functions varying from point to point along a beam transport
line. The parameters may be a single particle property like the betatron function
which is the same for all particles within a beam or quantities that are defined only
for a collection of particles like beam sizes or beam intensity. We will define and
derive expressions for such beam parameters and use them to characterize particle
beams and develop methods for manipulation of such parameters.

11.1 Definition of Beam Parameters

Particle beams and individual particles are characterized by a number of parameters
which we use in beam dynamics. We will define such parameters first before we
discuss the determination of their numerical value.

11.1.1 Beam Energy

Often we refer to the energy of a particle beam although we actually describe
only the nominal energy of a single particle within this beam. Similarly, we speak
of the beam momentum, beam kinetic energy or the velocity of the beam, when
we mean to say that the beam is composed of particles with nominal values of
these quantities. We found in earlier chapters that the most convenient quantity
to characterize the “energy” of a particle is the momentum for transverse beam
dynamics and the kinetic energy for acceleration. To unify the nomenclature it has
become common to use the term energy for both quantities noting that the quantity
of pure momentum should be multiplied with the velocity of light .cp/ to become
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354 11 Particle Beam Parameters

dimensionally correct. Thus, the particle momentum is expressed in the dimension
of an energy without being numerically identical either to the total energy or the
kinetic energy but approaching both for highly relativistic energies.

11.1.2 Time Structure

A true collective beam parameter is the time structure of the particle stream.
We make the distinction between a continuous beam being a continuous flow of
particles and a bunched beam. Whenever particles are accelerated by means of
rf-fields a bunched beam is generated, while continuous beams can in general
be sustained only by dc accelerating fields or when no acceleration is required as
may be true for a proton beam in a storage ring. A pulsed beam consists of a finite
number of bunches or a continuous stream of particles for a finite length of time.
For example, a beam pulse from a linear accelerator is made up of a finite string of
micro bunches generated by rf-accelerating fields.

11.1.3 Beam Current

The beam intensity or beam current is expressed in terms of an electrical current
using the common definition of the ratio of the electrical charge passing by a current
monitor per unit time. For bunched beams the time span during which the charge is
measured can be either shorter than the duration of the bunch or the beam pulse or
may be long compared to both. Depending on which time scale we use, we define the
bunch current or peak current, the pulse current or the average current respectively.

In Fig. 11.1 the general time structure of bunched beams is shown. The smallest
unit is the microbunch, which is separated from the next microbunch by the
wavelength of the accelerating rf-field or a multiple thereof. The microbunch current
or peak current OI is defined as the total microbunch charge q divided by the
microbunch duration ��,

OI D q

��
: (11.1)

The micro pulse duration must be specially defined to take a nonuniform charge
distribution of the particular accelerator into account. A series of microbunches
form a beam pulse which is generally determined by the duration of the rf-pulse.
In a conventional S-band electron linear accelerator the rf-pulse duration is of
the order of a few micro seconds while a superconducting linac can produce a
continuous stream of microbunches thus eliminating the pulse structure of the beam.
An electrostatic accelerator may produce pulsed beams if the accelerating voltage is
applied only for short time intervals. The pulse current Ip is defined as the average
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Fig. 11.1 Definitions for time structure and pulse currents. (a) Peak current, OI D q=��, where �� is
the microbunch duration and q the charge per microbunch. (b) Pulse current Ip D OI ��=T� D q=T�,
where T� is the micro-bunch period. (c) Average current hIi D IpTp�rep;with Tp the pulse duration
and �rep the pulse repetition rate. (d) Continuous beam current

current during the duration of the pulse. If the duration of the micro bunch is �� and
the time between successive microbunches T� the pulse current is

Ip D OI ��
T�

D q

T�
: (11.2)

The average beam current, finally, is the beam current averaged over a complete
cycle of the particular accelerator.

hIi D Ip
Tp

Tr
D q

Tr

Tp

T�
D n� q

Trep
; (11.3)

where n� is the number of microbunches per pulse and q the charge in a microbunch.
In a beam transport line, this is the total charge passing by per unit time, where the
unit time is as long as the distance between beam pulses. In a circular accelerator it
is, for example, the total circulating charge divided by the revolution time. For the
experimenter using particles from a cycling synchrotron accelerator the average
current is the total charge delivered to the experiment during a time long compared
to the cycling time divided by that time.
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The “beam on–beam off” time is measured by the duty factor defined as the
fraction of actual beam time to total time at the experimental station. Depending on
the application, it is desirable to have a high duty factor where the particles come
more uniformly distributed in time compared to a low duty factor where the same
number of particles come in short bursts.

11.1.4 Beam Dimensions

Of great importance for the design of particle accelerators is the knowledge of beam
size parameters like transverse dimensions, bunch length and energy spread as well
as the particle intensity distribution in six-dimensional phase space. In this respect,
electron beams may behave different from beams of heavier particles like protons
which is a consequence of synchrotron radiation and effects of quantized emission
of photons on the dynamic parameters of the electrons. Where such radiation effects
are negligible beams of any kind of particles evolve the same way along a beam line.
Specifically, we have seen that in such cases the beam emittances are a constant
of motion and the beam sizes are therefore modulated only by the variation of
the betatron and dispersion functions as determined by the focusing structure. The
particle distribution stays constant while rotating in phase space. This is true for the
transverse as well as for the longitudinal and energy parameters.

A linear variation of beam emittance with energy is introduced when particles
are accelerated or decelerated. We call this variation adiabatic damping, where the
beam emittance scales inversely proportional with the particle momentum and the
transverse beam size, divergence, bunch length and energy spread scale inversely to
the square root of the particle momentum. This adiabatic damping actually is not a
true damping process where the area in phase space is reduced. It rather reflects the
particular definition of beam emittance with respect to the canonical dimensions
of phase space. In transverse beam dynamics we are concerned with geometric
parameters and a phase space element would be expressed by the product �u�u0:
Liouville’s theorem, however, requires the use of canonical variables, momentum
and position, and the same phase space element is �u�pu, where �pu D p0u0
and u is any of the three degrees of freedom. Acceleration increases the particle
momentum p0 and as a consequence the geometric emittance �u�u0 must be
reduced to keep the product �u�pu constant. This reduction of the geometric
emittance by acceleration is called adiabatic damping and occurs in all three degrees
of freedom.

More consistent with Liouville’s theorem of constant phase space density is the
normalized emittance defined by

�n D ˇ�� ; (11.4)
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where � is the particle energy in units of the rest energy and ˇ D v=c. This
normalized emittance obviously has the appropriate definition to stay constant under
the theorem of Liouville.

It is often difficult and not practical to define a beam emittance for the whole
beam. Whenever the beam is fuzzy at the edges it may not make sense to include all
particles into the definition of the beam emittance and provide expensive aperture
for the fuzzy part of the beam. Relativistic electron beams in circular accelerators
are particularly fuzzy due to the quantized emission of synchrotron radiation and
as a consequence the particle distribution transforms into a Gaussian distribution.
Later, we will discuss the evolution of the beam emittance due to statistical effects
in great detail and derive the particle distribution from the Fokker-Planck equation.
The electron beam emittance is defined for that part of the beam which is contained
within one standard unit of the Gaussian distribution. this is true also for any other
parameter which assumes a Gaussian distribution like beam size, divergence, energy
spread, phase etc.

The beam emittance for particle beams is primarily defined by the characteristic
source parameters and source energy. Given perfect matching between different
accelerators and beam lines during subsequent acceleration, this source emittance
is reduced inversely proportional to the particle momentum by adiabatic damping
and stays constant in terms of normalized emittance. This describes accurately the
ideal situation for proton and ion beams, for nonrelativistic electrons and electrons
in linear accelerators as long as statistical effects are absent. A variation of the
emittance occurs in the presence of statistical effects in the form of collisions with
other particles or emission of synchrotron radiation and we will concentrate here
in more detail on the evolution of beam emittances in highly relativistic electron
beams.

Statistical processes cause a spreading of particles in phase space or a continuous
increase of beam emittance. In cases where this diffusion is due to the particle
density, the emittance increase may decrease significantly because the scattering
occurrence drops to lower and lower values as the particle density decreases. Such
a case appears in intra-beam scattering [1–3], where particles within the same
bunch collide and exchange energy. Specifically when particles exchange longi-
tudinal momentum into transverse momentum and gain back the lost longitudinal
momentum from the accelerating cavities. The beam “heats” up transversely which
becomes evident in the increased beam emittance and beam sizes.

Statistical perturbations due to synchrotron radiation, however, lead to truly
equilibrium states where the continuous excitation due to quantized emission
of photons is compensated by damping. Discussing first the effect of damping
will prepare us to combine the results with statistical perturbations leading to an
equilibrium state of the beam dimensions.
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11.2 Damping

Emission of synchrotron radiation causes the appearance of a reaction force on the
emitting particle which must be taken into account to accurately describe particle
dynamics. In doing so, we note from the theory of synchrotron radiation that the
energy lost into synchrotron radiation is lost through the emission of many photons
and we may assume that the energy loss is continuous. Specifically, we assume that
single photon emissions occur fast compared to the oscillation period of the particle
such that we may treat the effect of the recoil force as an impulse.

In general, we must consider the motion of a particle in all three degrees of
freedom or in six-dimensional phase space. The appearance of damping stems from
the emission of synchrotron radiation in general, but the physics leading to damping
in the longitudinal degree of freedom is different from that in the transverse degrees
of freedom. The rate of energy loss into synchrotron radiation depends on the
particle energy itself being high at high energies and low at low energies. As a
consequence, a particle with a higher than ideal energy will loose more energy to
synchrotron radiation than the ideal particle and a particle with lower energy will
loose less energy. The combined result is that the energy difference between such
three particles has been reduced, an effect that shows up as damping of the beam
energy spread. With the damping of the energy spread, we observe also a damping
of its conjugate variable, the longitudinal phase or bunch length.

In the transverse plane we note that the emission of a photon leads to a loss of
longitudinal as well as transverse momentum since the particle performs betatron
oscillations. The total lost momentum is, however, replaced in the cavity only in the
longitudinal direction. Consequently, the combined effect of emission of a photon
and the replacement of the lost energy in accelerating cavities leads to a net loss of
transverse momentum or transverse damping.

Although damping mechanisms are different for transverse and longitudinal
degrees of freedom, the total amount of damping is limited and determined by
the amount of synchrotron radiation. This correlation of damping decrements in all
degrees of freedom was derived first by Robinson [4] for general accelerating fields
as long as they are not so strong that they would appreciably affect the particle orbit.

11.2.1 Robinson Criterion

Following Robinson’s idea we will derive what is now known as Robinson’s
damping criterion by observing the change of a six dimensional vector in phase
space due to synchrotron radiation and acceleration. The components of this vector
are the four transverse coordinates .x; x0; y; y0/, the energy deviation �E, and the
longitudinal phase deviation from the synchronous phase ' D  �  s. Consistent
with smooth approximation a continuous distribution of synchrotron radiation along
the orbit is assumed as well as continuous acceleration to compensate energy losses.
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During the short time dt the six-dimensional vector

u D �
x; x0; y; y0; '; ıE

�
(11.5)

will change by an amount proportional to dt. We may expand the transformations
into a Taylor series keeping only linear terms and express the change of the phase
space vector in form of a matrix transformation

�u D u1 � u0 D dtMu0 : (11.6)

From the eigenvalue equation for this transformation matrix,

Muj D �juj ;

where uj are the eigenvectors, �i the eigenvalues being the roots of the characteristic
equation det.M � �I/ D 0 and I the unity matrix. From (11.6) we get

u1 D .1C M dt/u0 D .1C �j dt/u0 � u0e�j dt : (11.7)

Since the eigenvectors must be real the eigenvalues come in conjugate complex pairs

�j D ˛i ˙ iˇi ;

where i D 1; 2; 3 and

jD6X

jD1
�j D 2

iD3X

iD1
˛i : (11.8)

The quantities ˛i cause exponential damping or excitation of the eigenvectors
depending on whether they are negative or positive, while the ˇi contribute only a
frequency shift of the oscillations.

Utilizing the transformation matrix M;we derive expressions for the eigenvalues
by evaluating the expression d

d� det.�M��I/j�D0 in two different ways. WithM D
�jI we get

d

d�
det Œ.��i � �/ I	�D0 D d

d�

jD6Y

jD1
.��j � �/j�D0 D ��5

jD6X

jD1
�j : (11.9)
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On the other hand, we may execute the differentiation on the determinant directly
and get

d

d�
det .�M � ≥I/j�D0 D (11.10)

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ

m11 m12 m13 � � �
�m21 �m22 � � �m23 � � �
�m31 �m32 �m33 � � � � �
� � � � � � � � � � � �

ˇ
ˇ
ˇ
ˇ
ˇ̌
ˇ
ˇ
�D0

C

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ

�m11 � � �m12 �m13 � � �
m21 m22 m23 � � �
�m31 �m32 �m33 � � � � �
� � � � � � � � � � � �

ˇ̌
ˇ
ˇ
ˇ
ˇ̌
ˇ
�D0

C � � �

D ��5m11 � � � � �5m66 D ��5
j D 6X

j D1
mjj :

Comparing (11.9) and (11.10) we note with (11.8) the relation

jD6X

j�1
�j D

jD6X

j�1
mjj D 2

iD3X

iD1
˛i (11.11)

between eigenvalues, matrix elements, and damping decrements. To further identify
the damping we must determine the transformation. The elements m11;m33, and m55

are all zero because the particle positions .x; y; '/ are not changed by the emission
of a photon or by acceleration during the time dt.

m11 D 0 m33 D 0 m55 D 0 : (11.12)

The slopes, however, will change. Since synchrotron radiation is emitted in the
forward direction we have no direct change of the particle trajectory due to the
emission process. We ignore at this point the effects of a finite radiation opening
angle 
 D ˙1=� and show in connection with the derivation of the vertical beam
emittance that this effect is negligible while determining damping. Acceleration will
change the particle direction because the longitudinal momentum is increased while
the transverse momentum stays constant (see Fig. 11.2).

As shown in Fig. 11.2, a particle with a total momentum p0 and a transverse
momentum p0t due to betatron oscillation emits a photon of energy "� . This process
leads to a loss of momentum of ��p D "�=ˇ; where ˇ D v=c and a loss of
transverse momentum. Acceleration will again compensate for this energy loss.
During acceleration the momentum is increased by �prf D C.Prf=cˇ/ dt, where
Prf is the rf-power to the beam. The transverse momentum during this acceleration
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Fig. 11.2 Reduction of the
transverse momentum of
trajectories by acceleration.
For simplicity we assume
here that the energy loss ��p
due to the emission of a
photon is immediately
compensated by accelerating
fields in a rf-cavity (�prf/

Dprf

Dp

p0

p1

p0t

p1t

is not changed and we have therefore .p0 � �p/ u0
0 D Œp0 � �p C .Prf=cˇ/ dt	 u0

1,
where u0

0 and u0
1 are the slopes of the particle trajectory before and after acceleration,

respectively. With u0 D Pu=ˇc and cp0 D ˇE0 we have to first order in �p and Prf dt

Pu1 D E0

E0 C Prf dt
Pu0 �

�
1 � Prf dt

E0

�
Pu0 : (11.13)

From (11.7) we get with (11.13) using average values for the synchrotron
radiation power around the ring and with u D x or y

m22 D �hP� i
E0

and m44 D �hP�i
E0

; (11.14)

where we note that in the absence of acceleration the rf-power is equal to the
nominal synchrotron radiation power hP�i D U0=T0. The energy variation of the
particle is the combination of energy loss �P� dt and gain Prf dt. With

P� .E/ D P� .E0/C @P�
@E

ˇ
ˇ
ˇ
ˇ
0
�E0 and Prf. / D Prf. s/C @Prf

@ 

ˇ
ˇ
ˇ
ˇ
 s

' ;

where ' D  �  s we get

�E1 D �E0 � ˝
P� .E/

˛
dt C Prf. / dt

D �E0 � @
˝
P�

˛

@E

ˇ
ˇ
ˇ
ˇ
ˇ
0

�E dt C @Prf

@ 

ˇ
ˇ
ˇ
ˇ
 s

' dt (11.15)
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because P� .E0/ D Prf. s/. Equation (11.15) exhibits two more elements of the
transformation matrix

m65 D @Prf

@ 

ˇ
ˇ
ˇ
ˇ
 s

and m66 D � @
˝
P�

˛

@E

ˇ
ˇ
ˇ
ˇ̌
0

: (11.16)

We have now all elements necessary to determine the damping decrements.
From (11.12), (11.14), (11.16) we get the sum of the damping decrements

iD3X

iD1
˛i D 1

2

jD6X

jD1
mjj D �hP�i

E0
� 1

2

@
˝
P�

˛

@E

ˇ̌
ˇ
ˇ
ˇ
0

; (11.17)

which depends only on the synchrotron radiation power and the particle energy.
This result was first derived by Robinson [4] and is known as Robinson’s damping
criterion.

We may separate the damping decrements. For a plane circular accelerator
without vertical bending magnets and coupling, the vertical damping decrement
˛y D ˛2 can be extracted. Since the vertical motion is not coupled to either the
horizontal or the synchrotron oscillations, we get from (11.14) and (11.17)

˛y D � 1
2

hP�i
E0

: (11.18)

The damping decrement for synchrotron oscillations has been derived in (9.27)
and is

˛z D � 1
2

dhP�i
dE

ˇ̌
ˇ
ˇ
0

: (11.19)

The horizontal damping decrement finally can be derived from Robinson’s
damping criterion (11.17) and the two known decrements (11.18), (11.19) to be

˛x D � 1
2

hP� i
E0

� 1
2

@
˝
P�

˛

@E

ˇ̌
ˇ
ˇ
ˇ
0

C 1
2

dhP�i
dE

ˇ̌
ˇ
ˇ
0

: (11.20)

We may further evaluate the total and partial differential of the synchrotron
radiation power P� with energy E. The synchrotron radiation power is proportional
to the square of the particle energy E and magnetic field B at the source of radiation
and the partial differential is therefore

@P�
@E

ˇ
ˇ
ˇ̌
0

D 2
hP�i
E0

: (11.21)
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The total differential of the synchrotron radiation power depends not only on the
particle energy directly but also on the variation of the magnetic field with energy as
seen by the particle. A change in the particle energy causes a shift in the particle orbit
where the �-function is nonzero and this shift may move the particle to a location
with different field strength. To include all energy dependent contributions, we
inspect the definition of the average synchrotron radiation power hP�i D 1

T0

H
P�d�

and noting that for highly relativistic particles cd� D dz D
�
1C �

�
�E
E0

�
dz the

average radiation power becomes

hP� i D 1

cT0

I
P�

�
1C �

�

�E

E0

�
dz: (11.22)

Differentiating (11.22) with respect to the energy

dhP�i
dE

ˇ
ˇ
ˇ
ˇ
0

D 1

cT0

I �
dP�
dE

ˇ
ˇ
ˇ
ˇ
0

C P�
�

�E0

	
dz ; (11.23)

where

dP�
dE

ˇ
ˇ
ˇ̌
0

D 2
P�
E0

C 2
P�
B0

dB

dx

dx

dE
D 2

P�
E0

C 2
P�
E0
� k � :

Collecting all components, the synchrotron oscillation damping decrement (11.19)
is finally

˛z D � 1
2

d
˝
P�

˛

dE

ˇ
ˇ
ˇ̌
ˇ
0

D � 1
2

hP� i
E0

.2C #/ ; (11.24)

where we used hP�i / H

2dz and P�0 / 
2 with 
 D 1=�

# D
H

3�

�
1C 2�2k

�
dz

H


2dz

: (11.25)

Similarly, we get from (11.20) for the horizontal damping decrement

˛x D �1
2

hP� i
E0

.1 � #/ : (11.26)
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In summary the damping decrements for betatron and synchrotron oscillations can
be expressed by

˛z D �1
2

˝
P�

˛

E
.2C #/ D �1

2

˝
P�

˛

E
Jz ;

˛x D �1
2

˝
P�

˛

E
.1 � #/ D �1

2

˝
P�

˛

E
Jx ; (11.27)

˛y D �1
2

˝
P�

˛

E
D �1

2

˝
P�

˛

E
Jy ;

where the factors Ji are the damping partition numbers,

Jz D 2C #;

Jx D 1 � #; (11.28)

Jy D 1:

Robinson’s damping criterion can be expressed by

X

i

Ji D 4 : (11.29)

In more practical quantities, the damping decrements can be obtained with (24.35)
from

˛u D � 1
3
rec �3



1

�2

�
Ju: (11.30)

Damping occurs in circular electron accelerators in all degrees of freedom.
In transverse planes particles oscillate in the potential created by quadrupole
focusing and any finite amplitude is damped by synchrotron radiation damping.
Similarly, longitudinal synchrotron oscillations are contained by a potential well
created by the rf-fields and the momentum compaction and finite deviations of
particles in energy and phase are damped by synchrotron radiation damping.
We note that the synchrotron oscillation damping is twice as strong as transverse
damping.

All oscillation amplitudes au in six dimensional phase space are damped .˛ < 0/
or anti-damped .˛ > 0/ like

au D a0ue˛ut (11.31)

and the damping or rise times are

�u D 1

au
: (11.32)
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In a particular choice of lattice, damping rates can be shifted between different
degrees of freedom and special care must be exercised when combined function
magnets or strong sector magnets are introduced into a ring lattice.

Both the synchrotron and betatron oscillation damping can be modified by a
particular choice of lattice. From (11.25) we note the contribution 
3� which is
caused by sector magnets. Particles with higher energies follow a longer path in
a sector magnet and therefore radiate more. Consequently synchrotron damping is
increased with # . This term vanishes for rectangular magnets and must be modified
appropriately for wedge magnets. For a rectangular magnet

#rect D
H
2
�k dz
H


2dz

(11.33)

and for wedge magnets

#wedge D
P

i

�

2
0�0 C R

2.
� k/ dz C 
2
e�e



iH

2dz

; (11.34)

where we add all contributions from all magnets i in the ring. The edge angles at the
entrance 
0 and exit 
e are defined to be positive going from a rectangular magnet
toward a sector magnet.

The second term in the nominator of (11.25) becomes significant for combined
function magnets and vanishes for separated function magnets. Specifically. a
strong focusing gradient .k > 0/ combined with beam deflection can contribute
significantly to # . For # D 1 all damping in the horizontal plane is lost and
anti-damping or excitation of betatron oscillations appears for # > 1. This
occurs, for example, in older combined function synchrotrons. At low energies,
however, the beam in such lattices is still stable due to strong adiabatic damping
and only at higher energies when synchrotron radiation reduces acceleration will
horizontal anti-damping take over and dictate an upper limit to the feasibility of
such accelerators. Conversely, vertical focusing .k < 0/ can be implemented into
bending magnets such that the horizontal damping is actually increased since # < 0.
However, there is a limit for the stability of synchrotron oscillations for # D 2.

11.3 Particle Distribution in Longitudinal Phase Space

The particle distribution in phase space is rarely uniform. To determine the required
aperture in a particle transport system avoiding excessive losses we must, however,
know the particle distribution. Proton and ion beams involve particle distributions
which due to Liouville’s theorem do not change along a beam transport system,
except for the variation of the betatron and dispersion function. The particle
distribution can therefore be determined by measurements of beam transmission
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through a slit for varying openings. If this is done at two points about 90ı apart in
betatron phase space, angular as well as spatial distribution can be determined.

This procedure can be applied also to electrons in a transport system. The
distribution changes, however, significantly when electrons are injected into a
circular accelerator. We will discuss the physics behind this violation of Liouville’s
theorem and determine the resulting electron distribution in phase space.

Relativistic electron and positron beams passing through bending magnets emit
synchrotron radiation, a process that leads to quantum excitation and damping.
As a result the original beam emittance at the source is completely replaced by
an equilibrium emittance that is unrelated to the original source characteristics.
Postponing a rigorous treatment of statistical effects to Chap. 12 we concentrate
here on a more visual discussion of the reaction of synchrotron radiation on particle
and beam parameters.

11.3.1 Energy Spread

Statistical emission of photons causes primarily a change of particle energy leading
to an energy spread within the beam. To evaluate the effect of quantized emission of
photons on the beam energy spread, we observe particles undergoing synchrotron
oscillations so that a particle with an energy deviation A0 at time t0 will have an
energy error at time t of

A .t/ D A0 ei˝.t�t0/ (11.35)

Emission of a photon with energy " at time t1 causes a perturbation and the
particle continues to undergo synchrotron oscillations but with a new amplitude

A1 D A0e
i˝.t�t0/ � " ei˝.t�t1/ (11.36)

The change in oscillation amplitude due to the emission of one photon of energy
" can be derived from (11.36) by multiplying with its imaginary conjugate for

A21 D A20 C "2 � 2"A0 cos Œ˝ .t1 � t0/	 : (11.37)

Because the times at which photon emission occurs is random we have for the
average increase in oscillation amplitude due to the emission of a photon of energy "

˝
�A2

˛ D ˝
A21 � A20

˛ D "2 (11.38)

The rate of change in amplitude per unit time due to this statistical or quantum
excitation while averaging around the ring is

*
dA2

dt

ˇ̌
ˇ
ˇ
q

+

z

D
Z 1

0

"2 Pn ."/ d� D ˝ PNph
˝
"2

˛˛
z

(11.39)
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where Pn ."/ is the number of photons of energy " emitted per unit time and energy
bin d". This can be equated to the total photon flux PNph multiplied by the average
square of the photon energy and again taking the average along the orbit.

Damping causes a reduction in the synchrotron oscillation amplitude and with
A D A0e˛st and the synchrotron oscillation damping time �z D 1= j˛zj (11.27)
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ˇ
ˇ̌
ˇ
d

�

z

D � 2

�z

˝
A2

˛
: (11.40)

Both quantum excitation and damping lead to an equilibrium state

˝ PNph
˝
"2

˛˛
z
� 2

�z

˝
A2

˛ D 0; (11.41)

or solving for
˝
A2

˛

˝
A2

˛ D 1
2
�z

˝ PNph
˝
"2

˛˛
z
: (11.42)

Due to the central limit theorem of statistics the energy distribution caused by
the statistical emission of photons assumes a Gaussian distribution with the standard
root mean square energy spread �2" D 1

2

˝
A2

˛
. The photon spectrum will be derived

in Part 22.6 and the integral in (11.39) can be evaluated to give [5]

PNph
˝
"2

˛ D 55

24
p
3

P�"c (11.43)

Replacing the synchrotron radiation power P� by its expression in (24.34) and
the critical photon energy "c D „!c by (24.49) we get

PNph
˝
"2

˛ D 55

32�
p
3

h
cC�„c

�
mc2

�4
�7
3

i
(11.44)

with C� D 4�
3

re

.mc2/
3 D 8:8460 � 10�5 m/GeV3and the equilibrium energy

spreadbecomes finally with (11.27) and (24.34)

�2"
E2

D �z

4E2
˝ PNph

˝
"2

˛˛
z D Cq

�2

Jz

˝

3

˛
z

h
2iz

(11.45)

where

Cq D 55

32
p
3

„c

mc2
D 3:84 � 10�13 m (11.46)

for electrons and positrons. The equilibrium energy spread in an electron storage
ring depends only on the beam energy and the bending radius.
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11.3.2 Bunch Length

The conjugate coordinate to the energy deviation is the phase and a spread of particle
energy appears also as a spread in phase or as a longitudinal particle distribution and
an equilibrium bunch length. The bunch length is

�` D cj�cj
˝

�"

E0
(11.47)

and replacing the synchrotron oscillation frequency by its expression (9.35) we get
finally for the equilibrium bunch length in a circular electron accelerator

�` D
p
2�c

!rev

s
�cE0

he OV cos s

�"

E0
: (11.48)

The equilibrium electron bunch length can be varied by varying the rf-voltage

and scales like �` / 1=
p OV which is a much stronger dependence than the scaling

obtained for non-radiating particles in Sect. 9.3.5. A very small bunch length can be
obtained by adjusting the momentum compaction to a small value including zero.
As the momentum compaction approaches zero, but second order terms must be
considered which has been discussed in detail in Sect. 9.4.4. An electron storage
ring where the momentum compaction is adjusted to be zero or close to zero is
called an isochronous ring [6] or a quasi isochronous ring [7]. Such rings do not yet
exist at this time but are intensely studied and problems are being solved in view of
great benefits for research in high energy physics, synchrotron radiation sources and
free electron lasers to produce short particle or light pulses.

11.4 Transverse Beam Emittance

The sudden change of particles energy due to the quantized emission of photons also
causes a change in the characteristics of transverse particle motion. Neither position
nor the direction of the particle trajectory is changed during the forward emission
of photons. From beam dynamics, however, we know that different reference
trajectories exist for particles with different energies. Two particles with energies
cp1 and cp2 follow two different reference trajectories separated at the position z
along the beam transport line by a distance

�x .z/ D �.z/
cp1 � cp2

cp0
; (11.49)

where �.z/ is the dispersion function and cp0 the reference energy. Although
particles in general do not exactly follow these reference trajectories, they do
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perform betatron oscillations about these trajectories. The sudden change of the
particle energy causes a sudden change in the reference path and thereby a sudden
change in the betatron oscillation amplitude.

11.4.1 Equilibrium Beam Emittance

Postponing again a rigorous discussion of the evolution of phase space due to
statistical perturbations to the next chapter, we follow here a more intuitive path
to determine the equilibrium transverse beam emittance. Similar to the discussion
leading to the equilibrium energy spread we will observe perturbations to the
transverse motion caused by photon emission. In the case of longitudinal quantum
excitation it was sufficient to consider the effect of photon emission on the particle
energy alone since the particle phase is not changed by this process.

As a particle emits a photon it will not change its actual position and direction.
However, the position of a particle with respect to the ideal reference orbit is the
combination of its betatron oscillation amplitude and a chromatic contribution due
to a finite energy deviation and dispersion. Variation of the particle position u D
uˇ C � .�E=E0/, and direction u0 D u0̌ C �0 .�E=E0/ due " is described by

ıu D 0 D ıuˇ C � �E or ıuˇ D �� �E ;

ıu0 D 0 D ıu0̌ C �0 �
E or ıu0̌ D ��0 �

E :

(11.50)

We note the sudden changes in the betatron amplitudes and slopes because the
sudden energy loss leads to a simultaneous change in the reference orbit. This
perturbation will modify the phase ellipse the particles move on. The variation of
the phase ellipse �u2 C 2˛uu0 C ˇu02 D a2 is expressed by

�ı.u2ˇ/C 2˛ı.uˇu0̌ /C ˇı.u0̌ 2/ D ı.a2/

and inserting the relations (11.50) we get terms of the form ı.u2ˇ/ D .uˇ0 C ıuˇ/2 �
u2ˇ0 etc. Emission of photons can occur at any betatron phase and we therefore
average over all phases. As a consequence, all terms depending linearly on the
betatron amplitude and its derivatives or variations thereof vanish. The average
variation of the phase ellipse or oscillation amplitude a due to the emission of
photons with energy " becomes then

hıa2i D "2

E20
H.z/ ; (11.51)
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where

H.z/ D ˇ�02 C 2˛� �0 C ��2 : (11.52)

We average again over all photon energies, multiply by the total number of
photons emitted per unit time and integrate over the whole ring to get the variation
of the oscillation amplitude per turn

�ha2i D 1

c E20

I
PNphh"2iH.z/ dz : (11.53)

The rate of change of the oscillation amplitude is then with z D ct

dha2i
dt

ˇ
ˇ
ˇ
ˇ
q

D 1

E20

˝ PNphh"2iH.z/˛
z
; (11.54)

where the index z indicates averaging around the ring. This quantum excitation of
the oscillation amplitude is compensated by damping for which we have similar
to (11.40)



da2

dt

�ˇ
ˇ
ˇ̌
d

D 2˛xha2i : (11.55)

Equilibrium is reached when quantum excitation and damping are of equal
strength which occurs for

�2u
ˇu

D �u

4E2
˝ PNphh"2iHu

˛
z
: (11.56)

Here we have used the definition of the standard width of a Gaussian particle
distribution

�2u D hu2.z/i D ˝
1
2
a2ˇu

˛
(11.57)

with the betatron function ˇu and u D x or y. With (11.27), (11.44) and (24.34) we
get finally

�u D �2u
ˇu

D Cq
�2

Ju

h
3Hui
h
2i ; (11.58)

which we define as the equilibrium beam emittance of a relativistic electron in a
circular accelerator.
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11.4.2 Emittance Increase in a Beam Transport Line

In (11.53) we decided to integrate the quantum excitation over a complete turn
of a circular accelerator. This should not be taken as a restriction but rather as
an example. If we integrate along an open beam transport line we would get the
increase of the beam emittance along this beam line. This becomes important for
very high energy linear colliders where beams are transported along the linear
accelerator and some beam transport system in the final focus section just ahead of
the collision point. Any dipole field along the beam path contributes to an increase
of the beam emittance, whether it be real dipole magnets, dipole field errors, path
displacements in a quadrupole, or small correction magnets for beam steering. Since
there is no damping, the emittance growth is therefore in both planes from (11.53)
and (11.57)

��u D 1

2cE20

Z
PNphh"2iHu.z/ dz : (11.59)

The function H is now evaluated with the dispersion functions Du.z/ instead of
the periodic �-function with contributions from any dipole field. Since such fields
can occur in both planes there is an emittance increase in both planes as well.
With (11.44) the increase in beam emittance is finally

��u D 55C�„c.mc2/2

64�
p
3

�5
Z

3Hu dz ; (11.60)

where the integration is taken along the beam line. The perturbation of the beam
emittance in a beam transport line increases with the fifth power of the particle
energy. At very high energies we expect therefore a significant effect of dipole errors
on the beam emittance even if the basic beam transport line is straight.

So far, we have not yet distinguished between the horizontal and vertical
plane since the evolution of the phase space does not depend on the particular
degree of freedom. The equilibrium beam emittance, however, depends on machine
parameters and circular accelerators are not constructed symmetrically. Specifically,
accelerators are mostly constructed in a plane and therefore there is no deflection in
the plane normal to the ring plane. Assuming bending only occurs in the horizontal
plane, we may use (11.58) directly as the result for the horizontal beam emittance
u D x only.

11.4.3 Vertical Beam Emittance

In the vertical plane, the bending radius �v ! 1 and the vertical beam emittance
reduces to zero by virtue of damping. Whenever we have ideal conditions like this it
is prudent to consider effects that we may have neglected leading to less than ideal
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results. In this case, we have neglected the fact that synchrotron radiation photons
are emitted not strictly in the forward direction but rather into a small angle ˙1=� .
Photons emitted at a slight angle exert a recoil on the particle normal to the direction
of the trajectory. A photon emitted at an angle 
 with respect to the direction of the
trajectory and an azimuth � causes a variation of the vertical slope by

ıy0 D �
 cos�
"

E0
;

while the position is not changed ıy D 0. This leads to a finite beam emittance
which can be derived analogous to the general derivation above

�2y

ˇy
D �y

4E2
˝ PNphh"2
2 cos2 �iˇy

˛
z
: (11.61)

We set

h"2
2 cos2 �i � h"2i ˝

2

˛ ˝
cos2 �

˛ � h"2i 1

2�2

and get finally for the fundamental lower limit of the vertical beam emittance

�2y

ˇy
D �y D Cq

ˇy

2Jy

h
3i
h
2i : (11.62)

Very roughly �y=�x D 1=�2 � 1 and it is therefore justified to neglect this
term in the calculation of the horizontal beam emittance. This fundamental lower
limit of the equilibrium beam emittance is of the order of 10�13 m, assuming the
betatron function and the bending radius to be of similar magnitude, and therefore
indeed very small compared to actual achieved beam emittances in real accelerators.
In reality, we observe a larger beam emittance in the vertical plane due to coupling
or due to vertical steering errors which create a small vertical dispersion and,
consequently, a small yet finite vertical beam emittance. As a practical rule the
vertical beam emittance is of the order of one percent or less of the horizontal beam
emittance due to field and alignment tolerances of the accelerator magnets. For very
small horizontal beam emittances, however, this percentage may increase because
the vertical beam emittance due to vertical dipole errors becomes more significant.

Sometimes it is necessary to include vertical bending magnets in an otherwise
horizontal ring. In this case the vertical dispersion function is finite and so is Hy.z/.
The vertical emittance is determined by evaluating (11.58) while using the vertical
dispersion function. Note, however, that all bending magnets must be included in
the calculation of equilibrium beam emittances because for quantum excitation it
is immaterial whether the energy loss was caused in a horizontally or vertically
bending magnet. The same is true for the damping term in the denominator.
Differences in the horizontal and vertical beam emittance come from the different
betatron and �-functions at the location of the radiation source.
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11.4.4 Beam Sizes

Beam parameters like width, height, length, divergence, and energy spread are
not all fixed independent quantities, but rather depend on emittances and lattice
and rf-parameters. These multiple dependencies allow the adjustment of beam
parameters, within limits, to be optimum for the intended application. In this section
we will discuss such dependencies.

A particle beam at any point of a beam transport line may be represented by a
few phase ellipses for different particle momenta as shown in Fig. 11.3. The phase
ellipses for different momenta are shifted proportional to the dispersion function at
that point and its derivative. Generally, the form and orientation of the ellipses are
slightly different too due to chromatic aberrations in the focusing properties of the
beam line. For the definition of beam parameters we need therefore the knowledge
of the lattice functions including chromatic aberrations and the beam emittance and
momentum spread.

The particle beam width or beam height is determined by the emittance, betatron
function, dispersion function and energy spread. The betatron and dispersion
functions vary along a beam transport line and depend on the distribution of the
beam focusing elements. The beam sizes are therefore also functions of the location
along the beam line. From the focusing lattice these functions can be derived and
the beam sizes be calculated.

The beam size of a particle beam is generally not well defined since the
boundaries of a beam tends to be fuzzy. We may be interested in the beam size
that defines all of a particle beam. In this case we look for that phase ellipse that

Fig. 11.3 Distribution of
beam ellipses for a beam with
finite emittance and
momentum spread
(schematic). The variation in
the shape of the phase ellipses
for different energies reflect
the effect of chromatic
aberrations x

Δp/p = 0

Δp/p < 0

Δp/p > 0

x`



374 11 Particle Beam Parameters

encloses all particles and obtain the beam size in the form of the beam envelope.
The beam half-width or half-height of this beam envelope is defined by

uˇ.z/ D p
�uˇu.z/ (11.63)

with u D .x; y/. If there is also a finite momentum spread within the beam particles
the overall beam size or beam envelope is increased by the dispersion

u�.z/ D �u.z/
�cp

cp0
(11.64)

and the total beam size is

utot.z/ D uˇ.z/C u�.z/ D
p
�uˇu.z/C �u.z/

�cp

cp0
: (11.65)

This definition of the beam size assumes a uniform particle distribution within the
beam and is used mostly to determine the acceptance of a beam transport system.
The acceptance of a beam transport system is defined as the maximum emittance
a beam may have and still pass through the vacuum chambers of a beam line.
In Fig. 11.3 this would be the area of that ellipse that encloses the whole beam
including off momentum particles. In practice, however, we would choose a larger
acceptance to allow for errors in the beam path.

Since the lattice functions vary along a beam line the required aperture to let a
beam with the maximum allowable emittance pass is not the same everywhere along
the system. To characterize the aperture variation consistent with the acceptance, a
beam stay clear area, BSC, is defined as the required material free aperture of the
beam line.

The beam parameters for a Gaussian particle distributions are defined as the
standard values of the Gaussian distribution �x; �x0 ; �y; �y0 ; �ı; �` ;where most des-
ignations have been defined and used in previous chapters and where �ı D ��=cp0
and �` the bunch length. Quoting beam sizes for any particle type in units of �
can be misleading specifically in connection with beam intensities. For example, a
beam with a horizontal and vertical size of one sigma has a cross section of 2�x2�y

and includes only 46.59 % of the beam. This is accepted for electron beams with
Gaussian distribution but for proton beams intensities are often given for

p
6�’s to

cover most of the beam. In Table 11.1 the fraction of the total beam intensity is
compiled for a few generally used units of beam size measurement and for beam
size, cross section, and volume. The beam size for Gaussian beams is thereby

�u;tot D
q
�uˇu.z/C �2.z/�2ı : (11.66)

Four parameters are required to determine the beam size in each plane although
in most cases the vertical dispersion vanishes.



11.5 Variation of the Damping Distribution 375

Table 11.1 Fraction of total beam intensity

One-dimension (%) Two-dimension (%) Three-dimension (%)

1� 68.26 46.59 31.81

2� 95.44 91.09 86.93p
6� 98.56 97.14 95.74

11.4.5 Beam Divergence

The angular distribution of particles within a beam depends on the rotation of the
phase ellipse and we define analogous to the beam size an angular beam envelope by

�u0;tot D
q
�u�u.z/C �02.z/ �2ı : (11.67)

Again, there is a contribution from the betatron motion, from a finite momentum
spread and from associated chromatic aberration. The horizontal and vertical beam
divergencies are also determined by four parameters in each plane.

11.5 Variation of the Damping Distribution

Robinson’s criterion provides an expression for the overall damping in
six-dimensional phase space without specifying the distribution of damping in
the three degrees of freedom. In accelerators we make an effort to decouple the
particle motion in the three degrees of freedom as much as possible and as a result
we try to optimize the beam parameters in each plane separately from the other
planes for our application. Part of this optimization is the adjustment of damping
and as a consequence of beam emittances to desired values. Robinson’s criterion
allows us to modify the damping in one plane at the expense of damping in another
plane. This shifting of damping is done by varying damping partition numbers.

From the definition of the # parameter is clear that damping partition numbers
can be modified depending on whether the accelerator lattice is a combined function
or a separated function lattice. Furthermore, we may adjust virtually any distribution
between partition numbers by choosing a combination of gradient and separated
function magnets.

11.5.1 Damping Partition and Rf-Frequency

Actually such “gradients” can be introduced even in a separated function lattice.
If the rf-frequency is varied the beam will follow a path that meets the synchronicity
condition. Increasing the rf-frequency, for example, leads to a shorter wavelength
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and therefore the total path length in the ring need to be shorter. As a consequence
of the principle of phase stability the beam energy is reduced and the beam follows
a lower energy equilibrium orbit with the same harmonic number as the reference
orbit for the reference energy. Decreasing the rf-frequency leads just to the opposite
effect. The off momentum orbits pass systematically off center through quadrupoles
which therefore function like combined function gradient magnets.

To quantify this effect we use only the second term in the expression (11.25)
for # . The first term, coming from sector magnets, will stay unaffected. Displace-
ment of the orbit in the quadrupoles will cause a bending with a bending radius

1

�q
D k ıx : (11.68)

An rf-frequency shift causes a momentum change of

�p

p0
D � 1

˛c

�frf
frf

; (11.69)

which in turn causes a shift in the equilibrium orbit of

ıx D �
�p

p0
D � �

˛c

�frf
frf

(11.70)

and the bending radius of the shifted orbit in quadrupoles is

1

�q
D kıx D k�

�p

p0
D �k

�

˛c

�frf
frf

: (11.71)

Inserted into the second term of (11.25), we get

�# D � 1

˛c

H
2k2�2 dz
H
1

�20
dz

�frf
frf

; (11.72)

where �0 is the bending radius of the ring bending magnets All quantities in (11.72)
are fixed properties of the lattice and changing the rf-frequency leads just to
the expected effect. Specifically, we note that all quadrupoles contribute additive
irrespective of their polarity. We may apply this to a simple isomagnetic FODO
lattice where all bending magnets and quadrupoles have the same absolute strength
respectively with

H
dz=�20 D 2�=�0. Integration of the nominator in (11.72) leads to

I
2 k2�2dz D 2 k2.�2max C �2min/lq2 nc ;

where lq is half the quadrupole length in a FODO lattice, �max and �min the values
of the �-function in the focusing QF and defocusing QD quadrupoles, respectively,
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and nc the number of FODO cells in the ring. With all this the variation of the #
parameter

�# D �nc
2 �0

�˛clq

�2max C �2min

f 2
�frf
frf

: (11.73)

Here we have used the focal length f �1 D k lq. Replacing in (11.73) the �
functions by the expressions (10.74) derived for a FODO lattice, we recall the
relation f D 
 L and get finally [8]

�# D ��0

�

1

˛c

L

lq
.4
2 C 1/

�frf
frf

; (11.74)

where � is the average bending radius in the FODO cell. The variation of the #
parameter in a FODO lattice is the more sensitive to rf-frequency variations the
longer the cell compared to the quadrupole length and the weaker the focusing. For
other lattices the expressions may not be as simple as for the FODO lattice but can
always be computed numerically by integrations and evaluation of (11.72).

By varying the rf-frequency and thereby the horizontal and longitudinal damping
partition number we have found a way to either increase or decrease the horizontal
beam emittance. The adjustments, however, are limited. To decrease the horizontal
beam emittance we would increase the horizontal partition number and at the same
time the longitudinal partition number would be reduced. The limit is reached when
the longitudinal motion becomes unstable or in practical cases when the partition
number drops below about half a unit. Other more practical limits may occur before
stability limits are reached if, for example, the momentum change becomes too large
to fit the beam into the vacuum chamber aperture.

11.6 Variation of the Equilibrium Beam Emittance

In circular electron accelerators the beam emittance is determined by the emission of
synchrotron radiation and the resulting emittance is not always equal to the desired
value. In such situations methods to alter the equilibrium emittance are desired and
we will discuss in the next sections such methods which may be used to either
increase or decrease the beam emittance.

11.6.1 Beam Emittance and Wiggler Magnets

The beam emittance in an electron storage ring can be greatly modified by the use of
wiggler magnets both to increase [9] or to decrease the beam emittance. A decrease
in beam emittance has been noted by Tazzari [10] while studying the effect of a
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number of wiggler magnets in a low emittance storage ring design. Manipulation of
the beam emittance in electron storage rings has become of great interest to obtain
extremely small beam emittances and we will therefore derive systematic scaling
laws for the effect of wiggler magnets on the beam emittance as well as on the beam
energy spread [10, 11].

The particle beam emittance in a storage ring is the result of two competing
effects, the quantum excitation caused by the quantized emission of photons and
the damping effect. Both effects lead to an equilibrium beam emittance observed in
electron storage rings.

Independent of the value of the equilibrium beam emittance in a particular
storage ring, it can be further reduced by increasing the damping without also
increasing the quantum excitation. More damping can be established by causing
additional synchrotron radiation through the installation of deflecting dipole mag-
nets like strong wigglers magnets. In order to avoid quantum excitation of the
beam emittance, however, the placement of wiggler magnets has to be chosen
carefully. As discussed earlier, an increase of the beam emittance through quantum
excitation is caused only when synchrotron radiation is emitted at a place in the
storage ring where the dispersion function is finite. Emittance reducing wiggler
magnets therefore must be placed in areas around the storage ring where the
dispersion vanishes to minimize quantum excitation. To calculate the modified
equilibrium beam emittance, we start from (11.54) and get with (11.44) and (11.57)
an expression for the quantum excitation of the emittance which can be expanded to
include wiggler magnets

d�

dt

ˇ
ˇ
ˇ̌
q,0

D 2

3
reCq�

5
˝

3H˛

0
; (11.75)

The quantity H is evaluated for the plane for which the emittance is to be
determined, E is the particle energy, and � the bending radius of the regular ring
magnets. The average hi is to be taken for the whole ring and the index 0 indicates
that the average

˝

3H˛

0
be taken only for the ring proper without wiggler magnets.

Since the contributions of different magnets, specifically, of regular storage ring
magnets and wiggler magnets are independent of each other, we may use the results
of the basic ring lattice and add to the regular quantum excitation and damping the
appropriate additions due to the wiggler magnets,
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: (11.76)

Both, ring magnets and wiggler magnets produce synchrotron radiation and
contribute to damping of the transverse particle oscillations. Again, we may consider
both contributions separately and adding the averages we get the combined rate of
emittance damping from (11.55) and (11.27)

d�
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ˇ
ˇ
ˇ
ˇ
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D �2
3
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˛
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; (11.77)
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where �w is the beam emittance with wiggler magnets and Ju the damping partition
number with u D x; y. The equilibrium beam emittance is reached when the
quantum excitation rate and the damping rates are of equal magnitude. We add
therefore (11.76) and (11.77) and solve for the emittance

�w D Cq
�2

Jx

˝

3H˛

0
C ˝

3H˛

w

h
2i0 C h
2iw
: (11.78)

With �0 being the unperturbed beam emittance the relative emittance change due
to the presence of wiggler magnets is

�w
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D 1C ˝


3H˛
w =

˝

3H˛

0

1C h
2iw = h
2i0
: (11.79)

Making use of the definition of average parameter values we get with the circum-
ference of the storage ring C D 2�R

˝

3H˛

0
D 1

C

H ˇ̌

30

ˇ̌Hdz ;
˝

3H˛

w D 1
C

H ˇ̌

3w

ˇ̌Hdz ;˝

2

˛
0

D 1
C

H

20dz ; and

˝

2

˛
w D 1

C

H

2wdz :

(11.80)

Evaluation of these integrals for the particular storage ring and wiggler magnet
employed gives from (11.79) the relative change in the equilibrium beam emittance.
We note that the quantum excitation term scales like the cube while the damping
scales only quadratically with the wiggler curvature. This feature leads to the effect
that the beam emittance is always reduced for small wiggler fields and increases
only when the third power terms become significant.

Concurrent with a change in the beam emittance a change in the momentum
spread due to the wiggler radiation can be derived similarly,

�2�w

�2�0
D 1C h
3iw=h
3i0
1C h
2iw=h
2i0 : (11.81)

Closer inspection of (11.79) and (11.81) reveals basic rules and conditions for
the manipulations of beam emittance and energy spread. If the ring dispersion
function is finite in the wiggler section strong quantum excitation may occur
depending on the magnitude of the wiggler magnet bending radius �w. This situation
is desired if the beam emittance must be increased [9]. If wiggler magnets are
placed into a storage ring lattice were the ring dispersion function vanishes, only
the small dispersion function due to the wiggler magnets must be considered for
the calculation of hHwi and therefore only little quantum excitation occurs. In this
case the beam emittance can be reduced since the wiggler radiation contributes more
strongly to damping and we call such magnets damping wigglers [10, 11]. Whenever
wiggler magnets are used which are stronger than the ordinary ring magnets �w < �0
the momentum spread in the beam is increased. This is true for virtually all cases of
interest.



380 11 Particle Beam Parameters

Conceptual methods to reduce the beam emittance in a storage ring have been
derived which are based on increased synchrotron radiation damping while avoiding
quantum excitation effects. Optimum lattice parameters necessary to achieve this
will be derived in the next section.

11.6.2 Damping Wigglers

The general effects of wiggler magnet radiation on the beam emittance has been
described and we found that the beam emittance can be reduced if the wiggler is
placed where � D 0 to eliminate quantum excitation. This assumption, however,
is not quite correct. Even though we have chosen a place, where the storage ring
dispersion function vanishes, the quantum excitation factor Hw is not exactly zero
once the wiggler magnets are turned on because they create their own dispersion
function. To calculate this dispersion function, we assume a sinusoidal wiggler
field [11]

B.z/ D Bw cos kpz ; (11.82)

where kp D 2�=�p and �p the wiggler period length (Fig. 11.4). The differential
equation for the dispersion function is then

�00 D 
 D 
w cos kpz ; (11.83)

which can be solved by

�.z/ D 
w
k2p

�
1 � cos kpz

�
;

�0.z/ D 
w
kp

sin kpz ;
(11.84)

where we have assumed that the wiggler magnet is placed in a dispersion free
location �0 D �0

0 D 0. With this solution, the first two Eqs. (11.80) can be
evaluated. To simplify the formalism we ignore the z-dependence of the lattice
functions within the wiggler magnet setting ˛x D 0 and ˇx D const. Evaluating the
integrals (11.80), we note that the absolute value of the bending radius must be used
along the integration path because the synchrotron radiation does not depend on the

sign of the deflection. With this in mind, we evaluate the integrals
R �p=2

0

ˇ
ˇ
3

ˇ
ˇ �2 dz

Fig. 11.4 Dispersion
function in one period of a
wiggler magnet

η-function

ρ > 0 ρ < 0 ρ > 0

s
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and
R �p=2

0

ˇ
ˇ
3

ˇ
ˇ �02 dz. For each half period of the wiggler magnet the contribution to

the integral is

�

Z �p=2
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ˇ
ˇ
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ˇ
ˇH dz D 12
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C 4

15


5wˇx

k3p
� 4

15


5wˇx

k3p
; (11.85)

where the approximation�p � ˇx was used. For the whole wiggler magnet with Nw

periods the total quantum excitation integral is with the deflection angle per wiggler
half pole�w D 
w=kp

Z

w

ˇ
ˇ
3w

ˇ
ˇH dz � Nw

8

15

ˇx

�2w
�3

w : (11.86)

Similarly, the damping integral for the total wiggler magnet is

Z

w

2 dz D � Nw 
w�w : (11.87)

Inserting expressions (11.80), (11.86), (11.87) into (11.79), we get for the emittance
ratio

�xw

�x0
D
1C 4

15�
Nw

ˇx
hH0i

�20
�2w
�3

w

1C 1
2
Nw

�0
�w
�w

; (11.88)

where hH0i is the average value of H in the ring bending magnets excluding the
wiggler magnets. We note from (11.88) that the beam emittance indeed can be
reduced by wiggler magnets if �w is kept small. For easier numerical calculation
we replace hH0i by the unperturbed beam emittance which is in the limit �w ! 1

hH0i D Jx�0�x0

Cq�2
(11.89)

and get instead of (11.88)

�xw

�x0
D
1C 4Cq

15�Jx
Nw

ˇx
�x0 �w

�2
�0
�w
�3

w

1C 1
2

Nw
�0
�w
�w

: (11.90)

The beam emittance is reduced by wiggler magnets whenever the condition

8

15�

Cq

Jx

ˇx

�0 �w
�2�2

w � 1 (11.91)
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is fulfilled. For large numbers of wiggler poles Nw ! 1 the beam emittance reaches
asymptotically a lower limit given by

�xw ! 8

15�

Cq

Jx

ˇx

�w
�2�2

w : (11.92)

In this limit the ultimate beam emittance is independent of the unperturbed beam
emittance. This derivation did not include any perturbation of the original lattice
functions due to focusing effects by the wiggler poles. Such perturbations are either
small or must be compensated such that our assumptions still are valid.

For many wiggler poles the increase in momentum spread also reaches an
asymptotic limit which is given from (11.81)

�2�w
�2�o

! �0

�w
D Bw

B0
; (11.93)

where B0 is the magnetic field strength in the ring magnets. Beam stability and
acceptance problems may occur if the beam momentum spread is allowed to
increase too much and therefore inclusion of damping wigglers must be planned
with some caution.

11.7 Robinson Wiggler*

The horizontal betatron motion in a combined function synchrotron FODO lattice
is not damped because # > 1. Beam stability in a synchrotron therefore exists
only during acceleration when the anti-damping is over compensated by adiabatic
damping, and the maximum energy achievable in a combined function synchrotron
is determined when the quantum excitation becomes too large to be compensated
by adiabatic damping. In an attempt, at the Cambridge Electron Accelerator CEA,
to convert the synchrotron into a storage ring the problem of horizontal beam
instability was solved by the proposal [12] to insert a damping wiggler consisting
of a series of poles with alternating fields and gradients designed such that the
horizontal partition number becomes positive and �2 < # < 1.

Such magnets can be used generally to vary the damping partition numbers
without having to vary the rf-frequency and thereby moving the beam away from
the center of the beam line.

11.7.1 Damping Partition and Synchrotron Oscillation

The damping partition number and damping depend on the relative momentum
spread of the whole beam. During synchrotron oscillations, significant momentum
deviations can occur, specifically, in the tails of a Gaussian distribution. Such
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momentum deviations, although only temporary, can lead to reduced damping or
outright anti-damping [8]. To quantify this effect, we write (11.72) in the form

�# D
H
2 k2�2 dz
H


2

adz

�p

p0
D C0

�p

p0
: (11.94)

The momentum deviation is not a constant but rather oscillates with the
synchrotron oscillation frequency,

�p

p0
D �p

p0

ˇ̌
ˇ
ˇ
max

sin˝t D ımax sin˝t ; (11.95)

where ˝ is the synchrotron oscillation frequency. The damping partition number
oscillates as well (11.94) and the damping decrement is therefore

1

�
D 1

�x0
.1 � C0ımax sin˝t/ : (11.96)

If the perturbation is too large we have anti-damping during part of the
synchrotron oscillation period. As a consequence the beam is “breathing” in its
horizontal and longitudinal dimensions while undergoing synchrotron oscillations.
To quantify this, we calculate similar to (11.56) the total rate of change of the
betatron oscillation amplitude a2, as defined by the phase space ellipse �u2 C
2˛uu0 C ˇu02 D a2, composed of quantum excitation and modified damping

dha2i
dt

D h PNphh�2� iHi
E20

� 2ha2i
�

: (11.97)

The amplitude a2 has the dimension of an emittance but we are interested
here in the maximum amplitude which can be expressed in terms of a betatron
amplitude by a2 D u2max=ˇu. Replacing the varying damping time by ��1 D
��1
0 .1� ımaxC0 sin˝t/ (11.97) becomes

dhu2maxi
hu2maxi

D 2

�0
ımaxC0 sin˝t dt ;

which can be readily integrated to give

hu2maxi D hu2max,0i exp

�
2 ımaxC0
˝ �0

.1� cos˝t/

	
: (11.98)

A particle with a betatron amplitude umax,0 will, during the course of a syn-
chrotron oscillation period, reach amplitudes as large as umax: The effect is the
largest for particles with large energy oscillations. On the other hand, the effect
on the core of the beam is generally very small since ımax is small.
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11.7.2 Can We Eliminate the Beam Energy Spread?

To conclude the discussions on beam manipulation we try to conceive a way to
eliminate the energy spread in a particle beam. From beam dynamics we know
that the beam particles can be sorted according to their energy by introducing a
dispersion function. The distance of a particle from the reference axis is proportional
to its energy and given by

xı D Dı ; (11.99)

where D is the value of the dispersion at the location under consideration and
ı D �E=E0 the energy error. For simplicity we make no difference between energy
and momentum during this discussion. We consider now a cavity excited at a higher
mode such that the accelerating field is zero along the axis, but varies linearly with
the distance from the axis. If now the accelerating field, or after integration through
the cavity, the accelerating voltage off axis is

eVrf.xı/ D �xı
D

E0 ; (11.100)

we have just compensated the energy spread in the beam. The particle beam
has become monochromatic, at least to the accuracy assumed here. In reality the
dispersion of the beam is not perfect due to the finite beam emittance.

We will discuss cavity modes and find that the desired mode exists indeed and
the lowest order of such modes is the TM110-mode. So far we seem to have made
no mistake and yet, Liouville’s theorem seems to be violated because this scheme
does not change the bunch length and the longitudinal emittance has been indeed
reduced by application of macroscopic fields.

The problem is that we are by now used to consider transverse and longitudinal
phase space separate. While this separation is desirable to manage the mathematics
of beam dynamics, we must not forget, that ultimately beam dynamics occurs in
six-dimensional phase space. Since Liouville’s theorem must be true, its apparent
violation warns us to observe changes in other phase space dimensions. In the case
of beam monochromatization we notice that the transverse beam emittance has been
increased. The transverse variation of the longitudinal electric field causes by virtue
of Maxwell’s equations the appearance of transverse magnetic fields which deflect
the particles transversely thus increasing the transverse phase space at the expense
of the longitudinal phase space.

This is a general feature of electromagnetic fields which is known as the
Panofsky-Wenzel theorem [13] stating that transverse acceleration occurs whenever
there is a transverse variation of the longitudinal accelerating field. We will discuss
this in more detail in Sect. 22.1.4. So, indeed we may monochromatize a particle
beam with the use of a TM110-mode, but only at the expense of an increase in the
transverse beam emittance.
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11.8 Beam Life Time

Particles travelling along a beam transport line or orbiting in a circular accelerator
can be lost due to a variety of causes. We ignore the trivial cases of beam loss due
to technical malfunctioning of beam line components or losses caused by either
complete physical obstruction of the beam line or a mismatch of vacuum chamber
aperture and beam dimensions. For a well designed beam transport line or circular
accelerator we distinguish two main classes for particle loss which are losses due to
scattering and losses due to instabilities. While particle losses due to scattering with
other particles is a single particle effect leading to a gradual loss of beam intensity,
instabilities can lead to catastrophic loss of part or all of the beam. In this chapter we
will concentrate on single particle losses due to interactions with residual gas atoms.

The effect of particle scattering on the beam parameters is different in a beam
transport line compared to a circular accelerator especially compared to storage
rings. Since a beam passes through transport lines only once, we are not concerned
about beam life time but rather with the effect of particle scattering on the transverse
beam size. For storage rings, in contrast, we consider both the effect of scattering
on the beam emittance as well as the overall effect on the beam lifetime. Since
long lifetimes of the order of many hours are desired in storage rings even small
effects can accumulate to reduce beam performance significantly. In proton rings
continuous scattering with residual gas atoms or with other protons of the same
beam can change the beam parameters considerably for lack of damping. Even for
electron beams, where we expect the effects of scattering to vanish within a few
damping times, we may observe an increase in beam emittance. This is specifically
true due to intra beam scattering for dense low emittance beams at low energies
when damping is weak.

Collisions of particles with components of residual gas atoms, losses due to
a finite acceptance limited by the physical or dynamic aperture, collisions with
other particles of the same beam, or with synchrotron radiation photons can lead
to absorption of the scattered particles or cause large deflections leading to instable
trajectories and eventual particle loss. The continuous loss of single particles leads
to a finite beam lifetime and may in severe cases require significant hardware
modifications or a different mode of operation to restore a reasonable beam lifetime.

Each of these loss mechanisms has a particular parameter characterizing and
determining the severity of the losses. Scattering effects with residual gas atoms
are clearly dominated by the vacuum pressure while scattering effects with other
particles in the same beam depend on the particle density. Some absorption of
particles at the vacuum chamber walls will always occur due to the Gaussian
distribution of particles in space. Even for non-radiating proton beams which are
initially confined to a small cross section, we observe the development of a halo of
particles outside the beam proper due to intra beam scattering. The expansion of this
halo is obviously limited by the vacuum chamber aperture. In circular accelerators
this aperture limitation may not only be effected by solid vacuum chambers but also
by “soft walls” due to stability limits imposed by the dynamic aperture.
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Longitudinal phase or energy oscillations are limited either by the available
rf-parameters determining the momentum acceptance or by the transverse accep-
tance at locations, where the dispersion function is nonzero whichever is more
restrictive. A momentum deviation or spread translates at such locations into a
widening of the beam and particle loss occurs if the momentum error is too large
to fit within the stable aperture. Transverse oscillation amplitudes are limited by the
transverse acceptance as limited by the vacuum chamber wall or by aberrations due
to nonlinear fields.

11.8.1 Beam Lifetime and Vacuum

Particle beams are generally confined within evacuated chambers to avoid excessive
scattering on residual gas atoms. Considering multiple Coulomb scattering alone
the rms radial scattering angle of particles with momentum p and velocity ˇ passing
through a scattering material of thickness L can be described by [14, 15]

#rms D Z
20MeV

ˇcp

s
L

Lr
; (11.101)

where Z is the charge multiplicity of the particle and Lr the radiation length of the
scattering material. We may integrate (11.101) and get the beam radius r of a pencil
beam after passing through a scatterer of thickness L

r � Z
40MeVL

3ˇcp

s
L

Lr
: (11.102)

The beam emittance generated by scattering effects is then in both the horizontal
and vertical plane just the product of the projections of the distance r of the particles
from the reference path and the radial scattering angles # onto the respective plane.
From (11.101), (11.102) the beam emittance growth due to Coulomb scattering in a
scatterer of length L is then

�x;y.rad m/ D Z2
2

3

�
14.MeV/

ˇcp

�2 L2.m/

Lr.m/
: (11.103)

For atmospheric air the radiation length is Lr D 300:5 m and a pencil electron
beam with a momentum of say cp D 1;000MeV passing through 20 m of
atmospheric air would grow through scattering to a beam diameter of 6.9 cm or
to a beam emittance of about 177 mrad mm in each plane. This is much too big
an increase in beam size to be practical in a 20 m beam transport line let alone in
a circular accelerator or storage ring, where particles are expected to circulate at
nearly the speed of light for many turns like in a synchrotron or for many hours in a
storage ring.
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To avoid beam blow up due to scattering we obviously need to provide an
evacuated environment to the beam with a residual gas pressure which must be
the lower the longer the beam is supposed to survive scattering effects. This does
not mean that beam transport in atmospheric pressure must be avoided at all cost.
Sometimes it is very useful to let a beam pass though air to provide free access
for special beam monitoring devices specifically at the end of a beam transport line
before the beam is injected into a circular accelerator. Obviously, this can be done
only if the scattering effects through very thin metallic windows and the short length
of atmospheric air will not spoil the beam emittance too much.

Elastic Scattering

As particles travel along an evacuated pipe they occasionally collide with atoms
of the residual gas. These collisions can be either on nuclei or electrons of the
residual gas atoms. The physical nature of the collision depends on the mass of
the colliding partners. Particles heavier than electrons suffer mostly an energy loss
in collisions with the atomic shell electrons while they lose little or no energy during
collisions with massive nuclei but are merely deflected from their path by elastic
scattering. The lighter electrons in contrast suffer both deflection as well as energy
losses during collisions.

In this section we concentrate on the elastic scattering process, where the energy
of the fast particle is not changed. For the purpose of calculating particle beam
lifetimes due to elastic or Coulomb scattering we ignore screening effects by shell
electrons and mathematical divergence problems at very small scattering angles.
The scattering process therefore is described by the classical Rutherford scattering
with the differential cross section per atom

d�

d˝
D 1

4��0

�
zZe2

2ˇcp

�2
1

sin4 .
=2/
; (11.104)

where z is the charge multiplicity of the incident particle eZ the charge of the heavy
scattering nucleus, 
 the scattering angle with respect to the incident path, ˝ the
solid angle with d˝ D sin 
 d
 d', and ' the polar angle.

To determine the particle beam lifetime or the particle loss rate we will calculate
the rate of events for scattering angles larger than a maximum value of O
 which is
limited by the acceptance of the beam transport line. Any particle being deflected
by an angle larger than this maximum scattering angle will be lost. We integrate the
scattering cross section over all angles greater than O
 up to the maximum scattering
angle � . With n scattering centers or atoms per unit volume and N beam particles
the loss rate is

� dN

dt
D 2�cˇnN

Z �

O

d�

d˝
sin 
 d
 : (11.105)
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Under normal conditions at 0 ıC and a gas pressure of 760mm mercury the
number of scattering centers in a homogeneous gas is equal to twice Avogadro’s
number A and becomes for an arbitrary gas pressure P

n D 2AP.Torr/

760
D 2 � 2:68675� 1019P.Torr/

760
: (11.106)

The factor 2 comes from the fact that homogeneous gases are composed of
two atomic molecules, where each atom acts as a separate scattering center. This
assumption would not be true for single atomic noble gases which we do not
consider here, but will be included in a later generalization. The integral on the
r.h.s. of (11.105) becomes with (11.104)

Z �

O

sin 
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sin4.
=2/
D 2

tan2. O
=2/ : (11.107)

Dividing (11.105) by N we find an exponential decay of beam intensity with time

N D N0e�t=� ; (11.108)

where the decay time constant or beam lifetime is

��1 D cˇ2AP.Torr/
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zZe2
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�2
4�

tan2. O
=2/ : (11.109)

The maximum acceptable scattering angle O
 is limited by the acceptance �A of
the beam transport line. A particle being scattered by an angle 
 at a location where
the betatron function has the value ˇ
 reaches a maximum betatron oscillation
amplitude of a D p

ˇa ˇ
 
 elsewhere along the beam transport line where the
betatron function is ˇa. The minimum value of A2=ˇA along the ring lattice, where
A is the vacuum chamber aperture or the limit of the dynamic aperture whichever is
smaller, is equal to the ring acceptance

�A D A2

ˇA

ˇ
ˇ
ˇ̌
min
: (11.110)

For simplicity we ignore here the variation of the betatron function and take
an average value hˇi at the location of the scattering event and get finally for the
maximum allowable scattering angle

O
2 D �A

hˇi : (11.111)

This angle is generally rather small and we may set tan. O
=2/ � . O
=2/. Utilizing
these definitions and approximations we obtain for the lifetime of a beam made up
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of singly charged particles z D 1 due to elastic Coulomb scattering expressed in
more practical units

�cs .hours/ D 10:25
.cp/2

�
GeV2

�
�A .mm mrad/

hˇ .m/i P .nTorr/
; (11.112)

where we have assumed that the residual gas composition is equivalent to nitrogen
gas N2 with Z2 � 49. The Coulomb scattering lifetime is proportional to the ring
acceptance or proportional to the square of the aperture A where A2=ˇ is a minimum.

The particle loss due to Coulomb scattering is most severe at low energies and
increases with the acceptance of the beam transport line. Furthermore, the beam
lifetime depends on the focusing in the transport line through the average value of
the betatron function. If instead of averaging the betatron function we integrate the
contributions to the beam lifetime along the transport line we find that the effect of
the scattering event depends on the betatron function at the location of the collision
and the probability that such a collision occurs at this location depends on the gas
pressure there. Therefore, it is prudent to not only minimize the magnitude of the
betatron functions alone but rather minimize the product ˇP along the transport
line. Specifically, where large values of the betatron function cannot be avoided,
extra pumping capacity should be provided to reach locally a low vacuum pressure
for long Coulomb scattering lifetime.

We have made several simplifications and approximations by assuming a homo-
geneous gas and assuming that the maximum scattering angle be the same in all
directions. In practical situations, however, the acceptance need not be the same in
the vertical and horizontal plane. First we will derive the beam lifetime for non-
isotropic aperture limits. We assume that the apertures in the horizontal and vertical
plane allow maximum scattering angles of O
x and O
y. Particles are then lost if the
scattering angle 
 into a polar angle ' exceeds the limits


 >
O
x

cos'
and 
 >

O
y

sin '
: (11.113)

The horizontal aperture will be relevant for all particles scattered into a polar
angle between zero and arctan. O
y= O
x/ while particles scattered into a polar angle
of arctan. O
y= O
x/ and �=2 will be absorbed by the vertical aperture whenever the
scattering angle exceeds this limit. We calculate the losses in only one quadrant of
the polar variable and multiply the result by 4 since the scattering and absorption
process is symmetric about the polar axis. The integral (11.107) becomes in this case
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(11.114)
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The solutions of the integrals are similar to that in (11.107) and we get

Z �

O

sin 
 d
 d'

sin4 .
=2/
D 8

O
2y
�
� C �

R2 C 1
�

sin .2 arctan R/ (11.115)

C2 .R � 1/ arctan R	 ;

where R D O
y= O
x.
Using (11.115) instead of (11.107) in (11.109) gives a more accurate expression

for the beam lifetime due to Coulomb scattering. We note that for R D 1 we do
not get exactly the lifetime (11.109) but find a lifetime that is larger by a factor
of 1 C �=2. This is because we used a rectangular aperture in (11.115) compared
to a circular aperture in (11.107). The beam lifetime (11.112) becomes now for a
rectangular acceptance

�cs.hours/ D 10:25
2�

F.R/

.cp/2.GeV2/ �A.mm mrad/

hˇ.m/i P.nTorr/
: (11.116)

The function F.R/

F.R/ D Œ� C .R2 C 1/ sin.2 arctan R/C 2.R2 � 1/ arctan R (11.117)

is shown in Fig. 11.5. For some special cases the factor 2 �=F.R/ assumes the values
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Tacitly we have assumed that the vertical acceptance is smaller than the
horizontal acceptance which in most cases is true. In cases, where O
y > O
x, we
may use the same equations with x and y exchanged.

Particles performing large amplitude betatron oscillations form a Coulomb
scattering halo around the beam proper. In case of an electron storage ring the
particle intensity in this halo reaches an equilibrium between the constant supply
of scattered electrons and synchrotron radiation damping.

The deviation of the particle density distribution from a Gaussian distribution
due to scattering can be observed and measured. In Fig. 11.6 beam lifetime
measurements are shown for an electron beam in a storage ring as a function of
a variable ring acceptance as established by a movable scraper. The abscissa is
the actual position of the scraper during the beam lifetime measurement, while
the variable for the ordinate is the aperture for which a pure Gaussian particle
distribution would give the same beam lifetime.
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Fig. 11.6 Measurement of beam lifetime in an electron storage ring with a movable scraper. The
curve on the left shows the Coulomp scattering halo for amplitudes larger than 6� indicating a
strong deviation from Gaussian particle distribution. the curve on the right shows the beam life
time as a function of scraper position
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If the particle distribution had been purely Gaussian the measured points would
lie along a straight line. In reality, however, we observe an overpopulation of
particles in the tails of the distribution for amplitudes larger than about 6� forcing
the scraper to be located farther away from the beam center to get a beam lifetime
equal to that of a pure Gaussian distribution. This overpopulation or halo at large
amplitudes is due to elastic Coulomb scattering on the residual gas atoms.

Since the acceptance of the storage ring is proportional to the square of the
aperture at the scraper, we expect the beam lifetime due to Coulomb scattering to
vary proportional to the square of the scraper position. This is shown in Fig. 11.7
for good vacuum and poor vacuum conditions. In the case of poor vacuum we find
a saturation of the beam lifetime at large scraper openings which indicates that the
scraper is no longer the limiting aperture in the ring. This measurement therefore
allows an accurate determination of the physical ring acceptance or the dynamic
aperture whichever is smaller.

So far we have assumed the residual gas to consist of homogeneous two atom
molecules. This is not an accurate description of the real composition of the residual
gas although on average the residual gas composition is equivalent to a nitrogen
gas. Where the effects of a more complex gas composition becomes important,
we apply (11.109) to each different molecule and atom of the residual gas and we
replace the relevant factor P Z2 by a summation over all gas components. If Pi is
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Fig. 11.7 Beam lifetime in an electron storage ring as a function of the acceptance. The transition
of the curve on the right from a linear dependence of beam lifetime on the acceptance to a constant
life time occurs when the acceptance due to the scraper position is equal to the ring acceptance
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the partial pressure of the molecules i and Zj the atomic number of the atom j in the
molecule i we replace in (11.109)

PZ2 !
X

i;j

PiZ
2
j (11.118)

and sum over all atoms i in the molecule j.

Inelastic Scattering

Charged particles passing through matter become deflected by strong electrical
fields from the atomic nuclei. This deflection constitutes an acceleration and
the charged particles lose energy through emission of radiation which is called
bremsstrahlung. If this energy loss is too large such that the particle energy error
becomes larger than the storage ring energy acceptance the particle gets lost. We
are therefore interested to calculate the probability for such large energy losses to
estimate the beam lifetime.

The probability to suffer a relative energy loss ı DdE=E0 due to such an inelastic
scattering process has been derived by Bethe and Heitler [16, 17]. For extreme
relativistic particles and full screening this probability per unit thickness of matter
is [17]

dP D 2˚n
dı

ı
.1 � ı/

��
2 � 2ı C ı2

1 � ı � 2

3

�
2 ln

183

Z1=3
C 2

9

	
; (11.119)

where n is the number of atoms per unit volume and the factor � is with the fine
structure constant ˛ D 1=137

˚ D r2e Z2˛ : (11.120)

We integrate this probability over all energy losses larger than the energy acceptance
of the storage ring ı � ıacc and get after some manipulation and setting ıacc � 1

P D 2˚ n

1Z
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(11.121)
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The radiation length Lr is defined as the distance over which the particle energy
has dropped to 1=e due to inelastic scattering. For highly relativistic particles this
length is given by [17]

1

Lr
D ˚ n

�
4 ln

183

Z1=3
C 2

9

�
: (11.122)

Combining (11.121) and (11.122), we find the simple solution that the probability
for a particle to suffer a relative energy loss of more than ıacc per radiation length is

Prad D � 4

3
ln ıacc : (11.123)

To calculate the beam lifetime or beam decay rate due to bremsstrahlung we note
that the probability for a particle loss per unit time is equal to the beam decay rate or
equal to the inverse of the beam lifetime. The bremsstrahlung lifetime is therefore

��1
bs D � 1

N0

dN

dt
D P

c

Lr
D �4

3

c

Lr
ln ıacc : (11.124)

The radiation length for gases are usually expressed for a standard temperature
of 20 ıC and a pressure of 760 Torr. Under vacuum conditions the radiation length
of the residual gas is therefore increased by the factor 760=PTorr. We recognize
again the complex composition of the residual gas and define an effective radiation
length by

1

Lr;eff
D

X

i

1

Lr;i
; (11.125)

where Lr;i is the radiation length for gas molecules of type i. The beam lifetime due
to bremsstrahlung for a composite residual gas is from (11.124), (11.125)

��1
bs D �4

3
c

X

i

1

760

QPi

Lr,i
ln ıacc ; (11.126)

where QPi is the residual partial gas pressure for gas molecules of type i. Although
the residual gas of ultra high vacuum systems rarely includes a significant amount
of nitrogen gas, the average value for hZ2i of the residual gas components is
approximately 50 or equivalent to nitrogen gas. For all practical purposes we may
therefore assume the residual gas to be nitrogen with a radiation length under normal
conditions of Lr;N2 D 290m and scaling to the actual vacuum pressure Pvac we get
for the beam lifetime

��1
bs .hours�1/ D 0:00653Pvac.nTorr/ ln

1

ıacc
: (11.127)
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Basically the bremsstrahlung lifetime depends only on the vacuum pressure and
the energy acceptance and the product of beam lifetime and vacuum pressure is a
function of the energy acceptance ıacc D ��=� ,

�bs.hour/P.nTorr/ D 153:14

ln.�=��/
: (11.128)

In tabular form we get:

ıacc D ��=� 0:005 0:010 0:015 0:020 0:025

�.hr/P.nTorr/ 28:90 33:25 36:46 39:15 41:51

There are many more forms of interaction possible between energetic particles
and residual gas atoms. Chemical, atomic, and nuclear reactions leading to the
formation of new molecules like ozone, ionization of atoms or radioactive products
contribute further to energy loss of the beam particles and eventual loss from the
beam. These effects, however, are very small compared to Coulomb scattering or
bremsstrahlung losses and may therefore be neglected in the estimation of beam
lifetime.

11.8.2 Ultra High Vacuum System

Accelerated particles interact strongly with residual gas atoms and molecules by
elastic and inelastic collisions. To minimize particle loss due to such collisions
we provide an evacuated beam pipe along the desired beam path. For open beam
transport systems high vacuum of 10�5–10�7 Torr is sufficient. This is even
sufficient for pulsed circular accelerators like synchrotrons, where the particles
remain only for a short time. In storage rings, however, particles are expected to
circulate for hours and therefore ultra high vacuum conditions must be created.

Thermal Gas Desorption

To reach very low gas pressures in the region of 10�10–10�11 Torr in the regime
of ultra high vacuum .UHV/ we must consider the continuous desorption of gas
molecules from the walls due to thermal desorption. Gas molecules adsorbed on the
chamber surface are in thermal equilibrium with the environment and the thermal
energy of the molecules assumes a statistically determined Boltzmann distribution.
This distribution includes a finite probability for molecules to gain a large enough
amount of energy to overcome the adsorption energy and be released from the wall.

The total gas flow from the wall due to this thermal gas desorption depends
mostly on the preparation of the material. While for carefully cleaned surfaces the
thermal desorption coefficient may be of the order of 10�12–10�13 Torr lt/sec/cm2 a
bakeout to 140–300 ıC can reduce this coefficient by another order of magnitude.
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Synchrotron Radiation Induced Desorption

In high-energy electron or positron accelerators a significant amount of energy is
emitted in form of synchrotron radiation. This radiation is absorbed by vacuum
chamber walls and causes not only a heating effect of the chamber walls but also the
desorption of gas molecules adsorbed on the surface.

The physical process of photon induced gas desorption evolves in two steps [18].
First a photon hitting the chamber walls causes a secondary electron emission with
the probability �e."/, where " is the photon energy. Secondly, the emission as well
as the subsequent absorption of that photoelectron can desorb neutral atoms from
the chamber surface with the probability �d. To calculate the total desorption in a
storage ring, we start from the differential synchrotron radiation photon flux (24.56)
which we integrate over the ring circumference and write now in the form

dN."/

dt
D 8�˛

9
�

Ib

e

�!

!
S.�/ ; (11.129)

where " D „! is the photon energy, Ib the beam current, E the beam energy and
S.�/ a mathematical function defined by (24.57).

The photoelectron current PNe results from the folding of (11.129) with the
photoelectron emission coefficient �e.!/ for the material used to construct the
vacuum chamber and the integration over all photon energies,

PNe D 8�˛

9 e mc2
EIb

Z 1

0

�e.!/

!
S

�
!

!c

�
d! : (11.130)

The photoelectron emission coefficient depends on the choice of the material
for the vacuum chamber. Figure 11.8 displays the photoelectron coefficient for
aluminum as a function of photon energy [19].

Fig. 11.8 Photon electron
coefficient �e for aluminum
[19]
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We note there are virtually no photoelectrons for photon energies of less
than 10 eV. At 1,460 eV the K-edge of aluminum causes a sharp increase of the
coefficient followed by a monotonous decrease for higher photon energies.

The photoelectron coefficient depends not only on the material of the photon
absorber but also on the incident angle. The probability to release an electron from
the surface is increased for shallow incidence of the photon. The enhancement factor
F.�/ represents the increase in the photoelectron-emission coefficient �e.�/ due to
a non normal incidence of a photon on the surface, where� is the angle between the
photon trajectory and the plane to the absorbing surface. For angles close to normal
incidence .� D 90ı/ the enhancement factor scales like the inverse of the sine of
the angle

F.�/ D 1

sin�
: (11.131)

For small angles, however, the enhancement factor falls off from the inverse sine
dependence as has been determined by measurements [20] and reaches a maximum
value of about seven for small angles. The gas production is determined by the
desorption rate Q, defined as the total number of neutral atoms released along the
circumference from the chamber surface,

Q D 2
22:4 � 760
6 � 1023

PNe �d ; (11.132)

where Q is expressed in Torr lt/sec and �d is the desorption coefficient. The factor 2
is due to the fact that a photo electron can desorb an atom while leaving or arriving
at a surface. With (11.132) we get the average vacuum pressure hPi from

hPi D Q

S
; (11.133)

where S is the total installed pumping speed in the storage ring. For a reasonably
accurate estimate of the photon flux we may use the small argument approxima-
tion (24.60) for photon energies " � "c. Photons of higher energies generally do
not contribute significantly to the desorption since there are only few. To obtain the
photon flux we therefore need to integrate only from 10 eV to � � �c the differential
photon flux (24.60) folded with the photoelectron-emission coefficient �e."/.

The desorption coefficient �d is largely determined by the treatment of the
vacuum chamber like baking, beam cleaning, argon discharge cleaning, etc. For
example in the aluminum chamber of the storage ring SPEAR [21] the desorption
coefficient at 1:5 GeV was initially about �d � 5 � 10�3 then 5 � 10�4 after 1
month of operation, 10�4 after 2 months of operation and reached about 3 � 10�6
after about 1 year of operation. These numbers are not to be viewed too generally,
since the cleaning process depends strongly on the particular preparation of the
surfaces. However, following well established cleaning procedures and handling of
ultra high vacuum components these numbers can be of general guidance consistent
with observations on other storage rings.
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Laboratory measurements [19] show the following relationship between photo-
electron current Iphe D e PNe, desorption coefficient �d and total integrated beam time
of a vacuum system

�d D 7 � 10�5 Iphe.A/

t.hr/0:63
: (11.134)

New vacuum chambers release much gas when the first synchrotron radiation strikes
the surface, but cleans quickly as the radiation cleaning continues.

Problems

11.1 (S). The Rf-frequency of a storage ring is 500 MHz. Every bucket is filled
with particles. What is the time difference between successive bunches?

11.2 (S). Calculate the synchrotron damping time for a 3 GeV storage ring with a
bending radius of � D 10m and pure rectangular dipole magnets. Assume 100 %
bending magnet fill factor. What is the synchrotron damping time in this ring? How
long does it take to radiate away all its energy?

11.3. Consider a circular electron storage ring of your choice and specify beam
energy, current, ring circumference and average vacuum chamber dimensions.
Calculate the total thermal gas desorption and the total required pumping capacity
in the ring. Now add synchrotron radiation and estimate the increase of pumping
speed needed after say 100 Ah of beam operation. Plot the average gas pressure as
a function of integrated beam time.

11.4. An electron beam circulating in a 1.5 GeV storage ring emits synchrotron
radiation. The rms emission angle of photons is 1=� about the forward direction
of the particle trajectory. Determine the photon phase space distribution at the
source point and at a distance of 10 m away while ignoring the finite particle beam
emittance. Now assume a Gaussian particle distribution with a horizontal beam
emittance of �x D 1:5 � 10�7 rad m. Fold both the photon and particle distributions
and determine the photon phase space distribution 10 m away from the source
point if the electron beam size is �x D 1:225mm, the electron beam divergence
�x0 D 0:1225mrad and the source point is a symmetry point of the storage ring.
Assume the dispersion function to vanish at the source point. For what minimum
photon wavelength would the vertical electron beam size appear diffraction limited
if the emittance coupling is 10 %?

11.5. Consider an electron beam in an isomagnetic 6 GeV storage ring with a
bending radius of � D 20m . Calculate the rms energy spread �"=E0 and the
synchrotron oscillation damping time �s.
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