Chapter 1
Introduction to Accelerator Physics

The development of charged particle accelerators and it’s underlying principles
has its basis on the theoretical and experimental progress in fundamental physical
phenomena. While active particle accelerator experimentation started seriously
only in the twentieth century, it depended on the basic physical understanding of
electromagnetic phenomena as investigated both theoretically and experimentally
mainly during the nineteenth and beginning twentieth century. In this introduction
we will recall briefly the history leading to particle accelerator development,
applications and introduce basic definitions and formulas governing particle beam
dynamics.

1.1 Short Historical Overview

The history and development of particle accelerators is intimately connected to
the discoveries and understanding of electrical phenomena and the realization that
the electrical charge comes in lumps carried as a specific property by individual
particles. It is reported that the Greek philosopher and mathematician Thales of
Milet, who was born in 625 BC first observed electrostatic forces on amber. The
Greek word for amber is electron or nAexktpov and has become the origin for
all designations of electrical phenomena and related sciences. For more than 2000
years this observation was hardly more than a curiosity. In the eighteenth century,
however, electrostatic phenomena became quite popular in scientific circles and
since have been developed into a technology which by now completely embraces
and dominates modern civilization as we know it.

It took another 100 years before the carriers of electric charges could be isolated.
Many systematic experiments were conducted and theories developed to formulate
the observed electrical phenomena mathematically. It was Coulomb, who in 1785
first succeeded to quantify the forces between electrical charges which we now call
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4 1 Introduction to Accelerator Physics

Coulomb forces. As more powerful sources for electrical charges became available,
glow discharge phenomena were observed and initiated an intensive effort on
experimental observations during most of the second half of the nineteenth century.
It was the observations of these electrical glow discharge phenomena that led the
scientific community to the discovery of elementary particles and electromagnetic
radiation which are both basic ingredients for particle acceleration.

Research leading to the discovery of elementary particles and to ideas for the
acceleration of such particles is dotted with particularly important milestones which
from time to time set the directions for further experimental and theoretical research.
It is obviously somewhat subjective to choose which discoveries might have been
the most influential. Major historical discoveries leading to present day particle
accelerator physics started to happen more than a 150 years ago:

1815 The physician and chemist W. Proust postulates, initially anonymous, that
all atoms are composed of hydrogen atoms and that therefore all atomic weights
come in multiples of the weight of a hydrogen atom.

1839 M. Faraday [1] publishes his experimental investigations of electricity and
described various phenomena of glow discharge.

1858 J. Pliicker [2] reports on the observation of cathode rays and their deflection
by magnetic fields. He found the light to become deflected in the same spiraling
direction as Ampere’s current flows in the electromagnet and therefore postulated
that the electric light, as he calls it, under the circumstances of the experiment
must be magnetic.

1867 L. Lorenz working in parallel with J.C. Maxwell on the theory of electro-
magnetic fields formulates the concept of retarded potentials although not yet for
moving point charges.

1869 J.W. Hittorf [3], a student of Pliicker, started his thesis paper with the
statement (translated from german): “The undisputed darkest part of recent
theory of electricity is the process by which in gaseous volumes the propagation
of electrical current is effected”. Obviously observations with glow discharge
tubes displaying an abundance of beautiful colors and complicated reactions
to magnetic fields kept a number of researchers fascinated. Hittorf conducted
systematic experiments on the deflection of the light in glow discharges by
magnetic fields and corrected some erroneous interpretations by Pliicker.

1871 C.F. Varley postulates that cathode rays are particle rays.

1874 H. von Helmholtz postulates atomistic structure of electricity.

1883 J.C. Maxwell publishes his Treatise on Electricity and Magnetism.

1883 T.A. Edison discovers thermionic emission.

1886 E. Goldstein [4] observed positively charged rays which he was able to
isolate from a glow discharge tube through channels in the cathode. He therefore
calls these rays Kanalstrahlen.

1887 H. Hertz discoveries transmission of electromagnetic waves and photoelec-
tric effect.

1891 G.J. Stoney introduces the name electron.
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1895 H.A. Lorentz formulates electron theory, the Lorentz force equation and
Lorentz contraction.

1894 P. Lenard builts a discharge tube that allows cathode rays to exit to
atmospheric air.

1895 W. Rontgen discovers x-rays.

1895 E. Wiedemann [5] reports on a new kind of radiation studying electrical
sparks.

1897 J.J. Thomson measures the e/m-ratio for kanal and cathode rays with
electromagnetic spectrometer and found the e/m ratio for cathode rays to be
larger by a factor of 1,700 compared to the e/m ratio for kanal rays. He concluded
that cathode rays consist of free electricity giving evidence to free electrons.

1897 J. Larmor formulates concept of Larmor precession.

1898 A. Lienard calculates the electric and magnetic field in the vicinity of
a moving point charge and evaluated the energy loss due to electromagnetic
radiation from a charged particle travelling on a circular orbit.

1900 E. Wiechert derives expression for retarded potentials of moving point
charges.

1901 W. Kaufmann, first alone, and in 1907 together with A.H. Bucherer measure
increase of electron mass with energy. First experiment in support of theory of
special relativity.

1905 A. Einstein publishes theory of special relativity.

1906 J.J. Thomson [6] explains the emission of this radiation as being caused by
acceleration occurring during the collision of charged particles with other atoms
and calculated the energy emitted per unit time to be (2¢%f2)/(3V), where e is
the charge of the emitting particle, f the acceleration and V the velocity of light.

1907 G.A. Schott [7, 8] formulated the first theory of synchrotron radiation in an
attempt to explain atomic spectra.

1909 R.A. Millikan starts measuring electric charge of electron.

1913  First experiment by J. Franck and G. Hertz to excite atoms by accelerated
electrons.

1914 E. Marsden produces first proton beam irradiating paraffin with alpha
particles.

1920 H. Greinacher [9] builts first cascade generator.

1922 R. Wideroe as a graduate student sketches ray transformer (betatron).

1924  G.Ising [10] invents as a student the electron linac with drift tubes and spark
gap excitation.

1928 R. Wideroe [11] reports first operation of linear accelerator with potassium
and sodium ions. Discusses operation of betatron and failure to get beam for lack
of focusing.

1928 P.A.M. Dirac predicts existence of positrons.

1931 R.J. Van de Graaff [12] builts first high voltage generator.

1932 Lawrence and Livingston [13] accelerate first proton beam from 1.2 MeV
cyclotron employing weak focusing.
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1932 J.D. Cockcroft and E.T.S. Walton [14] use technically improved cascade
generator to accelerate protons and initiate first artificial atomic reaction: Li +
p — 2He.

1932 in the same year, C.D. Andersen discovers positrons, neutrons were discov-
ered by J. Chadwick, and H.C. Urey discoveries deuterons.

1939 W.W. Hansen, R. Varian and his brother S. Varian invent klystron microwave
tube at Stanford.

1941 D.W. Kerst and R. Serber [15] complete first functioning betatron.

1941 B. Touschek and R. Wideroe formulate storage ring principle.

1944  D. Ivanenko and I.Ya. Pomeranchuk [16] and J. Schwinger [17] point out
independently an energy limit in circular electron accelerators due to synchrotron
radiation losses.

1945 V.I. Veksler [18] and E.M. McMillan [19] independently discover the
principle of phase focusing.

1945 J.P. Blewett [20] experimentally discovers synchrotron radiation by measur-
ing the energy loss of electrons.

1947 L.W. Alvarez [21] designs first proton linear accelerator at Berkeley.

1948 E.L. Ginzton et al. [22] accelerate electrons to 6 MeV with Mark I at
Stanford.

1949 McMillan et al. commissioned 320 MeV electron synchrotron.

1950 N. Christofilos [23] formulates concept of strong focusing.

1952 M.S. Livingston et al. [24] describe design for 2.2 GeV Cosmotron in
Brookhaven.

1951 H. Motz [25] builds first wiggler magnet to produce quasi monochromatic
synchrotron radiation.

1952  E. Courant et al. [26] publish first paper on strong focusing.

1954 R.R. Wilson et al. operate first AG electron synchrotron in Cornell at
1.1GeV.

1954  Lofgren et al. accelerate protons to 5.7 GeV in Bevatron.

1955 M. Chodorow et al. [27] complete 600 MeV MARK III electron linac.

1955 M. Sands [28] define limits of phase focusing due to quantum excitation.

1959 E. Courant and Snyder [29] publish their paper on the Theory of the
Alternating-Gradient Synchrotron.

Research and development in accelerator physics blossomed significantly during
the 1950s supported by the development of high power radio frequency sources
and the increased availability of government funding for accelerator projects.
Parallel with the progress in accelerator technology, we also observe advances in
theoretical understanding, documented in an increasing number of publications.
It is beyond the scope of this text to only try to give proper credit to all major
advances in the past 60 years and refer the interested reader to more detailed
references.
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1.2 Particle Accelerator Systems

Particle accelerators come in many forms applying a variety of technical principles.
All are based on the interaction of the electric charge with static and dynamic
electromagnetic fields and it is the technical realization of these interactions that
leads to the different types of particle accelerators. Electromagnetic fields are used
over most of the available frequency range from static electric fieldsto ac magnetic
fields in betatrons oscillating at 50 or 60 Hz, to radio frequency fields in the MHz
to GHz range and ideas are being explored to use laser beams to generate high field
particle acceleration.

In this text, we will not discuss the different technical realization of particle
acceleration but rather concentrate on basic principles which are designed to help the
reader to develop technical solutions for specific applications meeting basic beam
stability requirements. For particular technical solutions we refer to the literature.
Further down we will discuss briefly basic accelerator types and their theoretical
back ground. Furthermore, to discuss basic principles of particle acceleration and
beam dynamics it is desirable to stay in contact with technical reality and reference
practical and working solutions. We will therefore repeatedly refer to certain types
of accelerators and apply theoretical beam dynamics solutions to exhibit the salient
features and importance of the theoretical ideas under discussion. In these references
we use mostly such types of accelerators which are commonly used and are
extensively publicized.

1.2.1 Main Components of Accelerator Facilities

In the following paragraphs we describe components of particle accelerators in
a rather cursory way to introduce the terminology and overall features. Particle
accelerators consist of two basic units, the particle source or injector and the main
accelerator. The particle source comprises all components to generate a beam of
desired particles.

Generally glow discharge columns are used to produce proton or ion beams,
which then are first accelerated in electrostatic accelerators like a Van de Graaff
or Cockcroft-Walton accelerator and then in an Alvarez-type linear accelerator. To
increase the energy of heavy ion beams the initially singly charged ions are, after
some acceleration, guided through a thin metal foil to strip more electrons off the
ions. More than one stripping stage may be used at different energies to reach the
maximum ionization for most efficient acceleration.

Much more elaborate measures must be used to produce antiprotons. Generally
a high energy proton beam is aimed at a heavy metal target, where, through
hadronic interactions with the target material, among other particles antiprotons
are generated. Emerging from the target, these antiprotons are collected by strong
focusing devices and further accelerated.
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Electrons are commonly generated from a heated cathode, also called a
thermionic gun, which is covered on the surface by specific alkali oxides or any
other substance with a low work function to emit electrons at technically practical
temperatures. Another method to create a large number of electrons within a short
pulse uses a strong laser pulse directed at the surface of a photo cathode. Systems
where the cathode is inserted directly into an accelerating rf field are called rf
guns. Positrons are created the same way as antiprotons by aiming high energy
electrons on a heavy metal target where, through an electromagnetic shower and
pair production, positrons are generated. These positrons are again collected by
strong magnetic fields and further accelerated.

Whatever the method of generating particles may be, in general they do not have
the time structure desired for further acceleration or special application. Efficient
acceleration by rf fields occurs only during a very short period per oscillation cycle
and most particles would be lost without proper preparation. For high beam densities
it is desirable to compress the continuous stream of particles from a thermionic
gun or a glow discharge column into a shorter pulse with the help of a chopper
device and/or a prebuncher. The chopper may be a mechanical device or a deflecting
magnetic or rf field moving the continuous beam across the opening of a slit. At the
exit of the chopper we observe a series of beam pulses, called bunches, to be further
processed by the prebuncher. Here early particles within a bunch are decelerated
and late particles accelerated. After a well defined drift space, the bunch length
becomes reduced due to the energy dependence of the particle velocity. Obviously
this compression works only as long as the particles are not relativistic while the
particle velocity can be modulated by acceleration or deceleration.

No such compression is required for antiparticles, since they are produced by
high energetic particles having the appropriate time structure. Antiparticle beams
emerging from a target have, however, a large beam size and beam divergence.
To make them suitable for further acceleration they are generally stored for some
time in a cooling or damping ring. Such cooling rings are circular “accelerators”
where particles are not accelerated but spend just some time circulating. Positrons
circulating in such storage rings quickly lose their transverse momenta and large
beam divergence through the emission of synchrotron radiation. In the case of
antiprotons, external fields are applied to damp the transverse beam size or
they circulate against a strong counterrotating electron beam loosing transverse
momentum through scattering.

Antiparticles are not always generated in large quantities. On the other hand, the
accelerator ahead of the conversion target can often be pulsed at a much higher rate
than the main accelerator can accept injection. In such cases, the antiparticles are
collected from the rapid cycling injector in an accumulator ring and then transferred
to the main accelerator when required.

Particle beams prepared in such a manner may now be further accelerated in
linear or circular accelerators. A linear accelerator consists of a linear sequence
of many accelerating units where accelerating fields are generated and timed such
that particles absorb and accumulate energy from each acceleration unit. Most
commonly used linear accelerators consist of a series of cavities excited by
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radio frequency sources to high accelerating fields. In the induction accelerator ,
each accelerating unit consists of a transformer which generates from an external
electrical pulse a field on the transformer secondary which is formed such as to allow
the particle beam to be accelerated. Such induction accelerators can be optimized to
accelerate very high beam currents to medium beam energies.

For very high beam energies linear accelerators become very long and costly.
Such practical problems can be avoided in circular accelerators where the beam is
held on a circular path by magnetic fields in bending magnets and passing repeatedly
every turn through accelerating sections, similar to those in a linear accelerator. This
way, the particles gain energy from the accelerating cavities at each turn and reach
higher energies while the fields in the bending magnets are raised.

The basic principles to accelerate particles of different kind are similar and
we do not need to distinguish between protons, ions, and electrons. Technically,
individual accelerator components differ more or less to adjust to the particular
beam parameters which have mostly to do with the particle velocities. For highly
relativistic particles the differences in beam dynamics vanish. Protons and ions
are more likely to be nonrelativistic and therefore vary the velocity as the kinetic
energy is increased, thus generating problems of synchronism with the oscillating
accelerating fields which must be solved by technical means.

After acceleration in a linear or circular accelerator the beam can be directed onto
a target, mostly a target of liquid hydrogen, to study high energy interactions with
the target protons. Such fixed target experimentation dominated nuclear and high
energy particle physics from the first applications of artificially accelerated particle
beams far into the 1970s and is still a valuable means of basic research. Obviously,
it is also the method in conjunction with a heavy metal target to produce secondary
particles like antiparticles for use in colliding beam facilities and mesons for basic
research.

To increase the center-of-mass energy for basic research, particle beams are
aimed not at fixed targets but to collide head on with another beam. This is one
main goal for the construction of colliding beam facilities or storage rings. In
such a ring, particle and antiparticle beams are injected in opposing directions and
made to collide in specifically designed interaction regions. Because the interactions
between counter orbiting particles is very rare, storage rings are designed to allow
the beams to circulate for many turns with beam life times of several hours to give
the particles ample opportunity to collide with other counter rotating particles. Of
course, beams can counter rotate in the same magnetic fields only if one beam is
made of the antiparticles of the other beam while two intersecting storage rings
must be employed to allow the collision of unequal particles.

The circulating beam in an electron storage ring emits synchrotron radiation
due to the transverse acceleration during deflection in the bending magnets. This
radiation is highly collimated in the forward direction, of high brightness and
therefore of great interest for basic and applied research, technology, and medicine.

Basically the design of a storage ring is the same as that for a synchrotron
allowing some adjustment in the technical realization to optimize the desired
features of acceleration and long beam lifetime, respectively. Beam intensities are
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generally very differentin a synchrotron from that in a storage ring. In a synchrotron,
the particle intensity is determined by the injector and this intensity is much smaller
than desired in a storage ring. The injection system into a storage ring is therefore
designed such that many beam pulses from a linear accelerator, an accumulator ring
or a synchrotron can be accumulated. A synchrotron serving to accelerate beam
from a low energy preinjector to the injection energy of the main facility, which
may be a larger synchrotron or a storage ring, is also called a booster synchrotron
or short a booster.

Although a storage ring is not used for particle acceleration it often occurs that a
storage ring is constructed long after and for a higher beam energy than the injector
system. In this case, the beam is accumulated at the maximum available injection
energy. After accumulation the beam energy is slowly raised in the storage ring to
the design energy by merely increasing the strength of the bending and focusing
magnets.

Electron positron storage rings have played a great role in basic high-energy
research. For still higher collision energies, however, the energy loss due to
synchrotron radiation has become a practical and economic limitation. To avoid
this limit, beams from two opposing linear accelerators are brought into head
on collision at energies much higher than is possible to produce in circular
accelerators. To match the research capabilities in colliding beam storage rings,
such linear colliders must employ sophisticated beam dynamics controls, focusing
arrangements and technologies similar to X-ray laser systems now operating.

1.2.2 Applications of Particle Accelerators

Particle accelerators are mainly known for their application as research tools in
nuclear and high energy particle physics requiring the biggest and most energetic
facilities. Smaller accelerators, however, have found broad applications in a wide
variety of basic research and technology, as well as medicine. In this text, we will
not discuss the details of all these applications but try to concentrate only on the
basic principles of particle accelerators and the theoretical treatment of particle
beam dynamics and instabilities. An arbitrary and incomplete listing of applications
for charged particle beams and their accelerators is given for reference to the
interested reader:

Nuclear physics
Electron/proton accelerators
ITon accelerators/colliders
Continuous beam facility
High-energy physics

Fixed target accelerator
Colliding beam storage rings
Linear colliders

Power generation

Inertial fusion

Reactor fuel breeding
Industry

Radiography by x-rays

Ion implantation

Isotope production/separation
Materials testing/modification
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Food sterilization Coherent radiation

X-ray lithography Free electron lasers, X-FEL
Synchrotron radiation Microprobe

Basic atomic and molecular physics Holography

Condensed matter physics Medicine

Earth sciences Radiotherapy

Material sciences Health physics

Chemistry Microsurgery with tunable FEL
Molecular and cell biology Sterilization

Surface/interface physics

This list is by no means exhaustive and additions must be made at an impressive
pace as the quality and characteristics of particle beams become more and more
sophisticated, predictable and controllable. Improvements in any parameter of
particle beams create opportunities for new experiments and applications which
were not possible before. More detailed information on specific uses of particle
accelerators as well as an extensive catalogue of references has been compiled by
Scharf [30].

1.3 Definitions and Formulas

Particle beam dynamics can be formulated in a variety units and it is therefore
prudent to define the units used in this text to avoid confusion. In addition, we
recall fundamental relations of electromagnetic fields and forces as well as some
laws of special relativity to the extend that will be required in the course of
discussions.

1.3.1 Units and Dimensions

A set of special physical units, selected primarily for convenience, are most
commonly used to quantify physical constants in accelerator physics. The use of
many such units is often determined more by historical developments than based on
the choice of a consistent set of quantities useful for accelerator physics.

Generally, accelerator physics theory is formulated in the metric mks-system
of units or SI-units which we follow also in this text. For readers used to cgs
units, we include here conversion tables for convenience. To measure the energy
of charged particles the unit Joule is actually used very rarely. The basic unit
of energy in particle accelerator physics is the electron Volt (eV), which is the
kinetic energy a particle with one basic unit of electrical charge e would gain while
being accelerated between two conducting plates at a potential difference of 1 V.
Therefore, 1eV is equivalent to 1.60217733 x 107! J. Specifically, we will often
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use derivatives of the basic units to express actual particle energies in a convenient
form:

1keV = 1000 eV; 1 MeV = 10° eV; 1GeV = 10° eV; 1 TeV = 10'? eV

To describe particle dynamics we find it necessary to sometimes use the particle’s
momentum and sometimes the particle’s energy. The effect of the Lorentz force
from electric or magnetic fields is inversely proportional to the momentum of the
particle. Acceleration in rf fields, on the other hand, is most conveniently measured
by the increase in kinetic or total energy.

In an effort to simplify the technical jargon used in accelerator physics the term
energy is used for all three quantities although mathematically the momentum is
then multiplied by the velocity of light for dimensional consistency. There are still
numerical differences which must be considered for all but very highly relativistic
particles. Where we need to mention the pure particle momentum and quote a
numerical value, we generally use the total energy divided by the velocity of light
with the unit eV/c. With this definition a particle of energy cp = 1eV would have a
momentum of p = 1eV/c.

An additional complication arises in the case of composite particles like heavy
ions, consisting of protons and neutrons. In this case, the particle energy is not
quoted for the whole ion but in terms of the energy per nucleon.

The particle beam current is measured generally in Amperes, no matter what
general system of units is used but also occasionally in terms of the total charge or
number of particles. The current is then the total charge Q passing a point during
the time ¢. Depending on the time duration one gets an instantaneous current or
some average current. Therefore a quotation of the particle current requires also the
definition of the time structure of the beam. In circular accelerators, for example,
the average beam current [ relates directly to the beam intensity or the number
of circulating particles N. If Bc is the velocity of the particle and Z the charge
multiplicity, we get for the relation of beam current and beam intensity

[ = eZfielN, (1.1)

where the revolution frequency fiey = Pc¢/C and C is the circumference of the
circular accelerator. This is the average circulating current to be distinguished from
the bunch current or peak bunch current, which is the charge per bunch g divided by
the duration of the bunch.

For a linear accelerator or beam transport line where particles come by only
once, the definition of the beam current is more subtle. We still have a simple case
if the particles come by in a continuous stream in which case the beam current is
proportional to the particle flux N or I = eZN. This case, however, occurs very
rarely since particle beams are generally accelerated by rf fields. As a consequence
there is no continuous flux of particles reflecting the time varying acceleration of
the rf field. The particle flux therefore is better described by a series of equidistant
particle bunches separated by an integral number of wavelengths of the accelerating
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Table 1.1 Numerical

- Quantity Replace cgs parameter by practical units
conversion factors -
Potential lesu [300V
Electrical field | 1 esu |310*V/m
Current lesu [0.1-cA
Charge lesu |0.3333107°C
Force Idyn [107°N
Energy leV |1.60210719]

leV |1.602107'% erg

tf field. Furthermore, the acceleration often occurs only in bursts or pulses producing
either a single bunch of particles or a string of many bunches. In these cases
we distinguish between different current definitions. The peak current is the peak
instantaneous beam current for a single bunch, while the average current is defined
as the particle flux averaged over the duration of the beam pulse or any other given
time period, e.g. 1 s.

Magnetic fields are quoted either in Tesla or Gauss.' Similarly, field gradients
and higher derivatives are expressed in Tesla per meter or Gauss per centimeter.
Frequently we find the need to perform numerical calculations with parameters
given in different units. Some helpful numerical conversions from cgs to mks-units
are compiled in Table 1.1.

Similar conversion factors can be derived for electromagnetic quantities in
formulas by comparisons of similar equations in the MKS and cgs-system. Table 1.2
includes some of the most frequently used conversions. The absolute dielectric
constant is

107 C 1 C
0= — =885 x 107 “— (1.2)
47mc? Vm Vm
and the absolute is
4710775 12566 % 10528 (1.3)
= 47 — = ]. —_— .
Ho Am Am
Both constants are related by c?gouo = 1. Using these conversion factors it is

possible to convert formulas in cgs units into the equivalent form for mks-units.

1.3.2 Maxwell’s Equations

Predictable control of charged particles is effected only by electric and magnetic
fields and beam dynamics is the result of such interaction. We try to design and

IBecause of its wide use, we use in rare cases the unit Gauss even though it is not a SI unit (1
Gauss = 0.0001 Tesla = 0.1 mT).
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Table 1.2 Conversion

. Replace cgs-parameter
factors for equations

Quantity by mks-parameter
Potential Vegs V4780 Vinks
Electric field Ecgs V47 e E s
Current Legs \/#Tolmks
Current density Jes \/#Tojmks
Charge Gegs «/#TO Gmks
Charge density Pegs ﬁ Pmks
Conductivity Ocgs \/#70 Omks
Inductance Legs 4meo Links
Capacitance Cegs Tmeg Cimks
Magnetic field Hgs /A7 110 Hmis
Magnetic induction Begs B ks

Ko

formulate electromagnetic fields in a way that can be used to accurately predict the
behavior of charged particles. To describe the general interaction of fields based on
electric currents in specific devices and free charged particles which we want to
preserve, guide and focus, we use as a starting point Maxwell’s equations:

V (¢E) zg, Coulomb’s law,

VB =0,

VxE=— B%B, Faraday’s law, (1.4)
V x (ﬁB) =poj + CLZB% (¢E) . Ampere’s law,

consistent with the SI-system of units by inclusion of the unit scale factors €
and po. The quantities € and p are the relative dielectric constant and magnetic
permeability of the surrounding materials, respectively. Integration of one or the
other of Maxwell’s equations results, for example, in the fields from singly charged
particles or those of an assembly of particles travelling along a common path and
forming a beam. Applying Maxwell’s equations, we will make generous use of
algebraic relations which have been collected in Appendix A.

1.4 Primer in Special Relativity

In accelerator physics the dynamics of particle motion is formulated for a large
variety of energies from nonrelativistic to highly relativistic values and the equations
of motion obviously must reflect this. Relativistic mechanics is therefore a funda-
mental ingredient of accelerator physics and we will recall a few basic relations
of relativistic particle mechanics from a variety of more detailed derivations in
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generally available textbooks. Beam dynamics is expressed in a laboratory by a
fixed system of coordinates but some specific problems are better discussed in the
moving coordinate system of particles. Transformation between the two systems is
effected through a Lorentz transformation.

1.4.1 Lorentz Transformation

Physical phenomena can appear different for observers in different systems of
reference. Yet, the laws of nature must be independent of the reference sys-
tem. In classical mechanics, we transform physical laws from one to another
system of reference by way of the Galileo transformation z* = z — vt assum-
ing that one system moves with velocity v along the z-axis of the other sys-
tem.

As the velocities of bodies under study became faster, it became necessary
to reconsider this simple transformation leading to Einstein’s special theory of
relativity. Maxwell’s equations result in electromagnetic waves expanding at a finite
velocity and do not contain any reference to a specific system of reference. Any
attempt to find a variation of the “velocity of light” with respect to moving reference
systems failed, most notably in Michelson’s experiments. The expansion velocity
of electromagnetic waves is therefore independent of the reference system and is
finite.

Any new transformation laws must include the observation that no element of
energy can travel faster than the speed of light. The new transformation formulae
combine space and time and are for a reference system £* moving with velocity
v, = cf, along the z-axis with respect to the stationary system L.

x = x*,
y =y

1.5
z =y +Bet’), (15)
ct=y (B 2" +ct’),

where the relativistic factor is

1
Y= —— (1.6)

Ny
with
B =v./c (L7

and where all quantities designated with * are defined in the moving system L£*.
Of course, either system is moving relative to the other and we will use this
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relativity in various circumstances depending on whether quantities are known in
the laboratory or moving system. The Lorentz transformations can be expressed in
matrix formulation by

X 10 0 0 x* x*
y 01 0 0 y* y*

= = 1.8
z 00 y +8y z* M ¥ (1.8)
ct 00+8y vy ct* ct*

and the inverse transformation is the same except that the velocity or 8 changes sign
(v —> —v).
Lorentz Transformation of Fields

Without proof, electromagnetic fields transform between reference systems in
relative motion like

E, y 0 0 0 +yB. 0\ [E*

E, 0 y 0—yB, 0 0 EY

E|l_[ o o1 0 o offef (1.9)
cB, 0 —yB.0 vy 0 0 cB?} '
cBy +yB. 0 0 O y 0 By

cB, 0 0O 0 O 0 1 cB?

Again, for the inverse transformation only the sign of the relative velocity must
be changed, 8, — — B;. According to this transformation of fields, a pure static
magnetic field in the laboratory system L, for example, becomes an electromagnetic
field in the moving system £*. An undulator field, therefore, looks to an electron like
a virtual photon with an electromagnetic field like a laser field and both interactions
can be described by Compton scattering.

Lorentz Contraction

Characteristic for relativistic mechanics is the Lorentz contraction and time dilata-
tion, both of which become significant in the description of particle dynamics. To
describe the Lorentz contraction, we consider a rod at rest in the stationary system
L along the z-coordinate with a length £ = z — z;. In the system £*, which
is moving with the velocity v, in the positive z-direction with respect to £, the
rod appears to have the length £* = z; — z{. By a Lorentz transformation we
can relate that to the length in the L£-system. Observing both ends of the rod at
the same time the lengths of the rod as observed from both systems relate like
t=2—z2 =y +v5) -y +vi) =yl or

0= ye*. (1.10)
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A rod at rest in system L appears shorter in the moving particle system £* by a
factor y and is always longest in it’s own rest system. For example, the periodicity
of an undulator A, becomes Lorentz contracted to A,/y as seen by relativistic
electrons. Because of the Lorentz contraction, the volume of a body at rest in the
system £ appears also reduced in the moving system £* and we have for the volume
of a body in three dimensional space

V=yVv*. (1.11)

Only one dimension of this body is Lorentz contracted and therefore the volume
scales only linearly with y. As a consequence, the charge density p of a particle
bunch with the volume V is lower in the laboratory system £ compared to the density
in the system moving with this bunch and becomes

o=""". (1.12)
y

Time Dilatation

Similarly, we may derive the time dilatation or the elapsed time between two events
occurring at the same point in both coordinate systems. Applying the Lorentz
transformations we get from (1.5) with z§ = z}

* *
At:tz—tl:y(t;-i—ﬂzzz)—)/(ff-l-ﬂzzl) (1.13)
Cc Cc

or
At = yAr*. (1.14)

For a particle at rest in the moving system £* the time * varies slower than the
time in the laboratory system. This is the mathematical expression for the famous
twin paradox where one of the brothers moving in a space capsule at relativistic
speed would age slower than his twin brother staying back. This phenomenon
gains practical importance for unstable particles. For example, high-energy pions,
observed in the laboratory system, have a longer lifetime by the factor y compared
to low-energy pions with y = 1. As a consequence, high energy unstable particles,
like pions and muons, live longer and can travel farther as measured in the
laboratory system, because the particle decay time is a particle property and is
therefore measured in its own moving system. This is important. For example, in
medical applications when a beam of pions has to be transported from the highly
radioactive target area to a radiation free environment for the patient for cancer
treatment.
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1.4.2 Lorentz Invariance

Briefly, we have to introduce 4-vectors, because they will make later discussions
much easier and illuminate fundamental properties of synchrotron radiation which
is emitted in the particle system, but observed in the laboratory system as we will
see later in this section. Four-vectors have a special significance in physics. As their
name implies, four physical quantities can form a 4-vector which has convenient
properties when viewed in different reference systems. The components of space-
time, for example, form a 4-vector § = (x, y, z, ict). To identify 4-vectors, we add a
tilde § to the symbols. All true 4-vectors transform like the space-time coordinates
through Lorentz transformations.

a=Mya". (1.15)

Invariance to Lorentz Transformations

The length of 4-vectors is the same in all reference systems and is therefore open to
measurements and comparisons independent of the location of the experimenter.
In fact, it can be shown (exercise) that even the product of two arbitrary 4-
vectors is Lorentz invariant. Take two 4-vectors in an arbitrary frame of reference
@*=(at,at,at,ia?) and b = (b¥,b%, b%,ib¥) and form the product@*h" in com-
ponent form. A Lorentz transformation on both 4-vectors gives @b = ab, which
is the same in any reference system and is therefore Lorentz invariant. Specifically,
the length of any 4-vector is Lorentz invariant.

Space-Time

Imagine a light flash to originate at the origin of the coordinate system L(x, y, 7). At
the time ¢, the edge of this expanding light flash has expanded with the velocity of
light to

P4y + 2= (1.16)

Observing the same light flash from a moving system, we apply a Lorentz
transformation from the laboratory system L to the moving system £* and get

x*Z +y*2 +Z*2 — CZt*Z (117)

demonstrating the invariance of the velocity of light ¢ as has been experimentally
verified by Michelson and Morley in 1887. The velocity of light is the same in all
reference systems and its value is

c = 299,792,458 m/s. (1.18)
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The components of the space-time 4-vector are
§ = (x1.22,X3,X4) = (x,y,z.ict) , (1.19)

where the time component has been multiplied by ¢ to give all components the same
dimension. From the Lorentz invariant world time , defined as

ct=V-§ (1.20)

we get

edr = /2 (@) — (@) — (dy)? = (do)? = \fe2 — (v2 + v2 + v2)dr

= /2 —vidt = /1 — B2cds, (1.21)

a relation, we know from the Lorentz transformation as time dilatation dt = % dr.

Other 4-vectors can be formulated and often become relevant in accelerator
physics as, for example, those listed below. More 4-vectors are listed in Appendix
B.

Four-Velocity

A velocity 4-vector can be derived from the space-time 4-vector by simple
differentiation

ds ds
1= — =y— =y (&,y,3ic) . 1.22
b= =vy =vE.Lid (1.22)
Evaluating the square of the velocity 4-vector we find 7’ = yv2—yc® = —c%in

the rest frame and in any other reference frame. The velocity of light is the same in
any reference system as experimentally verified by Michelson and Morley.

Four-Acceleration

From the velocity 4-vector, we derive the 4-acceleration

dv d [ d§ ,d%  dy  ,dF _y3
( )— P yvaz @+vg(va) (1.23)

or in component form @ = (ay. ay. a.ia,) , we geta, = y’a, + y*px (Ba) ..., a, =
y*(Ba) where a = (%,9,7%) is the ordinary acceleration. The Lorentz invariance
of @ becomes important to describe the emission of synchrotron radiation from a
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relativistic charged particle and observation in a laboratory reference frame. Con-
versely, experimental verification of the theory of synchrotron radiation validates
the invariance of @°.

Momentum-Energy 4-Vector

An important 4-vector is the 4-momentum or momentum-energy 4-vector defined
by the canonical momentum cp and total energy E

cp = (cpx, cpy. cpz, iE). (1.24)

The length of the energy-momentum 4-vector ¢p = (cpy, cpy, cp;.iE) can be
determined by going into the rest frame where the momentum is zero and we get

Apt = czpf + czpi + cng — E? = —A*m?c, (1.25)

where we have set Ey = Amc? for a particle with atomic mass A. From this the total
energy is

E? = Pp* + APmPct, (1.26)

demonstrating the experimentally verifiable fact that the particle mass is Lorentz
invariant.

We look now for an expression of (1.26) without the use of velocities and derive
from the product of the velocity and momentum-energy 4-vectors

yv,ayc) (cp,1L) = yvcp—cyL = —cAmc .
(yv.iyc) (cp.iE) E Amc? (1.27)

—Amc® . . ..
an expression for the momentum cp = % since p|| 8 . Inserting this into (1.26),

2
we get E> = ()'E_y—/;’mz) + A’m?c* and with B2y? = y2 — 1

_ E
T Amc?

4 (1.28)

defining the relativistic factor y in terms of energies. Sometimes, authors attach
this relativistic factor to the mass and assume thereby an increasing moving mass.
Einstein’s point of view is expressed in the following quote: “It is not good to
introduce the concept of the mass of a moving body M = ymy for which no clear
definition can be given. It is better to introduce no mass concept other than the ‘rest
mass’ my. Instead of introducing M it is better to mention the expression for the
momentum and energy of a body in motion.” In this book, we take the rest mass my
as an invariant.
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The total energy of a particle is given by
E = yEy = yAmc?, (1.29)

where Ey = Amc? is the rest energy of the particle and A the atomic mass. For
electrons we assume that A = 1 and m = me.. Since in this text we concentrate
mainly on electrons and protons, we assume A = 1. The kinetic energy is defined
as the total energy minus the rest energy

Eyin = E — Ey = (y — Dmc>. (1.30)

The change in kinetic energy during acceleration is equal to the product of the
accelerating force and the path length over which the force acts on the particle.
Since the force may vary along the path we use the integral

AEkin = / Fds (131)

to define the energy increase. The length L, is the path length through the
accelerating field. In discussions of energy gain through acceleration, we consider
only energy differences and need therefore not to distinguish between total and
kinetic energy. The particle momentum finally is defined by

’p* = E* — E} (1.32)

or

cp = JE? — E} = mc*/y? — 1 = yBmc* = BE, (1.33)

where B = v/c. The simultaneous use of the terms energy and momentum might
seem sometimes to be misleading as we discussed earlier. In this text, however,
we will always use physically correct quantities in mathematical formulations even
though we sometimes use the term energy for the quantity cp. In electron accelera-
tors the numerical distinction between energy and momentum is insignificant since
we consider in most cases highly relativistic particles. For proton accelerators and
even more so for heavy ion accelerators the difference in both quantities becomes,
however, significant.

Often we need differential expressions or expressions for relative variations of
a quantity in terms of variations of another quantity. Such relations can be derived
from the definitions in this section. By variation of (1.33), for example, we get

m62 dE dEkin
7oly =—=—" (1.34)

dep =
b g~ P
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and

dep 1 dy

cw By’

Varying (1.32) and replacing dy from (1.33) we get

dep = y3mc? dB (1.35)
and
dep ,dp
_ = )/ —_—
cp p

Photon 4-Vector

An analogous 4-vector can be formulated for photons using deBroglie’s relations
p = hk and E = hw for ck = (cky, cky, ck,,iw) . Since the energy-momentum
4-vector is derived from the canonical momentum, we will have to modify this 4-
vector when electromagnetic fields are present.

Force 4-Vector
The force 4-vector is the time derivative of the energy-momentum 4-vector

(cp, iE) , which is consistent with the observation (so far) that the rest mass does
not change with time.

Electro-magnetic 4-Vector

The electromagnetic-potential 4-vector is (cA,i¢) .

1.4.3 Spatial and Spectral Distribution of Radiation

Of great importance in accelerator and synchrotron radiation physics is the Lorentz
invariance of the product of two 4-vectors. Electromagnetic fields emanating from
relativistic charges can be described by plane waves E* = Ej ¢i?" where @* =
w*t* — k*n*r* is the phase of the wave in the particle system and is Lorentz
invariant. This invariance stems from the fact that the phase can be formulated as
the product of the photon and space-time 4-vectors

cp +§ = [ckn,iw] [z,ict] , (1.36)
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where we have set k = nk with n being the unit vector in the direction of wave
propagation. Using k = w/c the phase as measured in the laboratory £ is the same
as that in the particle frame of reference £*

o* [(nfx* + nyy* + nXz") —ct*] = o [(nex + nyy + n.z) — ct] = invariant.

To derive the relationships between similar quantities in both systems, we use
the Lorentz transformation (1.8), noting that the particle reference frame is the
frame, where the particle or radiation source is at rest, and replace the coordinates
(x*,y*, 2%, ct*) by those in the laboratory system for

o* [(nfx* + nyy* + n¥z*) —cr*]
= o* [nfx+nfy +n? (yz— Byct) — (—Byz + yci)| (1.37)

= [(nxx + nyy + nzz) — Ct] s

from which one can isolate, for example, a relation between w* and w . Since
the space-time coordinates are independent from each other, we may equate their
coefficients on either side of the equation separately.

Spectral Distribution
In so doing, the cz-coefficients define the transformation of the oscillation frequency

*y (14 B.nf) = o, (1.38)

which expresses the relativistic Doppler effect. Looking parallel and opposite to the
direction of particle motion n} = 1, the observed oscillation frequency is increased
by the factor (1 + 8,)y ~ 2)/ for highly relativistic particles. The Doppler effect
is reduced (red shifted) if the radiation is viewed at some finite angle ® with
respect to the direction of motion of the source. In these cases n} = cos®*
and the frequency shift can be very large for highly relativistic partlcles with
y > 1

Spatial Distribution

Similarly, we obtain the transformation of spatial directions from

n} ny B. +n’
My = ——> ny=—> n=-—=_. (1.39)
y (14 Bn) Ty (14 B) (14 Bn)
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These transformations define the spatial distribution of radiation in the laboratory
system. In case of transverse acceleration the radiation in the particle rest frame is
distributed like cos> ©* about the direction of motion. This distribution becomes
greatly collimated into the forward direction in the laboratory system. With n*? +
n;‘z = sin? ©* and n? + n§ = sin’* ® ~ ©2 and n} = cos O*, we find

sin ©*
O~ — 17 (1.40)
y(1 + B cos ©*)
In other words, radiation from relativistic particles, emitted in the particle system
into an angle —n/2 < ©* < /2 appears in the laboratory system highly
collimated in the forward direction within an angle of

1
AO ~ +— . (1.41)
y

This angle is very small for highly relativistic electrons like those in a storage
ring, where y is of the order of 103-10%.

1.4.4 Particle Collisions at High Energies

The most common use of high-energy particle accelerators has been for basic
research in elementary particle physics. Here, accelerated particles are aimed at a
target, which incidentally may be just another particle beam, and the researchers
try to analyze the reaction of high-energy particles colliding with target particles.
The available energy from the collision depends on the kinematic parameters of the
colliding particles. We define a center of mass coordinate system which is the system
that moves with the center of mass of the colliding particles. In this system the vector
sum of all momenta is zero and is preserved through the collision. Similarly, the total
energy is conserved and we may define a center of mass energy the same way the
rest energy of a single particle is defined by

2

E, = (Z Ei)2 -~ (Z Cpi) , (1.42)

where the summation is taken over all particles forming the center of mass system.
The center of mass energy includes all old particle masses but also new masses
of new particles which have not been there before. We apply this to two colliding
particles with masses m; and m; and velocities vy and v,, respectively,

(Wll,Vl) —_—> < (mZ,Vz).
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The center of mass energy for this system of two colliding particles is then

2 2 5 2
EX = [Z (Exin + mcz)i:| _ [Z cp,} (1.43)
i=1

i=1
= (yim1 + yama)> ¢* — (y1fimy + y2fama)* c*

We apply these kinematic relations to a proton (ml = mp) of energy y colliding with
a proton at rest in a target. For a target proton at rest with y, = 1, my = mp, fo =0

and By = /y? — 1, the center of mass energy is
Exn = (v + D’mye* — (v2 = e
or after some manipulations

Eem = v2(y + Dmyc?* . (1.44)

The available energy for high-energy reactions after conservation of energy and
momentum for the whole particle system is the center of mass energy minus
the rest energy of the particles that need to be conserved. If, for example, two
protons collide, high-energy physics conservation laws tell us that the hadron
number must be conserved and therefore the reaction products must include two
units of the hadron number. In the most simple case the reaction will produce just
two protons and some other particles with a total energy equal to the available
energy

Eyvait = Ecn — 2Wlpc2 = [\/ 2()/ + 1) — 2:| WlpC2 . (1.45)

The energy available from such reactions increases only like the square root of the
energy of the accelerated particle which makes such stationary target physics an
increasingly inefficient use of high-energy particles. A significantly more efficient
way of using the energy of colliding particles can be obtained by head on collision

of two equal particles of equal energy. In this case y; = y» = Y, the mass
of the colliding particles is m; = my = mp, and f; = —f, = . In
this case, the center of mass energy is simply twice the energy of each of the
particles

Eem = 2ymc* = 2E. (1.46)

In colliding beam facilities, where particles collide with their antiparticles no parti-
cle type conservation laws must be obeyed and therefore the total energy of both par-
ticles becomes available for the production of new particles at the collision point. In
a similar way we may calculate the available energy for a variety of collision scenar-
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ios like the collision of an accelerated electron with a stationary proton, the head on
collision of electrons with protons or collisions involving high-energy heavy ions.

1.5 Principles of Particle-Beam Dynamics

Accelerator physics relates primarily to the interaction of charged particles with
electromagnetic fields. Detailed knowledge of the functionality of this interaction
allows the design of accelerators meeting specific goals and the prediction of
charged particle beam behavior in those accelerators. The interplay between
particles and fields is called beam dynamics. In this section, we recall briefly
some features of electromagnetic fields and fundamental processes of classical and
relativistic mechanics as they relate to particle beam dynamics.

1.5.1 Electromagnetic Fields of Charged Particles

Predictable control of charged particles is effected only by electric and magnetic
fields and beam dynamics is the result of such interaction. We try to design and
formulate electromagnetic fields in a way that can be used to accurately predict the
behavior of charged particles. To describe the general interaction of fields based on
electric currents in specific devices and free charged particles which we want to
preserve, guide and focus, we use as a starting point Maxwell’s equations (1.4).

Electric Field of a Point Charge

First, we apply Gauss’ theorem to a point charge ¢ at rest. The natural coordinate
system is the polar system because the fields of a point charge depend only on the
radial distance from the charge. We integrate Coulomb’s law (1.4) over a spherical

volume containing the charge ¢ at its center. With dV = 4mr?dr the integral
becomes [ VEdV= fOR riz% (rzE,)dV = 47R’E, (R), where R is the radial distance

from the charge. On the r.h.s. of Coulomb’s law (1.4), an integration over all the
charge ¢ gives [ 60%dV = eoig and the electric field of a point charge at distance

Ris

q

E, (R) = 4
(®) 4dmege R?

(1.47)

The electric field is proportional to the charge and decays quadratically with
distance R.
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Fields of a Charged Particle Beam

Many charged particles, travelling along the same path form a beam. This particle
beam generates an electric as well as a magnetic field. The proper coordinates are
now cylindrical and Coulomb’s law is

14 1 0E oE 19
VE = —— (E) + - =2 + % =-Z(E) =22 (1.48)
ror r g 0z ror €€
—— SN——
=0 =0

where py is the charge density in the particle beam. We assume a uniform continuous
beam and expect therefore no azimuthal or longitudinal dependence, leaving only
the radial dependence. Radial integration over a cylindrical volume of unit length
collinear with the beam gives with the volume element dV = 2xrdr, on the Lh.s.
|FE, |y 27. The rhs. is e’f)—"enrz and the electric field for a uniformly charged particle
beam with radius R is

E () { nggr forr <R (1.49)
P \r) = R2 . .
2/de = forr>R

The magnetic field for the same beam can be derived by applying Stoke’s theorem
on Ampere’s law to give after integration

1 .
5 r forr <R

2 HORIOT . (1.50)
sHopjo - forr>R

B, (r) = {

The fields increase linearly within the beam and decay again like 1/r outside

the beam. Real particle beams do not have a uniform distribution and therefore a

form function must be included in the integration. In most cases, the radial particle

distribution is bell shaped or Gaussian. Both distributions differ little in the core of

the beam and therefore a convenient assumption is that of a Gaussian distribution
for which the fields will be derived in Problem 1.3.

1.5.2 Vector and Scalar Potential

By virtue of Maxwell’s equation VB = 0 one can derive the magnetic field from
a vector potential A defined by B = V x A.Faraday’s law can be used to derive
also the electric field from potentials. The equation V X E = —%B = —% (VxA)

can be written like V x (E —i—A) = 0, and solved by E = —38—‘? — VV, where we

added the gradient of a scalar potential function V which does not alter the validity
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of Maxwell’s equations for all fields so defined. To summarize, both, electric and
magnetic fields can be derived from a scalar V and vector A potential

B=VxA-VV, (1.51)
E=_9 gy (1.52)
Y ' '

These definitions of the magnetic and electric fields from potentials will not alter
the validity of Maxwell’s equations as can be verified by backinsertion.

1.5.3 Wave Equation

From Ampere’s law both the vector and scalar potentials can be derived. Replacing
in Ampere’s law V x B = puouj + i—’;E the fields with their expressions in terms of

potentials, we get V x (V x A) = powj + i—’z‘ (—A — VV) and with Vx (VxA) =
V (VA) — V’A

2g _ HTA_ i iy
ViA- Lo = uo,uJ+V(VA+ > v). (1.53)
———

=0
At this point, we specify the potential function V such that it meets the condition

va+ZLy—o (1.54)
C

thereby simplifying greatly (1.53) and separating both potentials. This condition is
called the Lorenz gauge and the resulting wave equation is

en 9’A .
VA — — — = —iolyj. 1.55
SRy Mol (1.55)
The vector potential is clearly defined by the placement of electrical currents j.
We will use this property later in the design of, for example, magnets for particle
beam guidance. Similarly, the wave equation for the scalar potential is

1 *V )
—— = 1.56
c? or? €0€ ( )

V2V

Knowledge of the placement of electrical charges defines uniquely the scalar
potential function. However, because the velocity of electro-magnetic waves is
finite, the potentials at the observation point depend on the charges and currents
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at the retarded time, e.g. the location when the electro-magnetic waves have been
emitted. The second order differential equations (1.55), (1.56) can be integrated
readily and the potentials are

pop [ Jjx,y,2)
AP, t) = — ——| dxdyd 1.57
(P,1) i ] Reey.ol, ydz (1.57)
and
1 p(x,y,2)
V(P,t) = dxdydz. 1.58
®.) dmepe / R(x,y,2) |, v (158)

Integration over all currents and charges at the retarded distance R; from the
observation point P results in the definition of the vector and scalar potential at
the point P. Both electric and magnetic fields may be derived as discussed in the last
section.

The wave equation just derived has special relevance for static fields where the
Lorenz gauge reduces to the Coulomb gauge

VA =0 (1.59)

and (1.55) and (1.56) reduce in a charge and current free environment to the Laplace
equation being equal to zero

AA =0, (1.60)
AV = 0.

Static magnetic and electric fields used in beam dynamics will be derived from
theses potentials being solutions of the Laplace equation.

Lienard-Wiechert Potentials

For a point charge e at rest, we can integrate (1.57) readily to get A(R,f) = 0 and
V(R,1) = m. On the other hand, in case of a moving point charge the potentials
cannot be obtained by simply integrating over the “volume” of the point charge. The
motion of the charge must be taken into account and the result of a proper integration

(see Chap. 25) are the Liénard-Wiechert potentials for moving charges [31, 32]

AR,y = Porc a_ B (1.61)
4r R1+nB|,
and
1 1
VR ) = — 2 . (1.62)
dreg R1+np|,
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These potentials describe the radiation fields of synchrotron radiation being emitted
from relativistic electrons.

1.5.4 Induction

Applying Stokes’ theorem to Faraday’s law (1.4), we get on the Lh.s. a line integral
along the boundaries of the surface area S, which is equivalent to a voltage. On the
r.h.s. the magnetic flux passing through the surface S is integrated and

/[VxE]da:¢Eds:— B 22 (1.63)
N SBt

or
By virtue of Faraday’s law, the time varying magnetic flux @ through the area S
generates an electromotive force along the boundaries of S. In accelerator physics
this principle is applied in the design of a betatron. Similarly, from the second term
on the right hand side in Ampere’s law (1.4), we get a magnetic induction from a
time varying electric field. Both phenomena play together to form the principle of
induction or, in a particular example, that of a transformer.

1.5.5 Lorentz Force

The trajectories of charged particles can be influenced only by electric and magnetic
fields through the Lorentz force

FL=qE +q(vxB). (1.64)

Guiding particles through appropriate electric or magnetic fields is called particle
beam optics or beam dynamics. Knowledge of the location and amplitudes of
electric and magnetic fields allows us to predict the path of charged particles. Closer
inspection of (1.64) shows that the same force from electric or magnetic fields can be
obtained if E = vB, where we have assumed that the particle velocity is orthogonal
to the magnetic field, v_LB. For relativistic particles v & ¢ and to get the same force
from an electric field as from, say a 1 Tesla magnetic field, one would have to have
an unrealistic high field strength of E ~ 300 MV/m. For this reason, magnetic fields
are used to deflect or focus relativistic charged particles. For sub-relativistic particles
like ion beams with velocities v < ¢, on the other hand, electric fields may be more
efficient.
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1.5.6 Egquation of Motion

Accelerator physics is to a large extend the description of charged particle dynamics
in the presence of external electromagnetic fields or of fields generated by other
charged particles. We use the Lorentz force to formulate particle dynamics under
the influence of electromagnetic fields. Whatever the interaction of charged particles
with electromagnetic fields and whatever the reference system may be, we depend in
accelerator physics on the invariance of the Lorentz force equation under coordinate
transformations. All acceleration and beam guidance in accelerator physics will be
derived from the Lorentz force. For simplicity, we use throughout this text particles
with one unit of electrical charge e like electrons and protons. In case of multiply
charged ions the single charge e must be replaced by eZ where Z is the charge
multiplicity of the ion. Both components of the Lorentz force are used in accelerator
physics where the force due to the electrical field is mostly used to actually increase
the particle energy while magnetic fields are used to guide particle beams along
desired beam transport lines. This separation of functions, however, is not exclusive
as the example of the betatron accelerator shows where particles are accelerated by
time dependent magnetic fields. Similarly electrical fields are used in specific cases
to guide or separate particle beams.

Relating the Lorentz force to particle momentum or kinetic energy, we know
from definitions in classical mechanics that

Ap = fFLdl
Acp = AFEg , 1.65
AEg, = fFLdS ds?v)dt ﬂ P k ( )
where B = v/c. The Lorentz force can be expressed in terms of fields and the

change of kinetic energy becomes
AEkin:/FLdS:q/[E-‘r(v XB)]dS (166)

=q/Eds+q/(va)vdt,
~——

=0

which indicates that an electric field component in the direction of particle motion
does increase the particle’s kinetic energy, while the magnetic field does not
contribute any acceleration. Magnetic fields are used only to deflect a particle’s path
by changing the direction of its momentum vector.

It becomes obvious that the kinetic energy of a particle changes whenever it
travels in an accelerating electric field E and the acceleration occurs in the direction
of the electric field. This acceleration is independent of the particle velocity and
acts even on a particle at rest v = 0. The second component of the Lorentz force
in contrast depends on the particle velocity and is directed normal to the direction
of propagation and normal to the magnetic field direction. We find therefore from
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(1.66) the result that the kinetic energy is not changed by the presence of magnetic
fields since the scalar product (v x B) v = 0 vanishes. The magnetic field causes
only a deflection of the particle trajectory.

The Lorentz force (1.64) in conjunction with (1.65) is used to derive the equation
of motion for charged particles in the presence of electromagnetic fields

% = i(Amyv) = e¢ZE + e¢Z(v x B) (1.67)
de  dr

where Z is the charge multiplicity of the charged particle and A the atomic mass. For
simplicity we drop from here on the factors A and Z since they are different from
unity only for ion beams. For ion accelerators we note therefore that the particle
charge e must be replaced by eZ and the mass by Am.

Both relations in (1.65) can be used to describe the effect of the Lorentz force on
particles. However, ease of mathematics makes us use one or the other. We use the
first equation for dynamics in magnetic fields and the second for that in accelerating
fields. Since the energy or the particle velocity does not change in a magnetic field it
is straightforward to calculate Ap. On the other hand, accelerating fields do change
the particle’s velocity which must be included in the time integration to get Ap.
Calculating AEyi,, we need to know only the spatial extend and magnitude of the
accelerating fields to perform the integration.

The particle momentum p = ymv and it’s time derivative

% =my— +mv—. (1.68)

With

dy d,dg  ;pdv

= = — 1.69
& dpda Ve (1.69)
we get from (1.68) the equation of motion
dp dv B dv
=L — — ——v]). 1.70
a - "UVa T’ (170)

For a force parallel to the particle propagation v, we have vv = vv and (1.70)
becomes

dp” v dl)” dv”
P _ 1+ 92 _) ket RV el 1.71
dt my( VP T g (17D

On the other hand, if the force is directed normal to the particle propagation, we
have dv/dt = 0 and (1.70) reduces to

Py _, du

oL 172
a (1.72)
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It is obvious from (1.71) and (1.72) how differently the dynamics of particle
motion is affected by the direction of the Lorentz force. Specifically the dynamics
of highly relativistic particles under the influence of electromagnetic fields depends
greatly on the direction of the force with respect to the direction of particle
propagation. The difference between parallel and perpendicular acceleration will
have a great impact on the design of electron accelerators. As we will see later, the
acceleration of electrons is limited due to the emission of synchrotron radiation.
This limitation, however, is much more severe for electrons in circular accelerators
where the magnetic forces act perpendicularly to the propagation compared to the
acceleration in linear accelerators where the accelerating fields are parallel to the
particle propagation. This argument is also true for protons or for that matter,
any charged particle, but because of the much larger particle mass the amount of
synchrotron radiation is generally negligibly small.

1.5.7 Charged Particles in an Electromagnetic Field

An electromagnetic field exerts a force on a charged particle. A magnetic field
or transverse electric field can deflect the beam and we use magnets as guiding
and focusing elements for particle beam dynamics. This dynamics guides the
particles on a path which is in equilibrium between the Lorentz force and the
centrifugal force. A charged particle in a magnetic field follows a path defined by
the equilibrium between centrifugal and Lorentz force

ymv?

n+elvxB] =0, (1.73)

where n is the unit vector in the direction of the centrifugal force, 1/p the local
curvature and m the mass of the particle with charge e. For a magnetic field
orthogonal to the velocity vector of the particle the vector product is always parallel
and opposite to r and (1.73) reduces to

ymv?

P

= —evB), (1.74)

with the local bending radius

1 ecB ecB |
- = = . (1.75)
P ﬁEIOt cp

The plane of the particle path is orthogonal to the transverse magnetic field. In a
uniform magnetic field the particle follows the path of an arc with radius

BLIT _ . BulT]

[m™'] = 0.2995617 v = ooV

(1.76)

o=
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in more practical units.We have a similar situation with respect to a transverse
electrical field. Here, the centrifugal force is now

2

ymv
+eE; =0 1.77)
or
1 E E
o e (1.78)
P ymc2 B2 B2E o
or in more practical units
1 E, [V/
S[m = _M‘ (1.79)
P Bep [GV]

Here, some caution is appropriate, because during the deflection the unit vector
n is changing direction while the electric field may not change direction as in the
case of a field between parallel straight plates. However, if the electrodes are bend
along the expected particle path, the direction of the electric field is changing with
n or the deflection of the beam.

1.5.8 Linear Equation of Motion

We have now all ingrediences to formulate an equation of motion in linear
approximation. Analytical geometry tells us that the curvature is given in cartesian
coordinates by

"

—x
V1 + 2 .

This equation can be simplified if we assume that X' ~ 0. We recognize this from
light optics as the paraxial approximation where all trajectories or rays are assumed
to be close to the optical axis. This approximation suits beam dynamics very well
since we try hard to keep all particles within a rather narrow vacuum chamber.
Therefore (1.80) reduces with (1.75) to

K = (1.80)

ecB,
kK~ —x" = . (1.81)
cp

The magnetic fields will have two main components, the guiding field for bending
and a focusing field. Both fields together can be expressed by B, = By, + gx, where
By is the bending field and g the field gradient g = 9B, /0x. The particle beam is not
perfectly monochromatic and we account for this by expanding the particle energy
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to first order é ~ ﬁ (1 —=6), where § = Ap/po.With this we get the equation of
motion

ecB, ec
x'=—2 = —(1-28)(Boy + &)
cp cPo

or keeping only linear terms in x and §

1 1
X"+ hkx = —— 4+ —46. (1.82)
Po Po
Here we have introduced the quadrupole focusing strength &k = %gx and the

bending radius is taken to be in the horizontal plane. The solution of this equation
of motion will be very complicated due to the arbitrary layout of the beam transport
line or py (z) . we are not interested in a mathematical formulation of this layout,
but are interested only on the deviation of a particle from the desired transport line
layout as defined by the location of magnets. We may transform away the beam line
layout by merely dropping the %-term from (1.82) to get finally the linear equation
of motion for particle dynamics

xX'"+k(z)x=+

S. 1.83
po (2) (189

Later we will introduce this coordinate system rigorously. This looks basically
like the differential equation of a harmonic oscillator if it were not for the fact
that the magnet strengths are functions of z.However, the solutions will be of
oscillatory nature describing the particle motion in the restoring fields of the
focusing devices. Actual analytical solutions will be discussed in great detail later
in this text.

1.5.9 Energy Conservation

The rate of work done in a charged particle-field environment is defined by the
Lorentz force and the particle velocity FLv = eEv + e (v x B) v. Noting that
(v xB)v = 0, we set eEv = jE, and the total rate of work done by all particles
and fields can be obtained by integrating Ampere’s law(1.4) over all currents and
fields

/ JEAV = epe / <c2 (V x B) —E) Edv. (1.84)
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With the vector relation V(a x b) = b (V xa) —a (V x b)

/jEdV = 606/ [¢’B VXE —*V (ExB)—EE] v (1.85)
—B
du 5
=— E—i—eoecV(ExB) dv,

where an energy density has been defined by
u=1ie (E*+ ’B%). (1.86)

Applying Gauss’s theorem to the vector product in (1.85), we get an expression
for the energy conservation of the complete particle-field system

d
i / udV + / JEAV  + 9£Snda —0. (1.87)
N—— N—— N——

change of particle energy radiation loss through

field energy loss or gain closed surface a

This equation expresses the conservation of energy relating the change in field
energy and particle acceleration with a new quantity describing energy loss or gain
through radiation.

Poynting Vector

The third integral in (1.87) is performed over a surface enclosing all charges and
currents considered. The Poynting vector S is the energy loss/gain through a unit
surface element in the direction of the unit vector n normal to the surface defined by

1
S=—[ExB]. (1.88)
Kol

Equation (1.88) exhibits characteristic features of electromagnetic radiation.
Both, electric and magnetic radiation fields are orthogonal to each other (E_LB),
orthogonal to the direction of propagation (E_Ln, BL n), and the vectors E, B, S
form a right handed orthogonal system. For plane waves n x E = cB and

E’n. (1.89)
CHop

Knowing the electric fields we may determine the Poynting vector describing
electro-magnetic waves or synchrotron radiation.
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1.5.10 Stability of a Charged-Particle Beam

Individual particles in an intense beam are under the influence of strong repelling
electrostatic forces creating the possibility of severe stability problems. Particle
beam transport over long distances could be greatly restricted unless these space-
charge forces can be kept under control. First, it is interesting to calculate the
magnitude of the problem.

If all particles would be at rest within a small volume, we would clearly expect
the particles to quickly diverge from the center of charge under the influence of
the repelling space charge forces from the other particles. This situation may be
significantly different in a particle beam where all particles propagate in the same
direction. We will therefore calculate the fields generated by charged particles in
a beam and derive the corresponding Lorentz force due to these fields. Since the
Lorentz force equation is invariant with respect to coordinate transformations, we
may derive this force either in the laboratory system or in the moving system of the
particle bunch.

From (1.49) and (1.50) we determine the Lorentz force due to electro-magnetic
fields generated by the beam itself and acting on a particle within that beam. From
(1.49) and (1.50) we get

e o

F,=e(E, —vB,) = rece yzr. (1.90)
Only the radial component of the Lorentz force is finite. The Lorentz force remains
repelling but due to a relativistic effect we find that the repelling electrostatic
force at higher energies is increasingly compensated by the magnetic field. The
total Lorentz force due to space charges therefore vanishes like y~2 for higher
energies. Obviously this repelling space charge force is much stronger for proton
and especially for ion beams because of the smaller value for y and, in the case
of ions, because of the larger charge multiplicity which increases the space-charge
force by a factor of Z.

We find the same result if we derive the Lorentz force in the moving system L*
of the particle beam and then transform to the laboratory system. In this moving
system we have obviously only the repelling electrostatic force since the particles
are at rest and the only field component is the radial electrical field which is from
(1.49)

e
Transforming this equation back into the laboratory system we note that the force

is purely radial and therefore acts only on the radial momentum. With F, = dp,/dt
and p, = p¥ we find F* = yF, since dt = ydr*. The charge densities in both
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systems are related by p* = p/y, the radii by r* = r, and the Lorentz force in the
laboratory system becomes thereby

€ Po
"= Sere J/zr (1.92)
in agreement with (1.90).

We obtained the encouraging result that at least relativistic particle beams
become stable under the influence of their own fields. For lower particle energies,
however, significant diverging forces must be expected and adequate focusing
measures must be applied. The physics of such space charge dominated beams is
beyond the scope of this book and is treated elsewhere, for example in considerable
detail in [33].

Problems

1.1 (S). Use the definition for 8, the momentum, the total and kinetic energy and
derive expressions p (B, Exin), p (Exin) and Eyi, (y). Simplify the expressions for
very large energies, y > 1. Derive from these relativistic expressions the classical
nonrelativistic formulas.

1.2 (S). Prove the validity of the field equations E, = %{) por and B, = % HoPBpor
for a uniform cylindrical particle beam with constant charge density py within a
radius r < R. Derive the field expressions for r > R.

1.3 (S). Derive the electric and magnetic fields of a beam with a radial charge
distribution p (r,¢,z) = p(r). Derive the field equations for a Gaussian charge
distribution with standard deviation o given by p (r) = po exp [—r2 / (202)]. What
are the fields forr =0 and r = 0?

1.4 (S). A circular accelerator with a circumference of 300 m contains a uniform
distribution of singly charged particles orbiting with the speed of light. If the
circulating current is 1 amp, how many particles are orbiting? We instantly turn on
an ejection magnet so that all particles leave the accelerator during the time of one
revolution. What is the peak current at the ejection point? How long is the current
pulse duration? If the accelerator is a synchrotron accelerating particles at a rate of
10 acceleration cycles per second, what is the average ejected particle current?

1.5 (S). A proton with a kinetic energy of 1eV is emitted parallel to the surface
of the earth. What is the bending radius due to gravitational forces? What are the
required transverse electrical and magnetic fields to obtain the same bending radius?
What is the ratio of electrical to magnetic field? Is this ratio different for a proton
energy of say 10 TeV? Why? (gravitational constant 6.67259 x 10~ m3kg~!s72).
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1.6 (S). Consider a highly relativistic electron bunch of n = 10'° uniformly
distributed electrons. The bunch has the form of a cylindrical slug, £ = 1 mm long
and a radius of R = 0.1 um. What is the electrical and magnetic field strength at
the surface of the beam. Calculate the peak electrical current of the bunch. If two
such beams in a linear collider with an energy of 500 GeV pass by each other at a
distance of 10 wm (center to center), what is the deflection angle of each beam due
to the field of the other beam?

1.7 (S). Show that for plane wavesn x E = cB.
1.8 (S). Show that the product of two 4-vectors is Lorentz invariant.
1.9 (S). Prove that the 4-acceleration is indeed given by (1.23).

1.10 (S). Using 4-vectors, derive the frequency of an outgoing photon from a head-
on Compton scattering process of an electron with a photon of frequency wy .

1.11 (S). Using 4-vectors, derive the frequency of an outgoing photon from a head-
on Compton scattering process of an electron with the field of an undulator with
period A,.

1.12. Protons are accelerated to a kinetic energy of 200 MeV at the end of the
Fermilab Alvarez linear accelerator. Calculate their total energy, their momentum
and their velocity in units of the velocity of light (m,c* = 938.27 MeV).

1.13. Consider electrons to be accelerated in the L = 3km long SLAC linear
accelerator with a uniform gradient of 20 MeV/m. The electrons have a velocity
v = %c at the beginning of the linac. What is the length of the linac in the rest frame
of the electron? Assume the particles at the end of the 3 km long linac would enter
another 3 km long tube and coast through it. How long would this tube appear to be
to the electron?

1.14 (S). A positron beam of energy E accelerated in a linac hits a fixed hydrogen
target. What is the available energy from a collision with a target electron assumed
to be at rest? Compare this available energy with that obtained in a linear collider
where electrons and positrons from two similar linacs collide head on at the same
energy.

1.15 (S). The SPEAR colliding beam storage ring has been constructed originally
for electron and positron beams to collide head on with an energy of up to 3.5 GeV.
At 1.55 GeV per beam a new particle, the 1/J-particle, was created. In a concurrent
fixed target experiment at BNL, such 1/J-particle have been produced by protons
hitting a hydrogen target. What proton energy was required to produce the new
particle? Determine the positron energy needed to create yr/J-particles by collisions
with electrons in a fixed target.

1.16. A charged pion meson has a rest energy of 139.568 MeV and a mean life time
of 7o, = 26.029ns in its rest frame. What are the life times t,, if accelerated to a
kinetic energy of 20MeV? and 100 MeV? A pion beam decays exponentially like
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e~"/™ . At what distance from the source will the pion beam intensity have fallen to
50 %, if the kinetic energy is 20 MeV? or 100 MeV?

1.17 (S). Assume you want to produce antiprotons by accelerating protons and
letting them collide with other protons in a stationary hydrogen target. What is the
minimum kinetic energy the accelerated protons must have to produce antiprotons?
Use the reactionp +p —-p+p+p+p.

1.18. Use the results of Problem 1.3 and consider a parallel beam at the beginning
of a long magnet free drift space. Follow a particle under the influence of the beam
self fields starting at a distance ry = o from the axis. Derive the radial particle
distance from the axis as a function of z.

1.19. Show that (1.57) is indeed a solution of (1.55).

1.20. Express the equation of motion (1.67) for Z = 1 in terms of particle
acceleration, velocity and fields only. Verify from this result the validity of (1.71)
and (1.72).

1.21. Plot on log-log scale the velocity B, total energy as a function of the kinetic
energy for electrons, protons, and gold ions Aut'4. Vary the total energy from
0.01mc? to 10*mc?. Why does the total energy barely change at low kinetic energies.

1.22. The design for a Relativistic Heavy Ion Collider calls for the acceleration of
completely ionized gold atoms in a circular accelerator with a bending radius of
p = 242.78 m and superconducting magnets reaching a maximum field of 34.5kg.
What is the maximum achievable kinetic energy per nucleon for gold ions Au™’’
compared to protons? Calculate the total energy, momentum, and velocity of the
gold atoms (Ap,=197).

1.23. Gold ions Au™'* are injected into the Brookhaven Alternating Gradient
Synchrotron AGS at a kinetic energy per nucleon of 72 MeV/u. What is the velocity
of the gold ions? The AGS was designed to accelerate protons to a kinetic energy
of 28.1 GeV. What is the corresponding maximum kinetic energy per nucleon for
these gold ions that can be achieved in the AGS? The circulating beam is expected
to contain 6- 10° gold ions. Calculate the beam current at injection and at maximum
energy assuming there are no losses during acceleration. The circumference of
the AGS is Cags = 807.1 m. Why does the beam current increase although the
circulating charge stays constant during acceleration?

1.24. Particles undergo elastic collisions with gas atoms. The rms multiple scatter-
ing angle is given by 09 ~ Z % /7> where Z is the charge multiplicity of the
beam particles, s the distance travelled and £, the radiation length of the scattering
material (for air the radiation length at atmospheric pressure is £, = 500m or
60.2 g/cm?). Derive an approximate expression for the beam radius as a function of s
due to scattering. What is the approximate tolerable gas pressure in a proton storage
ring if a particle beam is supposed to orbit for 20h and the elastic gas scattering
shall not increase the beam size by more than a factor of two during that time?
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