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Abstract. IOPT-Tools is a cloud based integrated development environment to 
the design of embedded system controllers and other digital systems, employing 
the IOPT Petri net modeling formalism. The tools include a graphical editor, a 
state-space based model-checking subsystem and automatic code generators to 
deploy the controllers on the target hardware platforms. This paper presents a 
new Simulator tool that offers the capability to execute embedded system con-
trollers based on IOPT models in a Web browser. To allow the test and debug 
of embedded system controllers, the Simulator provides options to manipulate 
the value of input signals, step by step execution, and continuous execution 
with programmed step frequency and breakpoint definition. Simulation history 
is recorded, continuously storing information about the entire system state, to 
enable playback and history navigation. History data can later be exported in 
spreadsheet format for analysis with external tools and waveform drawing. The 
tool can be accessed from http://gres.uninova.pt. 

Keywords: Embedded systems · Cloud based tools · Petri nets 

1 Introduction 

The main goal of the IOPT-Tools integrated development environment [1] is to pro-
vide a rapid application development framework to the design of embedded system 
controllers and general purpose digital systems. In such framework, debug and simu-
lation tools assume special importance, allowing the detection of mistakes during the 
early development phases, before reaching the prototype implementation, greatly 
contributing to reduce development time and cost and minimize the risk of prototype 
hardware damage due to controller design errors. 

The tools offer a complete Cloud based tool-chain, including a graphical editor, a 
model-checking sub-system based on state-space computation, automatic code gener-
ation tools to produce software code or hardware descriptions, and the simulation and 
debug tool presented in this paper. All tools have a Web based user interface, with 
data storage and computing intensive operations executed on the Cloud, in the IOPT-
Tools servers. 

In this environment, embedded system controllers are modeled using IOPT nets 
[2], a subclass of Petri nets [3] specifically created for this purpose, with the addition 
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of the concepts of input and output signals and events to the traditional Petri net place 
and transition nodes. This way, controller behavior is expressed using the standard 
Petri net concepts, but the interface between the controllers, the controlled systems 
and the user interface is defined using input and output signals and events. 

Figure 1 presents the typical IOPT-Tools development work-flow, including all 
development stages. The first steps, starting with the model edition, debug and simu-
lation, model-checking and property verification are performed inside the tools using 
a pure software solution. This way, designers can test and debug controllers, focusing 
exclusively on the controller behavior without distractions from hardware details. The 
final development stages are also assisted by the automatic code generation tools, 
minimizing the risk of low level coding mistakes and simplifying the migration to 
different hardware platforms. 

The simulator is usually employed in the second development stage, immediately 
after a model is designed or suffers changes, the typical use case situations must be 
simulated to check if the model exhibits the expected behavior. After successful com-
pletion of the typical use case sequences, development can progress to the next stages, 
including model checking and property verification, automatic code generation and 
prototype implementation. 

To better analyze the debug 
and simulation results, a simulate- 
ion history table is automatically 
recorded, containing all system 
data for every execution step, 
including the net marking, input 
and output signals and events and 
internal variables. The history can 
be visualized as a spreadsheet 
table, exported to create waveform 
drawings or used to replay a 
graphical animations of the stored 
execution steps. The user can also 
navigate through the history and 
restart the simulation from any 
saved history step, to test the sys-
tem behavior under different input 
sequences. 

The tools can be used from the 
IOPT-Tools web service, located 
at http://gres.uninova.pt, and do 
not require any software installa-
tion on the user's personal com-
puter or tablet computer, running 
directly on the Web browser. New 
users can log-in using a guest 
account to experiment the tools, 
but can also create personal user 
accounts to store private models. 

 

Fig. 1. The typical IOPT-tools workflow 
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For more information about the tools and IOPT nets, a detailed user manual is also 
available online at the tools Web site [4]. 

2 Relationship to Cloud-Based Solutions 

The tools presented in this paper are a cloud-based solution. The simulator and  
the other tools run directly on the user's Web browser, using AJAX (Asynchronous 
Java-script and XML) principles [5]. All data files are stored on the cloud, in the 
IOPT-Tools servers, and all tasks requiring heavy duty computation, as state-space 
calculation and model-checking are also performed on the server, with a Web inter-
face to display the results. This solution minimizes the computation requirements on 
the user's terminal equipment and can be used from low end personal computers, tab-
let computers or even smart-phones, as long as a W3C compliant Web browser is 
available. 

On another way, the simulator is also a building block of a distributed architecture 
proposed in [6], intended to simplify the development of cloud-enabled embedded 
devices. This architecture minimizes the hardware resources required to implement 
embedded devices, greatly reducing costs, by storing all user interface data and code 
on the cloud and executing the user interface logic in the user's Web browser. The 
embedded device only needs to provide a minimal TCP/IP infrastructure to exchange 
data with the user interface code running on the browser, including information about 
the current system state and input and output signals, and receive feedback from the 
user interface logic. 

3 Related Work 

The simulator presented in this paper is integrated in a larger tool-chain, including  
a model editor [7], a model-checking infrastructure composed by a state-space gen-
erator and a query system [8] and automatic code generation tools [9]. Additional 
information about these tools has been published in [1] and a user manual in [4]. The 
underlying modeling formalism on which the tools are based, IOPT nets, has also 
been discussed in [2]. A direct connection to the HIPPO system [10] provides addi-
tional tools, including the calculation of incidence matrices and analysis of place  
invariants, concurrency relations and sequential relations. 

Computer simulation is widely disseminated over most engineering and scientific 
fields, and simulators can be found in many development environments [11]. General 
purpose simulation software applications like Math-lab and Simulink [12] are often 
used to simulate diverse physical systems, covering a wide range of scientific fields. 
Among electrical and electronics engineers, simulators like SPICE are very popular 
for electrical circuit analysis. Like the tools presented in this paper, Matlab and Sim-
ulink are often used on the development of embedded system controllers, including 
automatic code generation tools to deploy models on hardware prototypes. IOPT nets 
are often used as a high level modeling formalism to the design of digital system cir-
cuits.  
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Simulators are usually employed to study the behavior of systems, in situations 
where it is not practical, costly or convenient to perform the corresponding experi-
ments in the real world, like the effects of natural disasters, weather prediction, the 
behavior of sub-atomic particles, or the evolution of human demographics. 

Traditionally, Petri nets have been used as a modeling language to run simulations. 
As the standard Petri net classes are autonomous and lack the capabilities to com-
municate with the external world, the purpose of these classes are the simulation by 
itself, and almost all Petri net tool-chains include a Simulator tool. For example, 
simulators can be found in CPN-Tools [13], CPN-AMI [14] and Renew [15]. 

Although existing simulators implemented in Java could be executed from Web 
browsers, the new simulator tool runs entirely inside the Web browser, without re-
quiring any additional virtual machine. This way, simulator usage is not limited to 
PCs and can be executed on a wide range of hardware platforms and operating sys-
tems, from PCs and tablet computers to smart-phones, as long as a W3C compliant 
Web browser is available. 

A previous Animator tool [16], could also be used to run animated simulations of 
Petri net models, but required the definition of a series of user interface «screens» 
containing graphic objects to visualize the system state and interact with the user. 
However, the tool and the simulations produced by this tool do not offer a Web inter-
face and cannot be integrated in the IOPT-tools environment. The development of 
cloud-enabled version of the Animator tool is planned for the future and the new sim-
ulator tool already contains infrastructure code to interact with animated user interface 
windows build using the future Animator. 

4 Research Innovation 

The simulator presented in this paper should not be understood as a Petri net simula-
tor, but as an embedded system controller simulator that uses IOPT Petri nets as the 
underlying modeling formalist. Due to the non-autonomous nature of IOPT nets, the 
new Simulator tool exhibits fundamental differences from the existing Petri net simu-
lators for autonomous Petri net classes. 

With traditional Petri net simulators, the user interaction with the simulator is lim-
ited to the definition of an initial marking before starting the simulation and during 
execution, the user can only choose the transitions that fire on each execution step, 
from a set of enabled transitions. In contrast, using the new embedded system control-
ler simulator, the user interacts with the simulator by setting the value of input signals 
and autonomous input events. All enabled transitions will automatically fire in the 
next execution step, as IOPT nets use a maximal step semantics. In this regard, the 
IOPT simulator has more similarities with the tools found in the Ladder and Grafcet 
[17] programmable logic controller tool-chains for industrial automation, than with 
the autonomous Petri net simulators. 

As the user does not have to manually choose which transitions will fire, the Simu-
lator is typically used in continuous run mode, as opposed to the traditional Petri net 
simulators that are often used in step by step execution mode. As a consequence, the 
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concept of Breakpoints, popular in software development tools, has been introduced 
to the new Simulator, enabling the automatic interruption of continuous execution 
when selected transitions are fired. 

As embedded system simulations typically run at very fast step rates, the user may 
not be able to notice all execution details in real time. To solve this problem, a simu-
lation history mechanism has been added to enable the posterior analysis of the results 
and export data to draw waveform graphics. To help the user track the system evolu-
tion in real time, special attention was given to graphical feedback, dynamically 
changing the colors of input and output signals, triggered events, marked places, ena-
bled transitions and transitions with guards ready. 

From an implementation point of view, the new simulator also differs from tradi-
tional Petri net simulators, as it employs a compilation execution strategy instead of 
using a model interpreter: each time the simulator is called, the Javascript code re-
sponsible for implementing the model behavior is rewritten, according to the model in 
use. This strategy offers improved simulation performance, enabling simulations run-
ning at very fast step rates, comparable to the speeds employed in real embedded 
devices based in micro-controllers. 

Finally, to reinforce the embedded system controller nature of the new simulator, it 
is important to notice that the tool was designed with an architecture ready to enable 
the implementation of a distributed IcE (In Circuit Emulator), to remotely debug em-
bedded systems running on physical devices over the internet, using the same user 
interface of the simulator. To implement this solution, the code responsible for exe-
cuting the IOPT semantics is replaced with proxy code that forwards execution-flow 
commands to the remote embedded systems using HTTP requests. The status of the 
embedded devices is also read in real time using HTTP. The communication protocol 
presented in [6], and back-end HTTP server to run on the embedded devices are cur-
rently under development. 

5 IOPT Petri Nets 

The IOPT Petri net class is a non-autonomous Petri net class derived from Place-
Transition nets [3], with the addition of input and output signals and events. In the 
same way as the traditional Petri nets, system behavior is expressed using places and 
transitions. However, the new input and output capabilities allows the definition of an 
interface with the external world, used to establish the communication between the 
controllers (IOPT models) and the controlled systems. 
Figure 2 displays an example IOPT model. IOPT models support the usual places and 
transitions from P/T nets, plus the following characteristics:  

1 – Input and output signals, can hold Boolean or integer range values, suitable to 
represent digital or analog I/O signals, respectively. 2 – Input events, represent-
ing instantaneous changes in input signals. 

3 – Output events cause instantaneous changes in the value of output signals. Output 
events associated with transition firing, can increment or decrement the value of 
output signals by a specific amount. The signals hold the last values. 
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4 – Autonomous input and output events, not associated with I/O signals, are used 
to instantaneously propagate events between different component models. 

5 – Guard expressions may be associated with transitions, containing logic condi-
tions to inhibit transition firing according to the value of input signals 

6 – Input events may also be associated with transitions to synchronize firing. 
7 – Output actions may be associated with places, to define the value of output sig-

nals, when the places are marked. When no actions are active, the signals revert 
to a default value. 

8 – Output actions associated to transitions, define the value of output signals when 
the transition fires. The affected signals memorize the last values. 

9 – Transition priorities solve conflict situations where multiple transitions are sim-
ultaneously enabled, but there are not enough tokens to fire all of them. 

10 – Test Arcs prevent the firing of transitions in the same way as normal Arcs, but 
do not consume the tokens and thus, do not cause transition conflicts. 

11 – Maximal step execution semantics to provide deterministic execution, ensuring 
that all transitions ready to fire, will fire in the next execution step. Single server 
semantics is used, which means that even if a transition is enabled for multiple 
firings, only one firing will be produced per execution step. 

6 Simulator Functionality 

 

Figure 3 presents the IOPT simulator user interface, composed by a toolbox on the 
left, a properties form on the right and a drawing of the model on the center. The 
toolbox contains icons for step-by-step execution, undo the last executed step, contin-
uous execution, reset to initial marking, define a new forced marking, history naviga-
tion, history replay and history file export. The properties form contains the entire 
simulator status, including the current net marking, input signals, output signals and 
input and output events.  

The model drawing reflects that status of the system, by changing the colors of the 
nodes. Places change colors according to the current marking: no tokens, one token or 

 

Fig. 2. IOPT Model - Quadrature decoder 
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many tokens. Transitions change color according to the readiness: autonomously ena-
bled, ready to fire or both. Boolean input and output signals change color according to 
the value, and input and output events also flash when triggered. This color scheme 
helps the user interpret the current system status, resulting in much faster debug ses-
sions. For example, instead of manually calculating the value of guard expressions to 
check if a transition is ready to fire in the next execution step, the user can simply 
observe the transition color.  

 

The user can interact with the system both in the properties form and directly in 
the model drawing. For example, the value of an input signal can be changed on the 
corresponding item on the properties form, but it may also be changed by picking the 
corresponding signal on the graphic.  

Continuous execution can be automatically interrupted with Breakpoints associat-
ed with transitions. Picking on a transition sets or resets a Breakpoint. A red border is 
drawn around transitions with Breakpoints. Execution stops immediately after a tran-
sition with a Breakpoint is fired, and the user interface reflects the system status after 
the firing. In case the user desires to inspect the status of the system prior to the firing, 
it is possible to undo the last executed step or move one position backwards in the 
recorded history. 

The simulator maintains a complete record of the system status during entire simu-
lation sessions. Whenever a new step is executed, the entire system status is recorded, 
including the value of input signals, events triggered, and information about transi-
tions fired. The user can navigate through the saved history, and the user interface 
will change to reflect the status of the selected history step. This way, it is possible to 
inspect the past system evolution to detect flaws that may have not been noticed by 
the user during the original execution. 

To simplify the inspection of the past system evolution, it is possible to replay the 
recorded history with programmable speed, starting on the current history step. In 
alternative, the simulator history can also be presented in the form of a spreadsheet 
table, as displayed in figure 4. To simplify inspection, repeated execution steps with 
identical status are compressed in a single table line with indication about the number 
of repetitions. 

 

Fig. 3. Simulator / Debugger User Interface 
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Finally, the history table can be exported in CSV (Comma Separated Values) text 
file, suitable for spreadsheet edition, or to be imported by other software. Taking ad-
vantage of the graphing functionality offered by most spreadsheet applications, it is 
very easy to create waveform diagrams of the input and output signals, as well as the 
internal system status variables. 

For more detailed information about the simulator usage, tool options, interaction 
and color schemes, a user manual can be downloaded from the tools web interface [4]. 

7 Simulator Architecture 

The core of the simulator is a based on a new automatic code generator tool that pro-
duces Javascript code. Instead of relying on a model interpreter, the part of the simu-
lator code that implements the model semantics is dynamically generated each time 
the simulator is executed, with code that implements the semantic rules of execution 
defined in each model.  

 

The automatic code generator itself, is implemented using a XSLT Transformation 
[18] applied to the model's PNML [19] files. The code generator uses the same prin-
ciples as the VHDL and C code generators and detailed information about the code 
generation techniques can be found in [9]. The generated Javascript code contains the 
following items: 

- A semantics execution function that runs a single execution step of the mod-
el being simulated 

- Several functions that evaluate the state of each transition, to check if it is  
autonomously enabled or the associated input events and guard functions 
are ready (to provide animated graphical feedback) 

- Several JSON [Javascript Object Notation] objects representing the net 
marking, the input signals, output signals, input events, output events and 
model arrays. 

 

Fig. 4. Recorded history table 
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The user interface code calls another XLST transformation to create an SVG 
(Scalable Vector Graphics) [20] document containing the graphical representation of 
the model, that is displayed in the central area of the simulator window. 
To process each execution step, the simulator executes the following tasks: 

a) Update the JSON objects representing input signals and autonomous input events 
b) Update the user interface color schemes, using the transition evaluation functions 
c) Call the Javascript function that executes a single execution step 
d) Update the user interface status form, according to the new values on the JSON     

objects 
e) Update the graphical model according to the new status and apply color schemes 

This architecture is ready to implement an in-circuit emulator used to remotely de-
bug embedded systems designed using IOPT tools. To achieve this, the Javascript 
execution function in c) is replaced by a proxy function that communicates with the 
remove system, sending and receiving the JSON objects used in a) and d).   

8 Conclusions and Future Work 

The simulator has been developed and integrated in the IOPT tools service and has 
been used to debug and simulate numerous models. The behavior of the simulated 
models has been compared with real world implementations of the same models run-
ning on embedded hardware boards, and also with the state-space graphs, with no 
inconsistencies detected. As a consequence, the simulator can be used effectively to 
detect design flaws before reaching the prototype implementation phase. As the typi-
cal development cycle takes only a few seconds after completing a model edition to 
start a new simulation session, development time can be enormously reduced. The 
alternative solution, debugging models using prototype boards, generally impose 
much longer development cycles, as the FPGA synthesis tools usually take many 
minutes to generate the bit-stream files necessary to reconfigure the hardware devices. 

The rapid detection of design flaws often requires the simulation of the entire em-
bedded systems. Although IOPT nets have been designed to the development of con-
trollers, the user can build enhanced models containing both the controller and also 
the controlled systems. With this solution, the user can simulate the entire embedded 
systems, including controlled hardware and can even calculate the state-space graphs 
of the entire system. 

Future work includes the addition of a waveform editor, to pre-program sequences 
of input signals and graphically visualize the resulting output signal waveforms. A 
database of signal waveforms can be stored in the cloud, and used as an automatic 
unit-test framework to perform regression tests and compare results with previous 
executions. An in-circuit emulator to debug remote systems is currently under devel-
opment. Integration with an Animator tool is planned and the Simulator is currently 
ready to interact with other windows that present Animator generated screens. These 
screens will add new user interface windows, bringing additional user friendliness and 
the ability to be used by persons without knowledge about Petri nets. 
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