
Adaptive RDF Query Processing
Based on Provenance

Marcin Wylot1, Philippe Cudré-Mauroux1, and Paul Groth2(B)

1 University of Fribourg, Fribourg, Switzerland
{marcin,phil}@exascale.info

2 VU University Amsterdam, Amsterdam, The Netherlands
p.t.groth@vu.nl

Given the increasing amounts of RDF data available from multiple heteroge-
nous sources, as evidenced by the Linked Open Data Cloud, there is a need
to track provenance within RDF data management systems [1]. In [8], we pre-
sented TripleProv, a database system supporting the transparent and automatic
capture of detailed provenance information for arbitrary queries. A key focus
of TripleProv is the efficient implementation of provenance-enabled queries over
large scale RDF datasets. TripleProv is based on a native RDF store, which we
have extended with two different physical models to store provenance data on
disk in a compact fashion. In addition, TripleProv supports several new query
execution strategies to derive provenance information at two different levels of
aggregation. At one level, the exact sources for a query results can be identified.
The second, more detailed level, provides the full lineage of the query results
including the various constraints, projections and joins involved in answering
the query. In addition to these levels of aggregation at the data source level,
we support tracking the provenance at the quadruple level. That is, every quad
(i.e. tuple) is annotated and those annotations are tracked through the query
processing pipeline. This tracking is done by leveraging the concept provenance
polynomials [3]. That is capturing the provenance representation as a formula
over tuples. Our work follows on from previous work on annotating or coloring
RDF triples [2,9] by focusing on both scale and query adaptivity.

At the logical level, we use two basic operators to express the provenance
polynomials. The first one (⊕) to represent unions of sources, and the second
(⊗) to represent joins between sources.

Unions are used in two cases when generating the polynomials. First, they are
used when a constraint or a projection can be satisfied with triples coming from
multiple sources (meaning that there are more than one instance of a particular
triple which is used for a particular operation). The following polynomial:

l1 ⊕ l2 ⊕ l3

for instance, encodes the fact that a given result can originate from three different
sources (l1, l2, or l3). Second, unions are also used when multiple entities satisfy
a set of constraints or projections.

As for the join operator, it can also be used in two ways: to express the fact
that sources were joined to handle a constraint or a projection, or to handle
c© Springer International Publishing Switzerland 2015
B. Ludäscher and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 264–266, 2015.
DOI: 10.1007/978-3-319-16462-5 29



Adaptive RDF Query Processing Based on Provenance 265

object-subject or object-object joins between a few sets of constraints. The fol-
lowing polynomial:

(l1 ⊕ l2) ⊗ (l3 ⊕ l4)

for example, encodes the fact that sources l1 or l2 were joined with sources l3
or l4 to produce results.

Provenance polynomials can be used to compute a trust or information qual-
ity score based on the sources used in the result.

TripleProv works on large scale real world data. We have tested the system on
two datasets consisting of over 110 million triples each. Each dataset is roughly
25 GB in size. The datasets are drawn, respectively, from two crawls of the Web:
the Billion Triple Challenge1 and the Web Data Commons2 [7].

Based on this foundation, this work presents preliminary results on adaptively
modifying query execution based on provenance. Specifically, we have extended
TripleProv to allow a specific list of sources (e.g. trusted sources) to be provided
which are to be used when answering a query. Additionally, one can also specify
a list of sources to avoid during query execution (e.g. a list of untrusted sources).
The specified lists are checked at every stage of query execution process. This
means that even at the level of intermediate results, which are not necessarily
presented as an output, we ensure that these data sources are not touched. We
note that this trigger based approach allows for potentially dynamic changes in
the source list at query execution.

Such adaptive query processing is useful for a number of use cases. For
instance, one could restrict the results of a query to certain subsets of sources
or use provenance for access control such that only certain sources will appear
in a query result. Identifying results (i.e., particular triples) with overlapping
provenance is also another prospective use case. Additionally, one could detect
whether a particular result would still be valid when removing a source dataset.
We could also extend our approach to with Hartig’s tSPARQL [4] to be able to
query trust annotations in combination with provenance sources.

In [8], we found that provenance tracking within the database caused between
a 60–70% overhead. While this is acceptable for many use cases, it would be ben-
eficial if the performance would be faster. We believe that by taking advantage of
knowing data provenance one could potentially optimize the performance of the
database. We note that our approach focused on adjusting the pipeline of query
processing verses querying provenance after the fact as in other systems [5,6].
An interesting area of work would be to study the trade off between runtime
query adaptation based on provenance and post hoc provenance queries.

This work is a first step towards showing how provenance can be used to
make it easier to work with heterogenous RDF data.

Acknowledgements. This work was funded in part by the Swiss National Science
Foundation under grant number PP00P2 128459 and by the Data2Semantics project
in the Dutch national program COMMIT.

1 http://km.aifb.kit.edu/projects/btc-2009/.
2 http://webdatacommons.org/.

http://km.aifb.kit.edu/projects/btc-2009/
http://webdatacommons.org/


266 M. Wylot et al.

References

1. Ding, L., Peng, Y., da Silva, P.P., McGuinness, D.L.: Tracking RDF graph prove-
nance using RDF molecules. In: International Semantic Web Conference (2005)

2. Flouris, G., Fundulaki, I., Pediaditis, P., Theoharis, Y., Christophides, V.: Coloring
RDF triples to capture provenance. In: Bernstein, A., Karger, D.R., Heath, T.,
Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009.
LNCS, vol. 5823, pp. 196–212. Springer, Heidelberg (2009)

3. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of the Twenty-Sixth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pp. 31–40. ACM (2007)

4. Hartig, O.: Querying trust in RDF data with tSPARQL. In: Aroyo, L., et al. (eds.)
ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009)

5. Karvounarakis, G., Ives, Z.G., Tannen, V.: Querying data provenance. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of
data, pp. 951–962. ACM (2010)

6. Miles, S.: Electronically querying for the provenance of entities. In: Moreau, L.,
Foster, I. (eds.) IPAW 2006. LNCS, vol. 4145, pp. 184–192. Springer, Heidelberg
(2006)

7. Mühleisen, H., Bizer, C.: Web data commons - extracting structured data from
two large web corpora. In: Bizer, C., Heath, T., Berners-Lee, T., Hausenblas, M.
(eds.), LDOW. CEUR Workshop Proceedings, vol. 937. CEUR-WS.org (2012)

8. Wylot, M., Cudré-Mauroux, P., Groth, P.: Tripleprov: efficient processing of lineage
queries over a native rdf store. In: Proceedings of the 23rd Intenational World Wide
Web Conference (WWW’2014) (2014)

9. Zimmermann, A., Lopes, N., Polleres, A., Straccia, U.: A general framework for rep-
resenting, reasoning and querying with annotated semantic web data. Web Semant.
11, 72–95 (2012)


	Adaptive RDF Query Processing Based on Provenance
	References


