Generating Scientific Documentation
for Computational Experiments Using
Provenance

Adianto Wibisono'2(®) Peter Bloem', Gerben K.D. de Vries!, Paul Groth?,
Adam Belloum', and Marian Bubak!3

! System and Network Engineering Group, Informatics Institute,
University of Amsterdam, Amsterdam, The Netherlands
{a.wibisono,p.bloem,g.k.d.devries,a.z.s.belloum}@uva.nl, bubak@agh.edu.pl
2 VU University Amsterdam, Amsterdam, The Netherlands
pgroth@vu.nl
3 Department of Computer Science, AGH Krakow, Krakéw, Poland

Abstract. Electronic notebooks are a common mechanism for scientists
to document and investigate their work. With the advent of tools such as
[Python Notebooks and Knitr, these notebooks allow code and data to be
mixed together and published online. However, these approaches assume
that all work is done in the same notebook environment. In this work,
we look at generating notebook documentation from multi-environment
workflows by using provenance represented in the W3C PROV model.

Specifically, using PROV generated from the Ducktape workflow
system, we are able to generate IPython notebooks that include results
tables, provenance visualizations as well as references to the software
and datasets used. The notebooks are interactive and editable, so that
the user can explore and analyze the results of the experiment without
re-running the workflow.

We identify specific extensions to PROV necessary for facilitating
documentation generation. To evaluate, we recreate the documentation
website for a paper which won the Open Science Award at the ECML/
PKDD 2013 machine learning conference. We show that the documen-
tation produced automatically by our system provides more detail and
greater experimental insight than the original hand-crafted documen-
tation. Our approach bridges the gap between user friendly notebook
documentation and provenance generated by distributed heterogeneous
components.

1 Introduction

Common approaches to computational experimentation1 span a spectrum. On
one side, we find quick, informative experiments intended for fast iteration. These
often involve a single researcher, working on consumer-scale hardware, and can

! In this paper, we will call an experiment which can be run entirely in silico (i-e. as
a computer program) a computational experiment.
© Springer International Publishing Switzerland 2015

B. Ludischer and B. Plale (Eds.): IPAW 2014, LNCS 8628, pp. 168-179, 2015.
DOT: 10.1007/978-3-319-16462-5_13

Generating Scientific Documentation for Computational Experiments 169

take as little as a few minutes to run. The aim is to get quick results to inform
further experiments and to build towards larger results in an iterative manner.
The environment that is used for this type of experimentation is usually designed
around quick iteration, and quick inspection of results: MATLAB, R, or a simple
UNIX command line. More recently, this is often done within interactive note-
book environments such as IPython notebooks [1], Knitr [2] or Mathematica [3].

On the other side of the spectrum we find large-scale experimentation. Well-
prepared, thoroughly designed experiments, intended to run for long amounts
of time on powerful hardware. These experiments are often implemented by
scientific programmers, separate from the researchers designing the experiment.
The chosen environment is often a workflow system [4], providing features like
monitoring of execution, robustness against hardware failure and provenance
tracking. The downside is that each experiment must be carefully prepared, and
purpose-written for the workflow system.

Experimentation usually starts with quick iterations in an interactive system,
and progresses towards the more robust environments as the experiments become
more involved, often at the expense of a re-implementation step as the code is
ported to a more robust environment. At the larger scales, iterations invariably
become slower.

Finally, once results have been produced that are expected to be fit for pub-
lication, the researchers must translate and summarize their approach to allow
for peer-review, reproduction and reuse. The ideal is to publish the datasets,
the code and to provide instructions for reproducing the experiment. In the
small-scale iterative end of the spectrum, this can be very cumbersome: gather-
ing unversioned code, unstructured datasets and documenting all idiosyncratic
steps required to execute it. In the large-scale end, experiments tend to be more
structured, as enforced by the workflow system, but the description of the work-
flow is still tied to the workflow platform. Even a provenance trace, which is
intended to illustrate the source of the results, can be difficult to interpret in its
raw form.

1.1 Main Idea

In this paper, we present a concept for generating notebook documentation for
computational experiments from provenance information. Our approach aims
to retain some of the iteration speed of the small-scale experimentation at the
large-scale end of the spectrum. This documentation generation process is built
on three ideas.

1. After a large-scale experiment has finished, many questions raised by its
output can, theoretically, be answered without re-running the experiment.
Unfortunately, these questions were not the ones which the experiment was
originally designed to answer, so the required data was not collected during
the run. Output representing as much information about the original run
as possible can help to postpone the need for a new run of a (redesigned)
experiment.

170 A. Wibisono et al.

2. While provenance is often seen as a kind of semantically annotated log file—
helping for keeping track of the origins of data, and for finding answers in the
case of unforeseen errors—a complete provenance trace will actually contain
all information about a run of a computational experiment: all data produced,
and the semantic links between them [5]. Any output required from the exper-
iment, such as tables, graphs and statistical analysis, can be reconstructed
from the provenance trace.

3. A semantically annotated representation of a run of an experiment (such as
a provenance trace) allows us to make intelligent guesses at default modes of
reporting. Thus, we can automatically create reasonable scientific documenta-
tion; reporting not only the results of the experiment, but a human-readable
representation of how the results emerged: which datasets were used, where
they can be found, what code was used, using which versions and in what
configuration. An interactive environment allows the researcher to tweak this
documentation to filter out less relevant information.

In short, we propose to put provenance at the heart of computational experimen-
tation, rather than the sidelines, to combine the best of both worlds. A large-scale
experiment is run on a workflow system, producing mainly a provenance trace.
This trace is then loaded into an interactive environment, allowing a researcher to
investigate the questions that inspired the experiment, and any further questions
that these results raise. The researcher can filter, plot and analyze the results at
length, with much greater depth than a non-semantic output, such as a CSV file,
could offer. Only when all information produced by the original run is exhausted,
does a new experiment need to be started.

When the time comes for the results to be shared, e.g. via a publication,
the provenance trace provides all required information. All that is needed is a
means to convert it to human readable form. The semantic annotations allow
us to create reasonable default documentation, while anybody interested in the
experiment can load the provenance trace into an interactive system and study
the details.

1.2 Contributions

Interactive notebooks provide both a good format for presenting default docu-
mentation and an interactive environment to study experimental results. The
proof-of-concept implementation presented in this paper uses provenance, in the
W3C PROV-O [6] format, generated by our own workflow system Ducktape?, to
automatically create IPython notebooks. We chose IPython Notebooks as this
system is becoming widely used in data processing. Additionally, they provide
a web-based environment, independent of the underlying language. This means
that future versions of our system could also support R, Julia and other pro-
gramming languages. Our notebooks have result tables and graphs, visualization
of the provenance and links to the software and datasets used. Furthermore, they

2 http://github.com/Data2semantics/ducktape.

http://github.com/Data2semantics/ducktape

Generating Scientific Documentation for Computational Experiments 171

are interactive and editable, so that the user can explore and analyze the results
of the experiment without re-running the workflow. As a running example use-
case, we take the documentation web-page that won the Open Science Award at
the ECML/PKDD 2013 machine learning conference.

The rest of this paper is structured as follows. In the next section, we discuss
related work. Section 3 describes our proof-of-concept implementation. The final
section contains conclusions and directions for future research.

2 Related Work

A key part of related work is in the area of workflow systems. Often, these
systems provide accessible documentation to the end user through graphical
representations of the workflow. Additionally, they attach detailed provenance
information to those workflows [7]. Our work is different in that we build a
notebook style representation directly from the provenance.

Other existing papers also explore and derive insight from scientific workflow
provenance, with different goals than ours. Work by Biton et al. [8] lets users
define views based on relevant workflow parts that determines how a possibly
large workflow provenance graph can be explored. The high level query languages
for provenance: QLP [9] and OPQL [10], can be used for interactive querying
and visualization. Both views simplify provenance results and allow exploration
of scientific workflow provenance at the graph level.

Close to our work is that of Gibson et al. [11], on creating an interactive
environment where provenance is stored. We see our work as complementary as
one can see the generation of the workflows as similar to generating a notebook.
Deep [12], an executable document environment that generates scientific results
dynamically and interactively, also records the provenance for these results in the
document. In this system, provenance is exposed to users via an interface that
provides them with an alternative way of navigating the executable document.

Burrito [13] is a system that uses a combination of provenance tracking and
user interface constructs for notes to help generate a lab notebook. Our approach
shares their motivation but focuses instead documenting distributed compu-
tational workflows using provenance. Similarly, Scientific Application Middle-
ware [14] combines information coming from both lab notebooks but also
distributed computational components to create documentation for experiments.
Our work adds to this vision by connecting to widely used interactive (compu-
tational) notebook environments.

The idea of using provenance as a singular result of workflow execution shares
some aims with the idea of Research Objects [15]. This is a construct that aims
to replace the traditional paper article as the main unit of scientific publication.
A research object is a package of not just the research results, but also all
artifacts used to create them, such as datasets, code and provenance. Within
the research object, the provenance is seen as a feature to facilitate auditing.
In our approach, we see the provenance as the key entry point: it should not
just be used to audit the experiments, but also to aggregate results and to

172 A. Wibisono et al.

perform statistical analyses. Our perspective does not change or replace the
use of Research Objects, but suggests that the provenance could be used as its
central component, tying together the other contents of the package.

3 Proof-of-Concept

The proof-of-concept implementation for our documentation generation app-
roach consists of three components: a workflow system, workflow provenance
and generating notebooks from provenance. We first introduce a running exam-
ple that will illustrate these three components and then we describe the compo-
nents themselves.

3.1 Running Example

The webpage® for the paper A fast approzimation of the Weisfeiler Lehman
graph kernel for RDF data [16] won one of the two Open Science Awards at
ECML/PKDD 2013, the conference where it was published. On the page, links
to software libraries, datasets and the original source code are provided, as well
as instructions on how to run the experiments using the provided material. The
datasets are available online, via figshare.com, and the code is stored in a git
repository, at github.com. We have recreated two partial experiments in the
ECML/PKDD 2013 paper [16] for our proof-of-concept. We use these experi-
ments as running examples below. Note that we do not recreate the full set of
experiments in the paper. However, the recreated parts are a representative sub-
set, since we cover both a classification experiment and a runtime experiment.

In the classification experiment a number of graph kernels for RDF data
are tested on an affiliation prediction task. The goal in this task is to predict
affiliations for persons in the dataset. Three different kernels are tested, each for a
number of parameter settings. These kernels are combined with a Support Vector
Machine (SVM) to perform prediction. To reduce randomness, the experiment
is repeated 10 times, with different random seeds.

The runtime experiment uses the same graph kernels and dataset, but this
time the kernels are computed for different fractions of that dataset to investi-
gate the runtime performance of the different kernels. The most computationally
intensive settings for the kernels are used. For each dataset fraction, the compu-
tation is performed 10 times (on 10 random subsets).

3.2 Workflow System: Ducktape

Ducktape is a light-weight workflow system developed in the context of the
Data2Semantics* project. This project provides essential semantic infrastructure
for e-science and focuses on how to share, publish, access, analyze, interpret

3 http://www.data2semantics.org/publications/ecmlpkdd-2013/.
* http://www.data2semantics.org.

http://figshare.com
http://github.com
http://www.data2semantics.org/publications/ecmlpkdd-2013/
http://www.data2semantics.org

Generating Scientific Documentation for Computational Experiments 173

and reuse scientific data. Ducktape is designed to compose experiments using
components developed within the project. By using an annotation approach, we
keep the system light-weight and impose little additional effort for a scientist to
use his existing code in our environment.

Ducktape uses computational modules, which are annotated pieces of codes,
typically classes. The annotations indicate what the inputs and outputs of the
module are and what the main computation routine is. Currently, Java, Python
and command line scripts are supported.

A Ducktape workflow is described in a simple data flow format represented
in YAML (YAML Ain’t Markup Language) [17], which contains a list of mod-
ules and specifications of each of the modules’ input data. Figure 1 shows part
of the workflow description for the affiliation prediction experiment. Module
inputs can either be raw data type values, i.e. integers, doubles and strings, or
data produced by other modules within the same workflow (e.g. Fig. 1, line 17,
20, 22).

Module input fields in the YAML workflow description can be supplied with
lists of inputs of the same type, to allow for parameter sweeps (Fig. 1, line 23).
Ducktape allows users to specify whether they want input lists to be consumed
in a pair-wise manner or whether the full Cartesian product between the lists
should be used in the parameter sweep. Furthermore, there are keywords to
indicate whether certain inputs represent datasets (Fig. 1, line 10), what module
outputs should be considered experimental results (Fig. 1, line 25) and for which
input parameter we want to aggregate results (Fig. 1, line 26).

3.3 Provenance: W3C PROV

Whenever a workflow is executed, Ducktape automatically generates the prove-
nance that captures this execution in the W3C PROV-O [6] format.> Table 1
shows how the different elements of a Ducktape workflow map to the concepts
in W3C PROV. The main concepts from W3C PROV that we use are prov:Activity
and prov:Entity and their connecting relations: prov:used and prov:wasGeneratedBy.
Essentially, a workflow leads to a bipartite graph with alternating nodes of
prov:Activity and prov:Entity.

Modules are prov:Activitys and inputs and outputs are prov:Entitys. We model
this by creating a class dt-rsc:ModuleName® with the name of the module for all
modules. Each dt-rsc:ModuleName is rdfs:subClassOf of prov:Activity. Every instance
of a module executed during the run of the workflow is an rdf:type of its corre-
sponding dt-rsc:ModuleName. We do the same for the inputs and outputs, intro-
ducing a dt-rsc:InputName or dt-rsc:OutputName for each input and output, which
are rdfs:subClassOf of prov:Entity. Each input/output instance is an rdf:type of its
corresponding dt-rsc:InputName/OutputName. Outputs that are inputs of another
module have one unique URI. For example, the specific instance of ‘seed’ with

5 We note other serializations of PROV [18] can also be supported.
6 dt-rsc is a shorthand for: http://prov.data2semantics.org/resource/ducktape/.

http://prov.data2semantics.org/resource/ducktape/

174 A. Wibisono et al.

1 workflow:

2 name: "Affiliation Prediction Experiment IPAW 2014"
3 modules:

4 - module:

5 name: RDFDataSet

6 source: d2s.RDFDataSetModule

7 inputs:

8 filename: "http://.../aifb_fixed_complete.n3"
9 “ e

10 datasets: filename

11 “ e

12 - module:

13 name: Experiment

14 source: d2s.SingleGraphKernelExperimentModule
15 inputs:

16 matrix:

17 - reference: RDFWLSubTreeKernel.matrix
18 ..

19 target:

20 reference: AffiliationDataSet.target

21 parms:

22 reference: LibSVMParms.parameters

23 seed: [1,2,3,4,5,6,7,8,9,10]

24 folds: 5

25 results: [accuracy, f1]

26 aggregators: seed

Fig. 1. Example of YAML workflow description from the affiliation prediction experi-
ment. The full workflow is not shown.

value ‘1’ in the module ‘Experiment’ in Fig.1, line 23, would be of type dt-
rsc:Experiment /seed/” which is an rdfs:subClassOf of prov:Entity.

Each module (dt-rsc:ModuleName) is associated with a prov:Agent, which rep-
resent the specific Ducktape engine used for execution (i.e. the machine(s) and
version), and a prov:Plan, the specific YAML workflow file.

Optionally, inputs can also be a dt-voc:Dataset®, if they refer to a dataset
(e.g. by a URL) or a dt-voc:Aggregator, if they determine how to aggregate exper-
iment outputs based on this input. Outputs can have the dt-voc:resultOf predicate
that links them to the workflow (i.e. prov:Plan), if they should be considered the
results of that workflow. These optional concepts are added when they are spec-
ified in the YAML workflow file.

Furthermore, we also add the software artifact dependencies that we know
that are used during execution to the provenance. This is done by creating
URI for each artifact and adding it to the prov:Plan via a new property dt-voc:-
usesArtifact. Currently, we manage our dependencies and execute our workflows

" There can be multiple inputs /outputs with the same name, so the module name is
also included in this URI.
8 dt-voc is a shorthand for: http://prov.data2semantics.org/vocab/ducktape/.

http://prov.data2semantics.org/vocab/ducktape/

Generating Scientific Documentation for Computational Experiments 175

Table 1. Mapping of ducktape elements to W3C PROV

Ducktape W3C PROV | Optional

Ducktape engine prov:Agent

Workflow description | prov:Plan

Module instance prov:Activity

Input prov:Entity | dt-voc:Dataset, dt-voc:Aggregator
Output prov:Entity | dt-voc:resultOf

using Maven®, thus each artifact furthermore has the properties: dt-voc:

hasArtifactld, dt-voc:hasGroupld and dt-voc:hasVersion.

3.4 Notebook Generation

Based on the generated provenance, draft [Python notebooks are created. There
are two types of notebook drafts: an overview notebook with general workflow
execution information and a more detailed notebook at the workflow module
level.

The overview notebook contains general information about the workflow
plan, software artifacts and datasets used. A summary of the Ducktape modules
instantiated during the experiment and inline provenance visualization gener-
ated using Prov-O-Viz [19]'° is also included in this overview notebook to give
intuitive insight into the overall workflow execution. This notebook is illustrated
in Figs.2 and 3.

The detailed notebook draft describes individual module execution results.
Users have access to the module input parameters and execution results through
default Python code snippets injected into the notebook. The code snippets are
generated by performing SPARQL queries on the workflow provenance graph. By
using these snippets, users can manipulate how they view the module parameters
and execution results.

We use the existing Python Data Analysis library (Pandas)'! in the code
snippets, to allow users to play with and change the view on their results. Essen-
tially, what the user has here is a data analysis view of each individual module
in workflow execution. By default we provide tables of relevant input and out-
puts for each individual module which users can change by tweaking the injected
Python code.

For modules that have input data marked as dt-voc:Aggregator, we provide a
pivot table, which aggregates the outputs that are dt-voc:resultOf, grouping by
the other input parameters. The default form of aggregation is computing the
mean value, however this can be easily changed by editing the code snippet.

)11

9 http://maven.apache.org/.
19 http://provoviz.org.
11 pandas.pydata.org.

http://maven.apache.org/
http://provoviz.org
http://pandas.pydata.org

176 A. Wibisono et al.

Overview Report

Software

Agent : ducktape on: wongi te, versionlD: 1

2040544661

hito:#prov.data2semantics.

Plan : Affiliation Prediction Runtime Experiment IPAW 2014, date: Thu May 15 09:40:44 CEST 2014

http:#prov.data2semantics. A e NP £9418 2358081083053
Libraries
out(S]:

GrouplD ArtifactiD Version

data2semantics| duddape 0.0.1-SNAPSHOT
data2semantics| mustard 0.0.1-SNAPSHOT

Modules

ous(6]:
Module Instances
RDFDataSet 1
RDFIntersectionSub TreeKemel 10
RDFIntersectionP artialSubTreeKemel [10
AffiliationDataSet 10
RDFWLSubTreeKemel 10

Datasets

ous(?):

[Modue Toataset value |
[ROFDataset] filename hitp:tites figshare comi11188221aifb_fixed_complete.n3|

Fig. 2. Overview report for the runtime experiment, part 1.

Provenance Visualization

ouets) i
Shename: Mip:/iles Sgsham comy 1188Z20ei_md_complete nd
- I.m. ‘
= 'ROFINTERSECT IONPARTIALSUBTREEXERNELO
U e .
|
APLATDATAETD e
kom0 1 mersecTionsusTrReexeRveLo [
o memsineenamE ||
=
property. Mg ivwe crowass crycrtclogdetiiiaton
< i V-
Details

Fig. 3. Overview report for the runtime experiment, part 2.

An example of this aggregation is given in Fig. 4, where the results accuracy and
F1 are aggregated over the seed input parameter.

In summary, the notebooks for the classification'? and the runtime'? experi-
ments contain the following information: a list of datasets, a list of software arti-
facts, provenance visualization and detailed result tables. This is significantly

2 Available here: http://j.mp/ecml-notebook.
13 Available here: http://j.mp/runtime-notebook.

http://j.mp/ecml-notebook
http://j.mp/runtime-notebook

Generating Scientific Documentation for Computational Experiments 177

Result for module Experiment

n [23):

Pt = pivot_table(df, rows= ['Aggregator’,'parent0'])
Pt

out[23]:

accuracy |1

Aggregator | parento

RDFWL 0.865537 [0.811191
RDFWL 0811299 |0.747912
RDFWL 0.863277 | 0.824467
RDFWL 1 0.822599 | 0.766933
0.829379 | 0.747343
0.825989 |0.752534

0.809040 | 0.730443

0.787571 0.703818

0.762712 | 0.661025
0.748023 | 0.655392
0.685876 | 0.541812
0.560452 | 0.366949
RDFWL 0.853107 0.810756

RDFWL 0.850847 [0.818110

RDFWL 0.865537 [0.811191
RDFWL 0.811299 |0.747912
RDFWL 0.861017 | 0.824743
RDFWL 0.838418 | 0.788040
RDFWL 0.865537 |0.811191
RDFWL 0811299 |0.747912

3
clelclelelelelclelelelelclelelelelc|ele

20 rows x 2 columns

Fig. 4. Part of the detailed notebook for the affiliation prediction experiment which
shows a table for the Experiment module.

more information than the original webpage and the notebooks can easily be
extended by hand, both by changing the tables and adding more explanatory
text'®. Currently, the notebooks lack instructions on how to re-execute the
experiments, this can be partly solved by adding instructions that explain how
to use the datasets and artifacts. However, in future work we would like to add
automatic re-execution of the workflow from the notebook, all the ingredients
are already there.

4 Conclusions and Future Work

We have described an approach for automatic generation of scientific documen-
tation for computational experiments. This is approach is based on the idea of
placing provenance at the heart of such experiments, using it as the main output,
not just as a way to trace the execution of a workflow. Interactive notebooks
provide a way to explore the results and its provenance and are an ideal starting
point for creating documentation for the experiments.

We have created a proof-of-concept implementation to automatically gen-
erate [Python notebooks from provenance created by workflows run using our
Ducktape platform. These notebooks aggregate the main results and components
of an experiment. This automatically generated draft documentation provides

14 Note that the used artifacts are different from the original version, and that the
samples above are static views requiring a local IPython environment to edit.

178 A. Wibisono et al.

more information and insight then a hand-crafted documentation page for a
machine learning paper that won an Open Science Award.

While our proof-of-concept uses a specific workflow system and a specific
interactive platform to load and analyze the provenance, the approach is trans-
ferable to other workflow systems and interactive environments. Indeed, most
PROV serializations can be represented as a more human-friendly notebook.
Central to this conception is the notion that provenance can be a true interface
between the execution of an experiment and the analysis of its results.

Another outcome of this work is confirmation of the importance of connecting
interactive notebook environments and provenance. By using the IPython Note-
book environment, we were able to benefit significantly from the variety of tools
within that community, including notebook visualization (using the nbviewer
app) and analytics. We believe that the connection between notebooks in gen-
eral and distributed provenance generation is an area that the community should
look at in more detail as there are a number of areas of interest. For instance, one
may investigate the issue of maintaining the provenance of live results streamed
to notebook environment, encapsulating provenance within a notebook or track-
ing provenance of interactive sessions.

Beyond investigating these larger themes, there are a number of concrete
extensions to the environment we intend to make. First, the current configura-
tion does not allow us to directly re-run the experiments from within the note-
books. We aim to implement such a feature to further improve reproducibility.
Furthermore, while we can create links to software artifacts that were used, it
would be even nicer to link to the actual source code for these artifacts, if that is
available. Therefore, we plan to investigate how to integrate with methods such
as GIT2Prov [20] to connect from execution to the source code. Furthermore,
we are also investigating what additional visualizations we can embed to make
the documentation richer.

Acknowledgments. We thank the reviewers and Rinke Hoekstra for their useful feed-
backs and discussion. This publication was supported by the Dutch national program
COMMIT.

References

1. Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing.
Comput. Sci. Eng. 9(3), 21-29 (2007)

2. Xie, Y.: Knitr: a general-purpose package for dynamic report generation in R. R
Package Version 1(7) (2013)

3. Wolfram, S.: The Mathematica Book, vol. 221. Wolfram Media Champaign, Illinois
(1996)

4. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,
Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows.
IEEE Comput. 40(12), 26-34 (2007)

5. Moreau, L.: Provenance-based reproducibility in the semantic web. Web Semant.
Sci. Serv. Agents World Wide Web 9(2), 202-221 (2011)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Generating Scientific Documentation for Computational Experiments 179

Lebo, T., Sahoo, S., McGuinness, D., Belhajjame, K., Corsar, D., et al.: Prov-o:
The prov ontology. W3C Recommendation. World Wide Web Consortium (2013)
Davidson, S., Ludaescher, B., McPhillips, T., Freire, J.: Provenance in scientific
workflow systems. Bull. Tech. Comm. Data Eng. 30(4), 44-50 (2007)

Biton, O., Cohen-Boulakia, S., Davidson, S.B., Hara, C.S.: Querying and managing
provenance through user views in scientific workflows. In: Proceedings of the 24th
International Conference on Data Engineering, ICDE 2008, pp. 1072-1081 (2008)
Anand, M., Bowers, S., Ludascher, B.: Provenance browser: displaying and query-
ing scientific workflow provenance graphs. In: 2010 IEEE 26th International Con-
ference on Data Engineering (ICDE), pp. 1201-1204, March 2010

Lim, C., Lu, S., Chebotko, A., Fotouhi, F., Kashlev, A.: OPQL: querying scientific
workflow provenance at the graph level. Data Knowl. Eng. 88, 37-59 (2013)
Gibson, A., Gamble, M., Wolstencroft, K., Oinn, T., Goble, C., Belhajjame, K.,
Missier, P.: The data playground: an intuitive workflow specification environment.
Future Gener. Comput. Syst. 25(4), 453-459 (2009)

Yang, H., Michaelides, D.T., Charlton, C., Browne, W.J., Moreau, L.: DEEP: a
provenance-aware executable document system. In: Groth, P., Frew, J. (eds.) IPAW
2012. LNCS, vol. 7525, pp. 24-38. Springer, Heidelberg (2012)

Guo, P.J.; Seltzer, M.: Burrito: Wrapping your lab notebook in computational
infrastructure. In: Proceedings of the 4th USENIX Workshop on the Theory and
Practice of Provenance, TaPP 2012. USENIX Association, Berkeley (2012)
Myers, J.D., Chappell, A., Elder, M., Geist, A., Schwidder, J.: Re-integrating the
research record. Comput. Sci. Eng. 5(3), 44-50 (2003)

Bechhofer, S., De Roure, D., Gamble, M., Goble, C., Buchan, I.: Research objects:
towards exchange and reuse of digital knowledge. In: The Future of the Web for
Collaborative Science (2010)

de Vries, G.K.D.: A fast approximation of the Weisfeiler-Lehman graph kernel for
RDF data. In: Blockeel, H., Kersting, K., Nijssen, S., Zelezny, F. (eds.) ECML
PKDD 2013, Part I. LNCS (LNAI), vol. 8188, pp. 606-621. Springer, Heidelberg
(2013)

Ben-Kiki, O., Evans, C., Ingerson, B.: Yaml ain’t markup language (yaml) version
1.1. Working Draft 2008-05 11 (2001)

Moreau, L., Groth, P.: Provenance: an introduction to prov. Synth. Lect. Semant.
Web: Theory Technol. 3(4), 1-129 (2013)

Hoekstra, R., Groth, P.. PROV-O-Viz - understanding the role of activities in
provenance. In: Ludéscher, B., Plale, B. (eds.) IPAW 2014. LNCS, vol. 8628, pp.
215-220. Springer, Heidelberg (2014)

De Nies, T., Magliacane, S., Verborgh, R., Coppens, S., Groth, P., Mannens, E.,
Van de Walle, R.: Git2prov: exposing version control system content as w3c prov.
In: Posters & Demonstrations Track within the 12th International Semantic Web
Conference (ISWC-2013), CEUR-WS, pp. 125-128 (2013)

	Generating Scientific Documentation for Computational Experiments Using Provenance
	1 Introduction
	1.1 Main Idea
	1.2 Contributions

	2 Related Work
	3 Proof-of-Concept
	3.1 Running Example
	3.2 Workflow System: Ducktape
	3.3 Provenance: W3C PROV
	3.4 Notebook Generation

	4 Conclusions and Future Work
	References

