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Abstract. Previous studies on MoCap (Motion Capturing (MoCap)
System tracks the key points which are marked with conspicuous color
or other materials (such as LED lights). The motion sequences are col-
lected into MoCap action datasets, e.g., 1973 [3] and CMU [4] MoCap
action datasets.) action data suggest that skeleton joint streams contain
sufficient intrinsic information for understanding human body actions.
With the advancement in depth sensors, e.g., Kinect, pose estimation
with depth image provides more available realistic skeleton stream data.
However, the locations of joints are always unstable due to noises. More-
over, as the estimated skeletons of different persons are not the same, the
variance of intra-class is large. In this paper, we first expand the coordi-
nate stream of each joint into multi-order streams by fusing hierarchical
global information to improve the stability of joint streams. Then, Slow
Feature Analysis is applied to learn the visual pattern of each joint,
and the high-level information in the learnt general patterns is encoded
into each skeleton to reduce the intra-variance of the skeletons. Tempo-
ral pyramid of posture word histograms is used to describe the global
temporal information of action sequence. Our approach is verified with
Support Vector Machine (SVM) classifier on MSR Action3D dataset,
and the experimental results demonstrate that our approach achieves
the state-of-the-art level.

Keywords: Action recognition - Skeleton - Joint stream - Multi-order
streams + Slow feature analysis

1 Introduction

Recently, human action recognition has been an important domain of computer
vision because of its great application prospects in intelligent visual surveillance,
human-computer interaction, smart home, etc. Human action can be treated as
a 3D space-time volume concatenated by images. Low-level and mid-level fea-
tures [7][2][5][20] are extracted for action description, and the results on several
realistic action datasets [15][6][12] demonstrate its promise. However, the lack
of high-level semantic information makes this kind of methods not handle com-
plex actions. Several previous studies [3][1] use skeleton of human body for ges-
ture/action representation, and these work suggest that skeleton provides enough
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Fig. 1. (Best viewed in color) Kinetic stream pattern learning and transformation.
The slow streams are the transformed 5 slowest streams.

information to describe human body actions. However, skeletons estimated from
RGB image sequence are not accurate enough for action representation. For-
tunately, motion capturing technique [14] can estimate the 3D skeleton joints
easily with data from depth camera and help us to avoid the influence of the
limits from preprocessing techniques.

Recent studies [21][8] employ both 3D skeleton joints and depth images to
improve the capability of feature representation. Skeleton visualization intu-
itively demonstrates that although the skeleton sequences are unstable, skeletons
contain sufficient information of human body actions. Thus, our work focuses
on action representation with only skeleton joint streams, i.e., 3D skeleton joint
trajectories as shown in Fig. 1.

Earlier work of Campbel and Bolick [1] represents action sequence by pro-
jecting pre-existing 3D joints trajectories to curves in subspaces of phase space.
The poses in an action form a curve. Although the work can only recognize
limited motions with simple descriptors, this work provides a new thinking of
action recognition with joint streams. In order to obtain a better action repre-
sentation, Lv et al. [11] model the dynamics of single joints in the skeleton with
Hidden Markov Model (HMM), and the HMM models are combined to form a
strong multi-class AdaBoost classifier. This approach can effectively improve the
discrimination of action representation in data from Motion Capture (MoCap)
system, however, it is still a challenging work to model joint streams with HMM
due to lots of noises in the estimation of 3D skeleton sequences. Moreover, mod-
eling a HMM for each class with single joint exists the risk of overfitting when
the data volume is small. Zhao et al. [26] learn a vocabulary for each normalized
distance stream of a pairwise joints, which reduces the noises in 3D skeleton
sequences, and a gesture is represented by combining the corresponding words
in different vocabularies. Nevertheless, high-level information is lacked in the
feature description.
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Fig. 2. The framework of our approach

Slow Feature Analysis (SFA) is a method for learning the invariant patterns
from visual data. Researches [22] in neuroscience suggest that high-level visual
perceptions vary more slowly over time in contrast to input signal. Thus, SFA
has been employed in several previous work [25][16] to describe the dynamic of
video on realistic datasets.

Inspired by this, we propose an approach to learning high-level patterns from
skeleton joint streams with SFA and encoding the high-level information into
skeleton postures for action representation. Fig. 2 shows the framework of our
approach. Firstly, we construct a multi-order kinetic stream for each key joint
by applying the original skeleton sequence. The new streams contain not only
the local dynamic of joints but also the dynamic of the center joints relative to
others. Secondly, we learn a pattern of each multi-order stream with SFA and
encode the high-level dynamic pattern into the original skeleton stream as a part
SFA sequence of the joint. The part SFA sequences of all joints are combined
into a SFA posture sequence. Then, a dictionary of postures is learned, and
the posture sequence is encoded with the posture words in the dictionary. To
incorporate the global temporal order information, temporal pyramid is applied
for action representation. The classifier we used is SVM.

2 Method

The main stages of our method is threefold: Section 2.1 presents how to generate
the multi-order streams from original skeleton sequence data. Then, the SFA
is introduced in Section 2.2. In Section 2.3, we propose the method of action
representation and classification.

2.1 Multi-order Streams

With the motion capturing technique [14], 20 joints in each frame are esti-
mated from depth video. The position of joint p at frame ¢ has 3 coordinates
p(t) = [z(¢t), y(t), z(¢)]. The position changes of p over time form a point stream
shown in Fig. 1. As the intra-class variance for one action performed by different
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subject (or even the same subject but different times) is always large and the
joint streams contain lots of noises, it is challenging to learn a invariable action
pattern. To disperse the intra-variance and avoid the risk of overfitting, we learn
an action pattern of each joint in the human body skeleton individually. For one
joint p, we extract the high-order streams between p and other joints as well as
the first-order position stream of the joint to make sure that the combined stream
contain both local and body structural information. The multi-order stream of
one joint contains three parts as shown in Fig. 1:

1°tOrder : The first-order stream is the split of the original joint shift in 3
coordinate over time, i.e.,

st = [x(1:7), y(1:T), 2(1:7)]) T, s'5t € R¥*T (1)

where

z(1:T) = [z(1),2(2), ..., 2(T)] (2)

is the stream in x coordinate, and T is the number of frames in the sequence.
Similarly, y(1:7) and z(1:T") are the streams of the other two coordinates.

2" Order : The second-order stream describe the variations of the distances
between joint p and the other joints, i.e.,

s7" = {Dpg(1:T)},q € T | g # p, s € RXT 3)

where D,,(1:T) is the distance sequence of p and ¢ over time and J denotes the
20 joint set. The distance sequence of pairwise joints can reflect the dynamic
information of joint p relative to others, and the body structural information of
human action is naturally encoded into the distance streams. Euclidean distance
is used in our work to measure the distance between two joints. For joint p, a
19-d stream is generated as the second-order stream.

3@ Order : As shown in Fig. 1, the third-order streams are composed of two
parts. One is the angle sequence 6(1:T') over time, where 6 is the angle of two
skeleton segments ( segment is the link between two joints in the skeleton) cen-
tering on joint p. The other is a sequence formed by the normal vector n; of
the plane determined by the above two segments in frame ¢. The normal vector
sequence 12(1:T") can be decomposed into 3 streams by considering 3 coordinates
of the vector respectively. As these 4 streams are determined by three points,

they are combined as the third-order stream and denoted as s3"¢ in space R**7T.

Streams of all the three orders are combined as the final multi-order stream

slst’82nd,83rd]—|—’8 € R26><T (4)

s=|
of joint p. The sequence of each dimension in s is normalized to zero mean
and unit variance to reduce the variances among skeletons of different subjects.
Note that some terminal joints connected with only one joint (such as head,
hands and feet) are not processed, because there is no angle on these points.
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Moreover, the joints shared by more than two segments are employed repeatedly
to form different multi-order streams containing different 3rd-order streams. To
distinguish the multi-order streams sharing the same joint center, we call the
joint p connecting two certain segments a joint unit.

2.2 SFA Function Learning

Slow Feature Analysis (SFA) have been used for learning the invariant patterns
from visual data. It can extract high-level visual perceptions vary more slowly
over time compared with multi-dimensional input signal and thus can be applied
to describe the dynamic changes of human action with temporal sequence. The
method is mathematically defined as follows:

Given a multi-dimensional input signal s(¢) from training data, the SFA is to
learn a function set g(s) = [g1(s), ..., gar(s)]" which makes the M-dimensional
output o(t) = [01(t),...,0n(t)] T vary as slow as possible, where 0;(t) = g;(s(t)).
The function learning process can be described as an optimization problem

min (37), (5)
subject to
(0j)t =0 (zero mean) (6)
<0§>t =1 (unit variance) (7)
Vj<j': (0j,05)t =0 (decorrelation), (8)

where ( ); is a mean function over time, (0;); and 0; are the temporal average
and the first order derivative of the j-th dimension signal sequence, respectively.
The objective of Eqn.(5) is to minimize the temporal variance measured by the
average square of the first order derivative. Eqn.(6) is a normalization for conve-
nience, and Eqn.(7) is to avoid the trivial solution o; = const which means that
the output signal carries no information of changes. The constraint in Eqn.(8)
has two roles: ensuring that different dimension output signals carry different
types of information and sorting the order of different dimension signals from
slowest to fastest.
The transformation function can be unified as

9i(8) = wih(s) = Y wjkhi(s). (9)
k=1

When g; is linear function, h(s) = s, and in the case of nonlinear, h(s) =
[h1(8), ..., hi(s)] " is a set of polynomial (usually quadratic) expansion functions
for linearization. Note that h(s) is centralized by minus (h(s)), i.e., h(s) =
h(s) — (h(s));. Thus, the objective function of Eqn.(5) can be rewritten as

(@), =w] (R(&)h() ) w; = w] Aw;, (10)
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and
(0j,05)¢ = wj (h(s)h(s)"),w; = w/ Bw;:. (11)
Considering constraint in Eqn.(7), the objective function can be evolved into
(03),  w]Aw;

<é?>t = < . - (12)

0j70j>t W;FBWJ '
The optimization problem can be solved by the generalized eigenvalue approach
AW = BWA (13)

The eigenvectors [wi, Wa, ..., W] corresponding to the M smallest eigenvalues
sorted in ascending order are the weights of SFA function g(s) = [g1(s), g2(s), ...,
gn(s)] in Eqn.(9).

2.3 Action Representation and Classification

For each joint unit, we can learn a set of SFA functions, and the SFA function
sets of all joint units are combined as G = [g', g2, ...,g™]T, where g’ is the SFA
function set of joint units . With the learnt SFA function G, the multi-order
stream s’ of joint i can be transformed into a new slow stream feature §8' = g'(s?)
with the size of M x T. Combination S(t) = [8'(¢),8%(t), ...,8" ()] T is used as a
stable expression of action sequence. The dimension of S(t) is d' = M x N.

A posture can be described with the d’ dimension vector at the correspond-
ing time/frame, and each action is a posture sequence over time. Although the
sequence contains lots of postures, some postures in a short time are very similar.
Moreover, several actions share many postures. To describe the action sequence
robustly with some key postures, we quantize the postures by clustering the
observed posture vectors into a posture dictionary. K-means is employed here to
cluster K centers as posture words, and 1-NN is used to label observational vec-
tors with the posture words. Thus, each action can be transformed as a sequence
of posture words corresponding to the observational postures.

As known that temporal information is very important for action represen-
tation. In order to encode the temporal information of one action into the final
action descriptor, we apply a three-tier temporal pyramid with partitions 4 x 1,
2 x 1 and 1 x 1. For each subregions, we count the numbers of different pos-
ture words to obtain a histogram, then, the histograms generated from all 7
subregions are concatenated as the final action representation.

Multi-class Support Vector Machine (SVM) with RBF kernel is utilized for
action classification. Parameter cost term and kernel bandwidth are optimized
using a greedy search with a 5-fold cross-validation on the training data.

3 Experimental Results and Analysis

In this section, we show the verification of our approach on the public MSR
Action3D dataset [8], and the experimental results demonstrate that the pro-
posed method can achieve the state-of-the-art level.
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MSR. Action3D dataset contains 20 actions: high arm wave, horizontal arm
wave, hammer, hand catch, forward punch, high throw, draw z, draw tick, draw
circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick, jog-
ging, tennis swing, temnis serve, golf swing, pickup & throw. Each action was
performed by 10 subjects for two or three times. The dataset contains 557 action
samples, and the frame rate of sequences is 15 f/s. The original action data of
this dataset consists of depth image sequences. 20 3D skeleton joint positions
are estimated from each depth image by applying the real time skeleton track-
ing technique [14].

Due to the large amount of computation for classifying all the actions, the
dataset is divided into 3 subsets: AS1, AS2 and AS3, and each subset contains
8 actions. The partition follows the rule that AS1 and AS2 group actions with
similar movement, while AS3 groups complex actions together. The actions in
the three subsets are:

AS1: Horizontal arm wave, Hammer, Forward punch, High throw, Hand clap,
Bend, Tennis serve, Pickup & throw

AS2: High arm wave, Hand catch, Draw x, Draw tick, Draw circle, Two hand
wave, Slide boxing, Forward kick

AS3: High throw, Forward kick, Side kick, Jogging, Tennis swing, Tennis serve,
Golf swing, Pickup & throw

We evaluate our method on MSR, Action3D dataset by using the 2-fold cross-
subject test setting following the benchmark system [8], i.e., subjects 1,3,5,7,9
are used for training and 2,4,6,8,10 are used for testing. We do not compare
with some methods [9,10] which just simply split data into two parts, because
the performance of various 2-fold divisions vary widely. As mentioned in Section
2.1, some joint units share one joint center. The number of joint units can be con-
firmed by the existing angles between two connected segments in the skeleton.
The joint of shoulder center connects with 4 segments, and we use the smallest
4 angles in the 3D space to form joint units. Removing the angles connected to
hands and feet, the remaining 16 angles in the skeleton are used in our exper-
iments. Thus, N mentioned in Section 2.3 is equal to 16. The number of SFA
function M is empirically set to 15. We use the quadratic expansion function
h(d) = [dy,ds, ..., dy, d1dy, dyda, ..., dnd,] T to expand the d-dimension of stream
feature s in Eqn.(9).

Table 1 compares the results between our approach and the state-of-the-art
methods published in recent years. We can see from the results that our method
achieves good performance on the three action sets of MSR Action3D dataset,
and the average accuracy outperforms those of state-of-the-art methods.

Fig. 3 shows the confusion matrixes for the three action scenes of MSR
Action3D dataset. The method works well on AS1 and AS3 action sets while the
performance is relatively poor on AS2 set. Contrasting the actions in the three
sets, some actions in AS2, e.g. {High arm wave, Hand catch, Slide boxing} and
{Draw X, Draw circle}, are more similar than others, moreover, these actions are
always with short durations where the high-level visual patterns are hard to learn
by SFA. The highest performance on complex AS3 action set demonstrates that
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Table 1. Result comparison with other published methods. D’ and ’S’ in the ’Data’
column represent depth and skeleton information respectively.

Accuracy (%)

Method Year Data AS1 AS2 AS3 Average
Li et al. [8] 2010 D 72.9 71.9 79.2 74.7
Xia et al. [23] 2012 D 87.98 85.48 63.46 78.97
Yang et al. [24] 2012 D 74.5 76.1 96.4 82.33
Vieira et al. [18] 2012 D 84.70 81.30 88.40 84.8
Wang et al. [21] 2012 D+ S - - - 88.20
Zhao et al. [26] 2013 S - - - 81.70
Oreifej et al. [13] 2013 D - - - 88.36
Wang et al. [19] 2013 S - - - 90.22
Vemulapalli et al. [17] | 2014 S - - - 89.48
Our method S 92.47 82.14 97.17 90.59

AS1 AS2 AS3
High arm wave 1 High throw

Hammer Hand cateh [ . 1 Forward kick
Forward punch Draw x 1 . Side kick

Horizontal arm wave k3

High throw| Draw tick Jogging
Hand clap 5 Draw circle Tennis swing
Bend 8 Two hand wave Tennis serve

Tennis serve 5 Slide boxing

Pickup & throw Forward kick

(2) (b) (©)

Fig. 3. The confusion matrixes for the three action sets of MSR Action3D dataset

the learnt high-level patterns by SFA contribute to recognizing complex human
actions.

In order to have a deep insight of the proposed approach, comparison exper-
iments are done to analyze the contributions of multi-order stream and SFA
transformation, and the results are laid out in Table 2. It’s obvious that high-
order (2"? and 3"?) streams contain more action information, and multi-order
streams can improve the performance of recognition accuracies on all subsets.
Moreover, the description capability of each type of streams can be improved
with SFA transformation. Combined with the slow streams shown in Fig. 1, we
can know that SFA can be used to learn the intrinsic information from streams
with noise, and the transformed streams are more stable. Note that the SFA
function number M is empirically set by considering all actions in the three
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subsets, thus, some learned relative faster functions will influent the pow of SFA
stream feature and make the performance reduce in some subsets.

Table 2. Result comparison of stream orders and SFA transformation

Accuracy (%)

Method AS1 AS2 AS3 Average
1°* Order 59.14 | 61.61 76.42 65.72
274 Order 75.26 | 62.50 | 87.74 75.17
37% Order 7419 | 64.29 | 87.74 75.41

Multi-Order 83.49 | 74.54 | 90.29 82.78

1°* Order + SFA 64.52 60.71 73.58 66.27
2"% Order + SFA 69.89 72.32 88.68 76.96
374 Order 4+ SFA 78.49 68.75 90.57 79.27
Multi-Order + SFA 92.47 | 82.14 | 97.17 90.59

4 Conclusion

This paper has proposed an approach to recognize human actions with skeleton
joint streams. We generate multi-order streams from original data to improve
the description capability of skeleton joint streams. Then, the SFA is employed
to decrease the intra-variance of data. Temporal pyramid of posture word his-
tograms is used to describe the global temporal information of action sequence.
The experimental results demonstrate that both multi-order streams and the
SFA contribute to the recognition accuracy. Compared to the state-of-the-art
methods, the part of action representation in our system has big room of improve-
ment by employing discriminative information of action sequence. Moreover, on-
line action recognition with skeleton point information will be more widely used
in applications such as human-computer interaction, entertainment or even robot
control. Thus, we can optimize our method from these aspects.
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