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Abstract. Typically, 3D geometry acquisition and reflectance acquisi-
tion techniques strongly rely on some basic assumptions about the surface
reflectance behavior of the sample to be measured. Methods are tailored
e.g. to Lambertian reflectance, mirroring reflectance, smooth and homoge-
neous surfaces or surfaces exhibiting mesoscopic effects. In this paper, we
analyze whether multi-view material recognition can be performed robust
enough to guide a subsequent acquisition process by reliably recognizing a
certain material in a database with its respective annotation regarding the
reconstruction methods to be chosen. This allows selecting the appropri-
ate geometry/reflectance reconstruction approaches and, hence, increas-
ing the efficiency of the acquisition process. In particular, we demonstrate
that considering only a few view-light configurations is sufficient for
obtaining high recognition scores.
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1 Introduction

The goal of accurately capturing details in surface geometry and reflectance
behavior has led to a huge number of different methods and respective setups.
However, current state-of-the-art acquisition procedures are rather designed
regarding the expected reflectance behavior. The acquisition process is guided
by the user who chooses the acquisition routines based on the impression of the
material appearance he obtains when looking at the material sample.

In the domain of reflectance acquisition, it is well-known that smooth, homo-
geneous materials can be represented well with analytical BRDF models. These
typically only depend on the direction of the incoming light and the view direc-
tion. In contrast, materials exhibiting mesoscopic effects of light exchange on
surface structures imaged to a size of approximately one pixel cannot be modeled
by using simple BRDF models. For such materials, current state-of-the-art tech-
niques acquire data-driven BTFs which consider the spatial material variations
in addition to the view direction and the direction of the incoming light.

In a similar way, 3D reconstruction techniques typically also depend on some
basic assumptions about material reflectance. Many of the methods such as most
multi-view stereo techniques, photometric stereo and structured light systems are
based on assuming Lambertian reflectance behavior. Some more sophisticated
extensions allow considering the wider range of opaque surfaces. In contrast,
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other reconstruction techniques are specialized on mirroring surfaces. All the
aforementioned geometry reconstruction techniques consider only a small frac-
tion of the possible surface materials and are not tailored to consider arbitrary
surface reflectance.

Without a-priori knowledge about the material properties of the material
sample, the naive way would be applying several different techniques and merging
their results. However, this is highly inefficient regarding acquisition time, and
hardware components are stressed unnecessarily as many of the taken images do
not have an influence on the final reconstruction and, thus, have to be neglected.
For more efficient geometry and reflectance acquisition procedures in case of
missing information about the material properties of the considered material
sample or object, it is therefore desirable to automatically select only the appro-
priate techniques instead of applying several different methods.

In this paper, we focus on this task by investigating a-priori information
in form of a database of material measurements to classify a measured material
based on a small set of photos (see Fig. 1). Depending on the annotations for the
closest match in the database, corresponding methods can easily be determined.
For an almost mirroring metal, for instance, a shape-from-specularity approach
could be used for geometry reconstruction and a BRDF measurement could be
started for measuring the surface reflectance. If the considered material sample
is classified as a material with strong mesoscopic effects such as present in e.g.
leather, a structured light based geometry acquisition in combination with a
BTF acquisition could be proposed. We demonstrate that material recognition
can be achieved with a high reliability by looking at the characteristic material
appearance under a few viewpoints. At first sight, this problem might seem to
be not as interesting any more due to the successful studies on databases such as
the CUReT database [7]. However, such databases offer only a small intra-class
variance in the appearance of the involved material samples. With recent, more
challenging databases with larger intra-class variances of the respective material
samples such as the ALOT database [12] and the database in [30], there is a
need to obtain further insights into recognizing materials using multiple view-
light directions for the reference/query sets.

In summary, the key contributions of our work are

– an approach to classify material instances which can serve as an initialization
for an efficient acquisition process, and

– a study for using set-based classifiers to find the closest material in the
database from a set of view-light configurations which might not necessarily
be contained in the database.

2 Related Work

Material classification is a challenging problem due to the significant variations
in material appearance under different configurations of viewpoint, illumination
and surface geometry and a lot of studies have been conducted. In the following,
we briefly discuss model-based and appearance-based approaches.
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Fig. 1. Material recognition using multi-view information can be formulated as a
set-based recognition task. Characteristic material traits observed in the images of
a particular material instance form a respective, characteristic material space. The
objective is to identify the most similar material instance within the database for an
input query material by comparing the material spaces.

Model-based approaches: The inference of knowledge about the considered mat-
erial surface can be approached by using certain models which capture the
variations of material appearance under different view-light configurations. For
analyzing physical surface models, histogram models have been used in e.g. [9]
and [13] to represent the changes in appearance for materials under varying view-
light conditions. In [22], recognition is approached based on a partly Lambertian
and partly specular model. The studies in [5] and [10] analyzed the model-based
dependency of texture features on illumination. However, such dependencies rely
on certain surface characteristics which also applies for the assumed reflectance
models. While analytical models might be sufficient to represent the reflectance
behavior of locally smooth surfaces with homogeneous reflectance behavior, they
do not reflect characteristic material traits that coin many materials with meso-
scopic surface reflectance effects. Such effects take place at surface structures
imaged to an area of approximately one pixel within an image. More complex
material models such as bidirectional texture functions [8] can deal with such
mesoscopic effects but have their limitation w.r.t. extremely specular materials.
In that case, their data-driven nature requires an ideally continuous angular
sampling which would significantly increase the data masses and therefore is
rather impractical. Consequently, the selection of such model-based approaches
is material-specific, i.e. the fitting procedures are guided by the appropriate
model. In addition, the fitting involves the explicit consideration of a multitude
of parameters such as the parameters of the reflectance model, the lighting, etc..

Appearance-based approaches: The key components of appearance-based mate-
rial classification systems are the extraction of discriminative descriptors that
reflect characteristic material traits, an efficient and appropriate modeling for
the material categories and an appropriate classifier. The probably most widely
used descriptors are filterbanks (e.g. [2,3,6,17,18,25,27]), color patches (e.g.
[20,24,26,28,30]), denseSIFT (e.g. [20,24,30]), Local Binary Patterns (LBPs)
(e.g. [3,19]), kernel descriptors [15] and combinations of multiple of these descrip-
tors (e.g. [1,15,19,20,24,30]). Combining complimentary descriptors for material
classification has been demonstrated to lead to superior results. After extracting
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such descriptors for the images contained in the training set, the typical app-
roach considers representing the appearance of a material in an individual image
based on textons as introduced in e.g. [17] and [18] and also followed in e.g.
[19,20,24,25,27,28,30]. The resulting per-image representations can then be
classified using nearest neighbor classifiers, Bayesian frameworks [20,27], MRF
classifiers [26], SVMs [3,14,19,21,30] or other classifiers such as random forests.

While single-image-based material classification represents the most focused
task, some acquisition devices also offer to easily acquire several images under
several view-light configurations which might significantly facilitate material
classification. The expected result of high performance scores is of great impor-
tance if further steps of the acquisition procedure depend on the reflectance
behavior of the material classified before. In [17] and [18], histograms have been
concatenated to form a combined vector for each particular material, which
imposes that materials are represented by a consistently handled ordering of
the configurations within the combined vector where all the individual image-
representations have to be carefully registered. For comparing the combined
vector representations, both the number and the IDs of the view-light configu-
rations of both vectors have to coincide. In [6], bidirectional feature histogram
manifolds have been introduced. However, having a sparse set of view-light con-
figurations represents a problem to this approach, as the reference manifolds
become coarsely sampled. In addition, linear interpolation between neighboring
view-light configurations will result in additional sources of inaccuracies which
increase with an increasing distance of the neighboring view-light configurations.

We also aim at classifying material instances using only a few images and
make use of results from the face recognition domain. For efficiency, we focus on
training-free, linear approaches as presented in [4]. In particular, our material
recognition approach yields significantly better recognition rates than previous
methods when using smaller numbers of view-light configurations.

3 Methodology

We propose an automatic assistance system for guiding the acquisition process
where the respective techniques are selected based on a prior material recogni-
tion (see Fig. 2). For a query material, we search its best representative within a
database of materials with corresponding annotations about how to acquire the
respective type of material. Hence, one core component of our system is repre-
sented by a material database which contains images of a multitude of material
samples taken under different viewing and lighting conditions which are expected
to be met during the acquisition with standard devices analyzed in [23].

For a reliable material recognition, we need to consider the spatial variations
of a material as well as its change in appearance induced by different viewing and
lighting conditions. Therefore, our approach is based on first computing state-
of-the-art descriptors to capture the characteristic material traits and the sub-
sequent derivation of a vector-based representation for each of the given images
under individual viewing and lighting conditions (see Subsection 3.1). The set
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Fig. 2. Overview on the set-based material recognition scheme: After extracting des-
criptors, we compute a dictionary from the descriptors obtained for the reference data.
This dictionary is used to quantize the representation of the content of a particular
image into a vector representation. Finally, a set-to-set classification is carried out to
find the closest material within the database. The attached annotations for the closest
material in the database can be used to guide the subsequent reconstruction process.

of vectors resulting for an individual material sample is then used to obtain
its material space. This allows to perform the comparison of different material
spaces via set-to-set distances (see Subsection 3.2).

3.1 Representing Materials

In order to be representative for a certain material, material-specific proper-
ties have to be included in the set-based representation. Characteristic material
traits can be identified in a huge number of different aspects such as color,
surface roughness, self-occlusions, interreflections, specularities, and it has been
shown beneficial to use several feature descriptors considering different types
of attributes (e.g. [20]). We consider the following descriptor types which are
densely sampled on a regular grid with a spacing of 5 pixels in our experiments:

– Color: We extract 3 × 3 color patches as in [20].
– SIFT: For considering the local spatial and directional distribution of image

gradients, we extract dense SIFT descriptors as in e.g. [20]. In addition, SIFT
descriptors provide robustness to variations in illumination and viewpoint.

– HOG2x2: After computing histograms of oriented gradients, neighboring
descriptors are concatenated to a 124-dimensional descriptor as in [31]. As
the normalization differs from the scheme used in SIFT, it captures material
characteristics in a different way.

– Leung-Malik filters: LM filters [17,18] represent a filterbank with multiple
orientations and multiple scales regarding the involved filters. We use 6 ori-
entations and 3 scales.

The extracted descriptors are then used to compute a vector-based represen-
tation for each of the masked image regions. In the scope of this paper, we analyze
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the suitability of the popular bag-of-words representation and the more sophis-
ticated VLAD representation [16]. Based on the descriptors extracted for the
images contained in the database, we compute a dictionary of visual words for
each descriptor type via k-means clustering. In case of the bag-of-words model,
we quantize each descriptor to its closest visual word in the dictionary and form
histogram representations. In contrast, the VLAD representation is based on
first assigning all the local descriptors xi within an image region to their nearest
neighbor cj with j = 1, . . . , k in the corresponding dictionary with k visual words
for each feature type. Then, the VLAD entries are computed by accumulating
the differences of the local descriptors and their assigned visual words. These
entries are concatenated to the final VLAD vector, which we normalize to unit
length for each of the descriptor types. These vector-based representations for the
images of a particular material instance form its corresponding material space.
In case of combining several descriptor representations, we simply concatenate
the normalized vectors corresponding to the involved descriptor types.

3.2 Set-Based Classification

In contrast to e.g. [6] where a-priori knowledge about the considered viewing
and lighting conditions is incorporated for setting up aligned training manifolds,
our approach does not rely on the availability of such information. A randomly
taken subset of images without knowledge about the imaging parameters should
be enough to reliably recognize materials. We use the linear methods presented
in [11,32] and [4], where there is no need for parameter learning. Non-linear
techniques (e.g. [4]) could be employed as well at the cost of learning hyperpa-
rameters such as the kernel width.

Linear convex hull based classifier. Representing the material instances via vec-
tor representations for the respective images, we make use of the convex hull
classifier presented in [4]. Here, we assume that the vector representations under
the available view-light configurations chosen to represent one of the individual
material samples can be represented via convex hulls. The distance between con-
vex hulls can be calculated by using quadratic programming and is abbreviated
via CHISD (Convex Hull based Image Set Distance) as in [4].

Linear affine hull based classifier. Similar to [4], we consider affine hulls for
representing the material spaces. We calculate the linear affine hull parameters
by computing an orthonormal basis for the affine subspace spanned by vectors
representing a particular material. The distance between two linear affine hulls
abbreviated via AHISD (Affine Hull based Image Set Distance) can be computed
using the hyperplane which optimally separates the affine hulls.

Mutual subspace method (MSM). This type of method used in [11,32] represents
each class with a subspace formed by the respective vectors, and the similarity
between subspaces is determined by comparing the angles between the subspaces.
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4 Experimental Results

For computing the histogram and VLAD representations respectively, we used
dictionary sizes of 150 for color, 250 for SIFT, 250 for HOG2x2 and 200 for the
LM filters throughout all of our experiments as used in [20,24].

In the scope of our experiments, we aim at analyzing the capabilities of the
different set-based recognition techniques. We therefore perform experiments
on different datasets for varying numbers of view-light configurations in the
reference and query sets. We always take disjoint sets of view-light configurations
for the reference/query sets of the material samples.

CUReT Database. For obtaining an intuition of the recognition performance,
we use the well-established LM filters and denseSIFT for recognizing the 61
CUReT material samples (see Fig. 3, left). Using 5 randomly chosen view-light
configurations for representing both reference and query materials, we already
obtain high accuracies of around 95.5% for both LM filters and denseSIFT when
using AHISD and CHISD with VLAD representations. MSM methods perform
worse by about 5%. The benefit of the high-dimensional VLAD representation
is obvious in the fact, that histograms perform significantly worse by 4%− 11%.
Using more view-light configurations to span the space for the different mate-
rial samples, we observe that the accuracy obtained when using the individual
descriptors closely approaches the 100% already for about 10 view-light configu-
rations in reference and query sets. In general, there is a tendency that the high-
dimensional VLAD description gives better accuracies than using histograms.
We also combined the descriptors which additionally increases the performance.

In [6], a selection of 20 material instances of the CUReT database has been
analyzed. Using 56 images per material instance for their reference manifolds, a
performance of about 98% has been reached for classifying individual textures
and a bit more than 70% for using 10 configurations per material. For a fair
comparison, we only use LM filters as descriptors. Representing the reference
sets with 10 randomly drawn view-light configurations and having a single con-
figuration for the query material, we obtain performances of around 95% for the
combination of CHISD and VLAD representations which is only slightly worse.
In a direct comparison to using 10 configurations for the reference sets, this com-
bination gives an improvement of about 20%. Using more configurations in the
query sets, we already reach more than 99% starting from three configurations.
DenseSIFT shows a similar performance.

The high performances reached on this database indicate that the individual
material samples appear rather distinctive and that the database is not highly
challenging. Additionally, as a consequence of the high performances, a real
analysis of the different set-based methods w.r.t. each other is hardly possible and
the need for set-based recognition is not yet clearly visible. For this reason, more
insights can be obtained by using more challenging datasets with higher intra-
class variances in material appearance under different view-light configurations.
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Fig. 3. Material samples in the CUReT database [8] (taken from [29]) (left) and the
ALOT database [12] (right). For illustration purposes, only a subset of the 250 material
samples of the ALOT database is shown.

ALOT Database. This database [12] (see Fig. 3, right) offers significantly more
and also a wider range of different material types, which have additionally been
observed under different illumination colors. In our experiments, we consider
color patches, denseSIFT, HOG2x2, LM filters and their combination. Taking
5 view-light configurations for the reference and the query sets results in an
accuracy of about 60% for color, 89% for denseSIFT, 83% for LM filters and
83% for HOG2x2 for VLADs with CHISD or AHISD and 4% less for MSM
methods. Using histograms also leads to lower performances. The combination of
the descriptors, however, leads to about 94% for AHISD and CHISD with VLAD
and little lower accuracies for the MSM methods. Taking 10 configurations per
reference/query set, the accuracies of the individual descriptors increase, and for
the combination of descriptors we reach slightly above 99% using all the methods.
This indicates a trend that the reliability of material recognition increases with
increasing numbers of view-light configurations for reference and query sets.

Database measured for [30]. While the ALOT database [12] gives a more
visible impression on the power of set-based recognition, the samples in this
database still do not seem to show too extreme intra-class variations under dif-
ferent view-light configurations in comparison to the inter-class variances. In
contrast, the material samples of the database in [30] are used to model the
variance in different semantic categories. We used the measurements of the 84
material samples used in [30] and further 76 material samples in the database
extension (see Fig. 4). For each of these material samples, photos have been
taken under 151 different viewing directions and 151 lighting directions lead-
ing to 22,801 images per material sample. For some of the categories, several
of the samples only exhibit rather subtle differences (e.g. tiles or metals). This
makes the dataset challenging. Instead of grouping these samples into semantic
categories as in [30], we consider the measurements per material sample individ-
ually and focus on recognizing the material samples. As illustrated in Fig. 5 and
Fig. 6, the accuracy again increases for an increasing number of configurations
considered in the reference/query sets. As before, we observe the trend of VLADs
being more discriminative than histograms. Furthermore, the descriptors have
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been evaluated separately, where denseSIFTs tend to perform best. The differ-
ence to the performance of other descriptors is more visible for the histogram
representations. AHISD and CHISD almost consistently outperform the MSM
methods. Using the combination of different descriptors results in improvements
over the accuracies obtained for the individual descriptors. These improvements
are larger, if only a few configurations are available for the reference/query sets.

Fig. 4. Some of the materials measured for the database of [30] and its extension
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Fig. 5. Accuracies obtained for the data measured in [30] when using histograms and
disjoint reference and query sets of 5 (upper left), 10 (upper right), 15 (lower left), 20
(lower right) randomly drawn images of different view-light configurations

In Fig. 7, we illustrate the dependency of the obtained accuracy on the num-
ber of view-light configurations in the query sets. We only depict this information
for CHISD, which outperformed the other classifiers in the previous experiments.
However, we additionally show the performances of using individual descriptors
and some combinations of the descriptors. In general, the obtained accuracies
increase for taking more images in the query sets and using the VLAD represen-
tation leads to accuracies superior to the ones obtained when using histograms.
Furthermore, we also analyzed the accuracies obtained for using different com-
binations of the descriptors. The difference in the obtained accuracies indicates
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Fig. 6. Accuracies obtained for the data measured in [30] when using VLADs and
disjoint reference and query sets of 5 (upper left), 10 (upper right), 15 (lower left), 20
(lower right) randomly drawn images of different view-light configurations
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Fig. 7. Accuracies obtained for using sets of 20 view-light combinations for the refer-
ence sets and an increasing number of view-light combinations for the query materials
(for the data measured in [30]). As expected, the accuracy increases with larger query
sets.

that the descriptors carry different amounts of complementary information. In
particular, the combination of color and denseSIFT clearly outperforms the
remaining combinations of two descriptor types and even slightly outperforms
the combination of all four descriptors types. Additionally, it becomes apparent
that considering multiple view-light configurations leads to significant perfor-
mance gains of almost 20% for using 10 configurations for the query sets in
comparison to using a single configuration for the query sets when consider-
ing the combinations of descriptors. For more view-light configurations in the
query set, we observe rather marginal improvements in the accuracies. When
analyzing the few misclassified material samples (e.g. two of the tiles and two of
the metals have not been properly distinguished) and the respective estimated
material labels, we observed that the estimated material and the ground truth



Material Recognition for Efficient Acquisition of Geometry and Reflectance 331

material indeed look rather similar and it is even hard to distinguish them as a
human. In turn, this means that we still can take the stored parameters for a
subsequent acquisition or reconstruction respectively due to the similarity of the
materials. As a result, we also obtain a highly reliable recommendation regarding
adequate acquisition and reconstruction methods.

5 Conclusions

In this paper, we have presented a study on using set-based recognition schemes
in combination with standard descriptors and encodings for material recogni-
tion. Our studies demonstrate the benefit of making use of several images of a
material sample for different view-light conditions regarding material recogni-
tion. There are only little performance gains possible for databases with smaller
intra-class variance before reaching the saturation close to 100%, which might
have lead to less interest in investigations on material recognition based on sev-
eral view-light configurations in recent years. However, when considering more
challenging databases with larger intra-class variances under different view-light
configurations, it is still essential to provide a reliable material recognition with
regard to an efficient acquisition relying on a correct recommendation of the
acquisition procedure to be used. We have shown that such a material recog-
nition can be achieved with a high reliability by looking at the characteristic
material appearance under a few view-light configurations which emphasizes the
significant benefit of set-based material recognition in the presence of larger
variations in appearance of the individual samples.

Acknowledgments. The research leading to these results was funded by the Euro-
pean Commission’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement no. 323567 (Harvest4D), 2013-2016.
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