
Gait-Based Person Identification Using Motion
Interchange Patterns

Gil Freidlin(B), Noga Levy, and Lior Wolf

Tel-Aviv University, Tel Aviv, Israel
gilfreid@post.tau.ac.il

Abstract. Understanding human motion in unconstrained 2D videos
has been a central theme in Computer Vision research, and over the
years many attempts have been made to design effective representa-
tions of video content. In this paper, we apply to gait recognition the
Motion Interchange Patterns (MIP) framework, a 3D extension of the
LBP descriptors to videos that was successfully employed in action recog-
nition. This effective framework encodes motion by capturing local
changes in motion directions. Our scheme does not rely on silhouettes
commonly used in gait recognition, and benefits from the capability of
MIP encoding to model real world videos. We empirically demonstrate
the effectiveness of this modeling of human motion on several challenging
gait recognition datasets.
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1 Introduction

Human gait is a valuable biometric characteristic describing the coordinated,
cyclic movements of a walking person. Gait analysis is available where other
biometrics cannot be measured, as gait can be recognized from a distance, does
not require cooperation or even awareness of the subject, and works well on
low resolution videos as recorded by standard surveillance cameras. The main
challenge of gait recognition is the inherent large variability due to physical
factors such as injuries or fatigue, carrying a load or wearing motion restrictive
clothes.

Over the years many attempts have been made to design effective represen-
tations of video content. These range from high-level shape representations, to
methods which consider low-level appearance and motion cues. In the task of
Action recognition, the video representation aims to distinguish among human
actions regardless of their performer. Interestingly, motion representations devel-
oped for action recognition and applied for gait recognition [5,9,13,15,19,32]
demonstrate good perception within the same action (walking).

In this work, we adopt the Motion Interchange Patterns (MIP) [21] repre-
sentation that was developed for action recognition applications. MIP encodes
motion directly from video frames, and does not require preprocessing such as
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extracting the silhouette from the background or finding the cycles of the motion
as other methods do. This rich local representation of human motion produces
a discriminative signature of human cyclic gait motion. We suggest adaptations
of the original MIP scheme to gait based identification.

2 Gait Recognition

Gait recognition approaches can be roughly divided into model-based and model-
free categories. The model-based family of methods use knowledge about the
body shape for the gait analysis. Model matching is performed in each frame in
order to measure the physical gait parameters such as trajectories, limb length
and angular speed.

Model-free techniques capture gait characteristics by analyzing the feature
distribution over the space and time extent of the motion. These techniques often
rely on extracting the human silhouette in every frame under the assumption that
the interesting information about gait pattern lies in the body shape and contour.
Popular methods such as the GEI [11] variants estimate the gait period and
average the silhouettes over the gait cycle. Motion features are then computed
either directly on the silhouette characteristics or by modeling the silhouette
sequence using, for example, optical flow [25] or dynamic texture descriptors [23].

The human silhouette represents human body motions in a compact and
efficient way but requires background subtraction, a challenging task for realistic
backgrounds. Identification performance is sensitive to the silhouettes quality
(as demonstrated in [4]), hence silhouette-based methods are not well adjusted
to unconstrained environment. Additionally, relying merely on silhouettes might
miss out details containing significant motion information.

In a recent line of work, descriptors extracted directly from video frames, that
were originally developed for action recognition, are applied to gait recognition.
A few examples are LBP descriptors [16], HOG variants [5,13,15], and dense
trajectories [9].

3 Action Recognition Descriptors

A central family of action recognition approaches uses low-level representation
schemes of the information in a video. These approaches can be further cate-
gorized as local descriptors [26], optical flow based methods [1] and dynamic-
texture representations [36].

Local descriptors [22,28,34] capture the locality of the human motion in time
and space. As a first stage, pixels that are potentially significant to understand
the scenario are detected and the region around them is represented by a local
descriptor. To represent the entire video, these descriptors are processed and
combined using, for example, a bag-of-words representation [27]. A major draw-
back of this approach is the sensitivity to the number of interest points detected.
When a small number of interest points is detected, there is insufficient infor-
mation for recognition. Videos with too much motion (e.g., background motion
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such as waves or leaves in the wind) may provide a lot of information irrelevant
for recognition.

The optical flowbetween successive frames [1,31], sub-volumes of the video [18],
or surrounding the central motion [7,8] is highly valuable for Action Recognition.
A drawback of optical flow methods is committing too soon to a particular motion
estimate at each pixel. When these estimates are mistaken, they affect subsequent
processing by providing incorrect information.

Dynamic-texture representations extend existing techniques for recognizing
textures in 2D images to time-varying “dynamic textures” [12,20]. One such
technique is Local Binary Patterns (LBP) [29], that extracts texture using local
comparisons between a pixel and the pixels surrounding it, and encodes these
relations as a short binary string. The frequencies of these binary strings are
combined to represent the entire image region.

The Local Trinary Patterns (LTP) descriptor of [36] is an LBP extension
to videos. An LTP code of a pixel is a trinary string that is computed by con-
sidering the relations among patches centered around the pixel in consecutive
frames. A video is partitioned into a regular grid of non-overlapping cells and
the histograms of the LTP codes in each cell are then concatenated to represent
the entire video.

In this work, we adopt a dynamic-texture based representation, the Motion
Interchange Patterns (MIP) [21], a recent video representation that was developed
and evaluated on action recognition applications. This representation reflects the
range of possible changes in motion and their likelihoods of occurring at each pixel
in the video. Static edges are indicated by identifiable combinations of the MIP val-
ues, and may be ignored by subsequent processing. MIP codes also allow effective
camera motion compensation, required in unconstrained videos.

4 Motion Interchange Patterns

Given an input video, the MIP encoding [21] assigns eight trinary strings consist-
ing of eight digits each, to every pixel in every frame. A single digit compares the
compatibility of one motion in a specific direction from the previous frame to the
current frame, and one motion in another direction from the current frame to
the next one. Figure 1 illustrates the motion structure extracted from comparing
different patches.

The code of a given pixel p in the current frame, denoted S(p), is constructed
by considering eight possible 3 × 3 patches around p in both preceding and
successive frames. Each digit in S(p) refers to a pair of patches, one from the
preceding frame and another from the following frame, out of 64 such pairs.

The sum of squared differences (SSD) patch-comparison operator is used to
set the matching bit. Denote by SSD1 (SSD2) the sum of squared differences
between the patch in the previous (next) frame and the patch in the current
frame, as depicted in Figure 2. Each trit, Si,j(p), is computed as follows, for
some threshold parameter θ:
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Fig. 1. Representation of motion comparisons of patches from three successive frames.
For a given pixel and frame, blue arrows show the motion from a patch in the preceding
frame and red arrows show the motion to a patch in the succeeding frame.
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Fig. 2. Each trinary digit in the MIP encoding represents a comparison of two SSD
scores, both referring to the same central patch (in green). SSD1 is computed between
the central patch and a patch in the previous frame (in blue), and SSD2 is computed
between the central patch and a patch in the next frame (in red).

Si,j(p) =

⎧
⎨

⎩

1 if SSD1 − θ > SSD2
0 if |SSD2 − SSD1| ≤ θ

−1 if SSD1 < SSD2 − θ
(1)

A value of −1 indicates that the former motion is more likely and 1 indicates
that the latter is more likely. The 0 value indicates that both are compatible
in approximately the same degree or that there is no motion is this location.
MIP compares all eight motions to the eight subsequent motions, obtaining a
comprehensive characterization of the change in motion at each video pixel.

MIP Global Descriptor. Denote by i and j the patch locations taken from
the previous and following frames respectively, and let α be the angle between
direction i and direction j out of the eight possible angle values. There are eight
(i, j) pairs for each α, and the concatenation of their Si,j(p) values creates a
trinary string. Each 8-trit string is separated into two binary strings, a positive
string indicating the ones and a negative string indicating the minus ones, and
translated into an integer in the range 0-255. Each pixel obtains 16 integer values,
two values per α, that represent the complete motion interchange pattern for
that pixel.
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For each angle α, two histograms of size 256 are pooled (for the values taken
from the positive and negative binary strings ,separately) for each 16 × 16 cell
placed inside the image and concatenated, thus creating 512-dimensional MIP
features. A dictionary containing 5000 code words is constructed using k-means
on a random subset of MIP features (50000 in our experiments), taken from the
encoded gallery set videos. Then, each local string is assigned to the closest word
in the dictionary. Denote by uα the histogram of the dictionary code words in
the entire movie, normalized to the sum of one and containing the square root
of each element. The global descriptor of a video clip is a concatenation of the
eight uα histograms of all channels.

5 MIP-Based Gait Recognition

Our baseline method employs MIP encoding on videos to find a motion signature
of a walking person. We compute the MIP encoding for each video, and then use
the local features to create a global descriptor for the whole video as described
in section 4.

The MIP encoding is well adapted to gait recognition. The MIP descriptor is
a normalized histogram of a bag-of-words of the patterns, hence contains pattern
frequencies and does not require finding the gait cycles explicitly (We assume
that each video contains at least one gait cycle). Moreover, significant motion
patterns tend to repeat in each cycle while noise is random, and are therefore
better represented in the histogram.

Another advantage is that MIP does not require silhouette extraction but
rather works directly on the video frames. When MIP encoding is applied to
moving silhouettes, the boundaries of the body motion are well encoded but
other relevant details in the raw video are lost (e.g. the hand swing when passing
over the body).

Designed for the action recognition task, MIP implicitly decodes all mov-
ing objects in the scene. Therefore, in a video clip containing a single walking
person, MIP implicitly decodes the moving person without prior knowledge of
the body location, while other methods require external human detection [15] or
bounding box assignment. However, when the scene contains other consistently
moving objects, their motion is encoded as well, hence narrowing down the area
of interest might be needed.

We suggest two modifications of MIP adjusted for gait recognition - con-
founding details removal and temporal MIP.

Confounding Details Removal. MIP is an appearance-based method, hence,
along with the action of interest, it encodes other details that can be mislead-
ing in the background or outfit. The standard MIP partly overcomes confusing
information by downscaling the input images into a fixed size (100 × 134 in
our experiments) before applying MIP. However, the degraded image quality
affects the expressiveness of pose description that might be valuable for analyz-
ing the motion, for example in the elbows region. Hence, after downscaling we
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Fig. 3. MIP encoding. The first row contains images from CASIA-B, the second row
contains images from CASIA-C, and the bottom row contains images from TUMGAID.
In each row, the left image shows the standard MIP encoding and the right image shows
MIP with confounding details removal. The encoding after details removal is sharpened
and represent the moving human body in greater accuracy. The coded motions are
illustrated by color coding pixels by their 8-trit strings content, for a specific α between
the compared directions. Blue - motion from the previous frame to the current frame,
red - motion from the current frame to the next frame. In image (e), the bricks shape
within the shade is encoded, contributing misleading motion patterns. In image (h),
details removal is applied and the shade is not encoded as a part of the moving object.
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upscale the frames to their original size by interpolation and compute MIP on
the original size frames. We acquire a precise MIP encoding of moving body parts
represented by significantly more features compared to MIP on the downscaled
images, without being distracted by misleading details. This form of low-pass fil-
tering is more suitable compared to conventional direct smoothing on the original
image, as it tends to remove textures while keeping depth boundaries without
distorting the moving shape. By removing confounding patterns, the weight of
the motion patterns relevant for gait identification is increased, thus improving
the representation of the motion in the learned dictionaries.

As shown in Figure 3, the resulting encoding follows the moving body parts
accurately.

Temporal MIP. The local motion pattern used in the standard MIP compares
local motion in a three-sequential-frame scope, symmetrical in both preceding
and successive directions. The temporal MIP suggested here enlarges the tem-
poral scope by considering temporal a-symmetric scopes of motion.

The MIP encoding described in section 4 is computed for a given frame t on
frames t − 1, t and t + 1. The temporal MIP further encodes MIP on frames
t − 2, t and t + 1 and on frames t − 1, t and t + 2, and illustrated in Figure 4.
A normalized histogram is constructed separately for every α in each of these
encodings. Finally, the global descriptor is a concatenation of all 24 histograms.
According to our experiments, extending the temporal scope to the symmetric
five frames encoding does not improve performance either by its own or when
concatenated with the suggested encoding.

Figure 5 describes the features extracted by the three MIP components of
the temporal MIP on examples from CASIA-B and CASIA-C datasets, both on
the downscaled frames and on the original size frames after details removal. The
details removal variant is computed on the frames enlarged to their original size,
thus produces significantly more features to describe the same action compared
to standard MIP.

Fig. 4. Visualization of the Temporal MIP extension. Standard MIP encodes three
successive frames, t− 1, t and t+1 (solid arrows). Temporal MIP additionally encodes
frames t−1, t and t+2 (dotted arrows), and frames t−1, t, and t+2 (dashed arrows).
Frame t is emphasized in red.
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Fig. 5. Representation of the Temporal MIP local features on walking people from the
CASIA datasets. Images (a)-(d) show temporal MIP features on a video taken from
CASIA-B , (e)-(h) show the details removal variant on the same video. Images (i)-(l)
show temporal MIP features on a video taken from CASIA-C, and (m)-(p) show the
details removal variant. In the details removal variant, MIP is applied on the full sized
frames and hence contains more features. Legend: green pluses - standard MIP features,
blue stars - MIP features on frames (t−2, t, t+1), red circles - MIP features on frames
(t − 1, t, t + 2).

6 Classification

Given a gallery set, each image is represented by a global descriptor. These
descriptors are used to train a multiclass linear SVM classifier. For N different
subjects (class labels), N binary classifiers are obtained in the One-vs-All scheme.
Prediction of a new example is performed by extracting its global descriptor,
applying all binary classifiers and choosing the subject whose matching classifier
gains the highest confidence score.
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7 Experiments

We demonstrate our method on the CASIA-B and CASIA-C datasets and on
the recently published TUM-GAID dataset. These datasets are challenging, con-
taining various walking styles such as walking in different paces, walking while
wearing a coat and carrying a bag or wearing restrictive shoes. Variation in the
time of recording given in the TUM-GAID dataset are not tested here.

We test the performance of our method for standard MIP and temporal
MIP representations, both with and without confounding details removal, and
compare to the results reported by other methods on these datasets.

Performance is evaluated by the classification accuracy – the rate of correct
identification by the first match. Experimentally, in most cases our method is
comparable or superior to the other approaches, and the temporal MIP and
confounding details removal adjustments usually outperform the vanilla MIP
classification.

7.1 CASIA-B

The CASIA-B dataset [39] is a large multi-view gait database, containing 124
subjects captured from 11 views. For each subject, three walking styles are
recorded - six video clips of normal walk (NN), two of carrying a bag (BG),
and two of wearing a coat (CL). CASIA-B was recorded in a controlled indoor
environment, with no textured outfits. Therefore, the performance of the details
removal MIP in this case is equivalent to a direct encoding of the frames in their
original resolution with no filtering applied.

In this work, only recordings captured from a lateral viewpoint are consid-
ered. The protocols used for testing are described in Table 1. The first set of
experiments follows the evaluation protocol suggested in [39]. It uses as gallery
the first four normal walk (NN) sequences per subject and three probe sets, one

Table 1. The evaluation protocols for the CASIA-B dataset. Gallery and probe size
represents the number of examples taken for each of the 124 subjects participating
in the evaluation test. (a) first set of experiments, the protocol is defined in [39], (b)
second set of experiments, the protocol is defined in [16]

Gallery Probe

NN - first 4 NN - last 2

NN - first 4 BG - 2

NN - first 4 CL - 2

(a)

Gallery Probe

NN - 5 NN -1

NN - 6 CL - 2

NN - 6 BG - 2

CL - 1 CL - 1

CL - 2 NN - 6

CL - 2 BG - 2

BG - 1 BG - 1

BG - 2 NN - 6

BG - 2 CL - 2

(b)
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Table 2. Comparison on CASIA-B dataset from a lateral viewpoint. The model is
trained on normal walking and tested separately on each of the walking styles. Left
- comparison of the performance on the normal (NN) style probe, right - comparison
of the performance on carrying a bag (BG) and wearing a coat (CL). (*) The Robust
method [17] is trained on three examples per subject and tested on the remaining
examples, differently from the protocol defined in Table 1

Method NN

MIP 95.96

Temporal MIP 96.37

MIP + Detail removal 98.79

Temporal MIP + Detail removal 99.19

LBP-FLOW [16] 94

HWLD [32] 100

GEI+ nn [39] 97.6

GEI + LDA [11] (results from [4]) 83.1

PSC [24] 97.7

FDEI - Wavelet [4] 90.3

FDEI - Frieze [4] 91.1

IDTW [38] 83.5

Method BG CL

MIP 87.9 55.64

Temporal MIP 88.3 57.66

MIP + Details removal 98.38 83.87

Temporal MIP + Details Removal 97.98 77.82

LBP-FLOW [16] 45.2 42.9

HWLD [32] 92.2 96.5

GEI+ nn [39] 32.7 52.0

GFI Fusion [3] 83.6 48.8

Cross-view [2] 78.3 44.0

Robust(*) [17] 91.9 78.0

PRWGEI [37] 93.1 44.4

Table 3. Comparison on CASIA-B dataset of all combinations of gallery and probe
against LBP-FLOW, following the protocol specified in Table 1(b)

Gallery NN BG CL

Probe NN BG CL NN BG CL NN BG CL

MIP 95.96 89.11 66.12 75 87.5 50.8 51.34 54.43 87.9

LBP-FLOW [16] 94 45.2 42.9 45.2 64.2 25 36.9 22.6 57.1

per each walking style. The second set of experiments follows the evaluation
protocol in [16] and contains all gallery-probe combinations of walking styles.

Table 2 compares the performance on the first set of experiments. The results
on the left refer to probe NN, and the results on the right refer to probes BG and
CL. All compared methods except LBP-Flow [16] rely on silhouette extraction.
Our method achieves good performance on the NN probe, and the details removal
variants generalize well to the other walking styles, outperforming the other
methods on the BG probe by ∼ 5%, and achieving the second best result on the
CL probe.

Table 3 compares performance of standard MIP against LBP-Flow [16] for all
combinations of walking styles per gallery and probe, following the evaluation
protocol given in [16]. When the gallery and probe contain different walking
styles, all existing sequences are used in both gallery and probe. When the
gallery and probe share the same walking style, cross-validation is performed
with one example per subject as the probe and the other examples in the gallery,
and the average performance is reported. In all combinations, MIP outperform
LBP-FLOW by a large gap.
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Table 4. The evaluation protocol for CASIA-C dataset: (a) the gallery and probe
are from the same walking style, (b) cross style experiments. The number of examples
per subject taken as gallery and as probe is specified, for each of the 153 subjects
participating. CV stands for cross-validation

Gallery Probe Remarks

fn - 3 fn - 1 4-fold CV

fs - 1 fs - 1 2-fold CV

fq - 1 fq - 1 2-fold CV

fb - 1 fb - 1 2-fold CV

(a)

Gallery Probe

fn - 4 fs - 2 fq - 2 fb - 2

fs - 2 fn - 4 fq - 2 fb - 2

fq - 2 fn - 4 fs - 2 fb - 2

fb - 2 fn - 4 fs - 2 fq - 2

(b)

7.2 CASIA-C

The CASIA-C dataset [33] contains video of lateral view captured at night and
recorded by a fixed low resolution infra-red camera. There are 153 subjects walk-
ing in four walking styles with 10 movies per subject: four movies for normal
walking (fn), and two movies per each of the other walking styles – slow pace
(fs), quick pace (fq) and carrying a bag (fb).

Table 4 summarizes the evaluation protocol used for CASIA-C dataset. In
the experiments referring to gallery and probe that share the same walking style
(within), the probe contains one example per subject and the other examples
serve as the gallery. Each experiment is repeated with different probe examples
for k times, where k is the number of examples per subject in the relevant walking
style. We report the average accuracy on the k repetitions. In the experiments
training on one walking style and evaluating on a different walking style (cross),
all available sequences are used.

Table 5 shows the classification accuracy when training on normal walking
and evaluating on all walking styles. The MIP variants outperform all compared
methods, and the confounding details removal boosts performance on the bag
carrying test set. Table 6 summaries the results when learning on the slow pace,
quick pace and carrying a bag train sets, evaluated within the same walking
style and on the other styles. MIP variants outperform the compared methods
on most combinations.

7.3 TUM-GAID

The TUM-GAID [14] is a recently published dataset with 305 subjects, captured
indoor from a lateral viewpoint. The movies were taken by a 3D-depth camera
and provide matching audio. In this work we only use the 2D RGB images of the
recorded subjects. For each subject, three walking styles are recorded - normal
walking (N), carrying a backpack (B) and wearing coating shoes (S). A subset
of 32 people is recorded again after a three months period in all walking styles
(TN, TB, TS).

The evaluation protocol designed in [14] defines a test set containing 155 sub-
jects. For recognition, the gallery consists of four normal walk recordings per each
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Table 5. Results on CASIA-C dataset for a gallery containing normal walking style
and evaluated on all probe sets. The first column refers to the normal walking probe.
(*) The PSA results in [24] refer to a random subset of 50 subjects (out of 153 subjects)

Method Within Cross

fs fq fb

MIP 99.34 95.09 98.69 96.73

Temporal MIP 99.34 93.79 98.69 97.05

MIP+Details removal 99.34 92.15 98.36 99.02

Temporal MIP + Details Removal 99.34 92.16 98.69 99.34

WBP [23] 99.02 86.3 89.5 80.7

PSA(*) [24] 98 92 92 93

Gait curves [6] 91 65.4 69 25

Bag Of Gait [30] 99.84 91.23 95.78 89.82

Pseudo Shape [33] 98 82.4 91.8 24.4

GEI [39] 96 74 83 60

HTI [33] 94 85 88 51

Table 6. Results on the CASIA-C dataset. The top two rows refer to the gallery and
probe walking styles respectively. (*) The PSA results in [24] refer to a random subset
of 50 subjects (out of 153 subjects).

Within Cross

Gallery fs fq fb fs fq fb

Probe fs fq fb fn fq fb fn fs fb fn fs fq

MIP 99 99.34 99 93.13 89.54 88.23 95.75 84.31 92.48 92.97 83.98 90.52

Temporal MIP 99.34 99.34 99.34 91.17 87.25 85.94 96.95 83.98 94.44 93.95 86.93 91.5

MIP + 99 99.34 99.34 87.41 66.33 80.07 97.05 62.41 88.88 96.73 84.31 91.83
Details Removal

Temporal MIP + 99.34 99.34 99.34 85.78 66.33 78.43 97.22 62.41 91.83 97.22 85.29 93.46
Details Removal

WBP [23] 95 96 96 88 61 71 84 61 71 81 70 80

PSA(*) [24] 98 96 96 93

Gait curves [6] 85 79.1 81

Table 7. Evaluation protocol for the N, B and S probe sets from the TUMGAID
dataset as defined in [14]. The number of examples per subject taken as gallery and as
probe is specified for each of the 155 subjects

Gallery Probe

N - first 4 N - last 2

N - first 4 B - 2

N - first 4 S - 2

of the 155 subjects and the probe is divided into six test sets, for each walking style
and recording phase. The experiments conducted here use the N, B and S probe
sets. Table 7 shows the evaluation protocol used for those probe sets.
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Table 8. Results on the TUM-GAID dataset trained on normal walking and evaluated
on three walking styles. N - normal walking, B - carrying a backpack and S - wearing
coating shoes. All compared methods except for our method and GEI utilize depth
information

Method N B S

MIP 98.06 95.8 97.42

Temporal MIP 98.38 97.42 96.77

MIP + Details Removal 97.41 90.96 89.35

Temporal MIP + Details Removal 97.74 94.19 91.61

GEI (results from [13]) 94.2 13.9 87.7

Depth-GHEI [13] 96.8 3.9 88.7

Depth-GEI [13] 99 40.3 96.1

GEV [13] 99.4 27.1 52.6

Unimodal RSM [10] 100 79 97

SVIM [35] 98.4 64.2 91.6

Table 8 compares our results to other methods. This comparison is challeng-
ing, as all methods apart from MIP and GEI [13] employ the depth information
provided by the dataset.

MIP and MIP variants cope well with all walking styles. When normal walk
is used for both training and testing, all presented methods show very good
performance. The RSM method [10] achieves the best performance, utilizing the
depth information to extract high quality silhouettes. When training on normal
walk and testing on either (B) or the coating shoes probe (S), Mip and temporal
MIP outperform all other methods. Temporal MIP gains the highest accuracy on
the backpack carrying probe, while MIP wins temporal MIP by a small margin
on the coating shoes probe (S).

Although the TUM-GAID dataset is captured indoor, it contains a chal-
lenging background of a brick wall nearby the subjects. Due to the lighting
conditions, the subjects cast shadows on the wall, which follow them and vary
in shape and direction.

When applying MIP, the shadow is encoded along with the movement, as
shown in Figure 6(a) and Figure 3(e). Hence, the shaded area contributes motion
patterns to the MIP encoding. Since the background contains repetitive strong
edges and colored bricks, the filtering in the details removal pre-process does
not eliminate these undesirable patterns that clearly reflects the brick edges, as
shown in Figure 6(b).

Elimination of these edges is done by applying a Gaussian filter (3×3, σ = 1)
on each frame after downscaling, and then upscaling the frame to the original
size. Figure 6(c) demonstrates the new encoding, which focuses on the moving
body while avoiding the misleading wall and shadow patterns.

The standard MIP encoding performs better on this dataset over the details
removal MIP encoding. The reason might be the information found in the shadow,
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(a) (b) (c)

Fig. 6. Detail removal preprocessing for TUMGAID dataset. (a) Low resolution MIP
encoding shows the shaded area is encoded, creating motion patterns caused by the
shade and the patterned wall. (b) After applying detail removal preprocessing (down-
scaling then upscaling again to the original frame size) misleading motion patterns that
reflects the bricks pattern are still exists in the current shaded area. (c) the result of
the new preprocessing flow using a Gaussian filtering to suppress the strong edges, now
following mostly the moving body.

that is codedwhennodetails removal is applied. Since all scenes in this datasetwere
recorded in the same location, in similar conditions and from the same viewpoint,
the information encoded in the shaded area might contribute to identification.

8 Summary and Conclusions

Most methods applied to gait recognition involve a preprocessing step of silhou-
ette extraction, making them sensitive to the silhouettes quality and unstable in
unconstrained environments.

In this work, we examine the the Motion Interchange Patterns, designed
to directly represent motion in unconstrained 2D videos, on gait recognition
datasets. Following our observations, we suggest two adaptations of MIP to the
task of gait recognition – a temporal extension of the encoded motion, and
confounding details removal that enables the analysis of the frames in their
original size without getting lost in confounding details.

Employing MIP is a step towards motion analysis that is perceptive enough
to identify people from a distance, in real world sequences and under various
appearances.
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