
Chapter 1
Epidemic Models: Their Spread, Analysis
and Invasions in Scale-Free Networks

Somnath Tagore

Abstract The mission of this chapter is to introduce the concept of epidemic out-
bursts in network structures, especially in case of scale-free networks. The invasion
phenomena of epidemics have been of tremendous interest among the scientific
community over many years, due to its large scale implementation in real world
networks. This chapter seeks to make readers understand the critical issues involved
in epidemics such as propagation, spread and their combat which can be further
used to design synthetic and robust network architectures. The primary concern in
this chapter focuses on the concept of Susceptible-Infectious-Recovered (SIR) and
Susceptible-Infectious-Susceptible (SIS) models with their implementation in scale-
free networks, followed by developing strategies for identifying the damage caused
in the network. The relevance of this chapter can be understood when methods dis-
cussed in this chapter could be related to contemporary networks for improving
their performance in terms of robustness. The patterns by which epidemics spread
through groups are determined by the properties of the pathogen carrying it, length
of its infectious period, its severity as well as by network structures within the popu-
lation. Thus, accurately modeling the underlying network is crucial to understand the
spread as well as prevention of an epidemic. Moreover, implementing immunization
strategies helps control and terminate theses epidemics.

1.1 Scale-Free Networks

The degree distribution of individuals is one of the most standard and efficient net-
work measures that is existent today. In most of the synthetic as well as practical
networks, many individuals have lesser number of connected neighbours than others.
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For instance, random networks, small worlds display lesser variation in terms of
neighbourhood sizes, whereas spatial networks have Poisson-like degree distribu-
tions. Moreover, as highly connected individuals are of more importance consider-
ing disease transmission, incorporating them into the current network is of outmost
importance [4]. This is essential in case of capturing the complexities of disease
spread. Architecturally, scale-free networks are heterogenous in nature and can be
dynamically constructed by adding new individuals to the current network structure
one at a time. This strategy is similar to naturally forming links, especially in case
of social networks. Moreover, the newly connected nodes or individuals link to the
already existent ones (with larger connections) in a manner that is preferential in
nature. This connectivity can be understood by a power-law plot with the number
of contacts per individual, a property which is regularly observed in case of several
other networks like that of power grids, world-wide-web, to name a few [14].

Epidemiologists have worked hard on understanding the heterogeneity of scale-
free networks for populations for a long time. Highly connected individuals as well as
hub participants have played essential roles in the spread and maintenance of infec-
tions and diseases. Figure1.1 illustrates the architecture of a system consisting of a
population of individuals. It has several essential components, namely, nodes, links,
newly connected nodes, hubs and sub-groups respectively. Here, nodes correspond
to individuals and their relations are shown as links. Similarly, newly connected
nodes correspond to those which are recently added to the network, such as initiation
of new relations between already existing and unknown individuals [24]. Hubs are

Fig. 1.1 A synthetic scale-free network and its characteristics



1 Epidemic Models: Their Spread, Analysis and Invasions … 3

those nodes which are highly connected, such as individuals who are very popular
among others and have many relations and/or friends. Lastly, sub-groups correspond
to certain sections of the population which have individuals with closely associated
relationships, such as group of nodes which are highly dense in nature, or having
high clustering coefficient. Furthermore, it is important in having large number of
contacts as the individuals are at greater risk of infection and, once infected, can
transmit it to others. For instance, hub individuals of such high-risk individuals help
in maintaining sexually transmitted diseases (STDs) in different populations where
majority belong to long-term monogamous relationships, whereas in case of SARS
epidemic, a significant proportion of all infections are due to high risk connected indi-
viduals. Furthermore, the preferential attachment model proposed by Barabási and
Albert [4] defined the existence of individuals of having large connectivity does not
require random vaccination for preventing epidemics. Moreover, if there is an upper
limit on the connectivity of individuals, random immunization can be performed to
control infection.

Likewise, the dynamics of infectious diseases has been extensively studied in case
of scale-free as well as small-world and random networks. In small-world networks,
most of the nodes may not be direct neighbors, but can be reached from all other
nodes via less number of hops, that are number of nodes between start and terminating
nodes. Also, in these networks distance, dist, between two random nodes increases
proportionally to the logarithm of the number of nodes, tot, in the network [15], i.e.,

dist ∝ log tot (1.1)

Watts and Strogatz [24] identified a class of small-world networks and categorized
them as random graphs. These were classified on the basis of two independent fea-
tures, namely, average shortest path length and clustering coefficient. As per Erdős-
Rényi model, random graphs have a smaller average shortest path length and small
clustering coefficient. Watts and Strogatz on the other hand demonstrated that vari-
ous real-world networks have a smaller average shortest path length along with high
clustering coefficient greater than expected randomly. It has been observed that it is
difficult to block and/or terminate an epidemic in scale-free networks with slow tails.
It has especially been seen in case the network correlations among infections and
individuals are absent. Another reason for this effect is the presence of hubs, where
infections could be sustained and reduced by target-specific selections [17].

1.1.1 Power-Law

It has been well known that real-world networks ranging from social to computers
are scale-free in nature, whose degree distribution follows an asymptotic power-law.
These are characterized by degree distribution following a power law,

P(conn) ≈ conn−η (1.2)
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for the number of connections, conn for individuals andη is an exponent.Barabási and
Albert [4] analyzed the topology of a portion of the world-wide-web and identified
‘hubs’. The terminals had larger number of connections than others and the whole
network followed a power-law distribution. They also found that these networks
have heavy-tailed degree distributions and thus termed themas ‘scale-free’. Likewise,
models for epidemic spread in static heavy-tailed networks have illustrated thatwith a
degree distribution having moments resulted in lesser prevalence and/or termination
for smaller rates of infection [14]. Moreover, beyond a particular threshold, this
prevalence turns to non-zero. Similarly, it has been seen that for networks following
power-law,

moment > η −1 (1.3)

does not exist and the prevalence is non-zero for any infection rates. Due to this rea-
son, epidemics are difficult to handle and terminate in static networks having power-
law degree distributions. Figure1.2 illustrates a power-law plot between P(conn)

Fig. 1.2 Power-law curve illustrating P(conn) versus conn in log-log scale
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versus conn in log-log scale. It shows that points in this figure follow a inverse
downgrade line in log-log scale, satisfying ‘scale-free’ behavior.

Likewise, in various instances, networks are not static but dynamic (i.e., they
evolve in time) via some rewiring processes, in which edges are detached and reat-
tached according to some dynamic rule. Steady states of rewiring networks have been
studied in the past. More often, it has been observed that depending on the average
connectivity and rewiring rates, networks reach a scale-free steady state, with an
exponent, η, represented using dynamical rates [17].

1.2 Epidemics

The study of epidemics has always been of interest in areas where biological appli-
cations coincide with social issues. For instance, epidemics like influenza, measles,
and STDs, can pass through large group of individuals, populations, and/or persist
over longer timescales at low levels. These might even experience sudden changes of
increasing and decreasing prevalence. Furthermore, in some cases, single infection
outbreaks may have significant effects on a complete population group [1].

Epidemic spreading can also occur on complex networks with vertices repre-
senting individuals and the links representing interactions among individuals. Thus,
spreading of diseases can occur over the network of individuals as spreading of com-
puter viruses occur over the world-wide-web. The underlying network in epidemic
models is considered to be static while the individual states vary from infected to
non-infected individuals according to certain probabilistic rules. Furthermore, the
evolution of an infected group of individuals in time can be studied by focusing on
the average density of infected individuals in steady state. Lastly, the spread as well
as growth of epidemics can also be monitored by studying the architecture of the
network of individuals as well as its statistical properties [2].

1.2.1 Branching

One of the essential properties of epidemic spread is its branching pattern, thereby
infecting healthy individuals over a time period. This branching pattern of epidemic
progression can be classified on the basis of their infection initiation, spread and
further spread (Fig. 1.3) [5].

1. Infection initiation: If an infected individual comes in contact with a group of
individuals, the infection is transmitted to each with a probability p, independent
of one another. Furthermore, if the same individual meets k others while being
infected, these k individuals form the infected set. Due to this random disease
transmission from the initially infected individual, those directly connected to it
get infected.
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Fig. 1.3 Branching modes and patterns in epidemic progression

2. Spread: Every individual in the original infected set meets k other individuals,
which results in k2 individuals.

3. Further spread: The infection spreads further with each individual in the present
infected set connecting to k healthy individuals with a probability p independent
of individual infection.

1.2.1.1 Reproductive Number

If infection in a branching process reaches an individual set and fails to infect healthy
individuals, then termination of the infection occurs, which leads to no further pro-
gression and infection of other healthy individuals. Thus, there may be two possibil-
ities for an infection in a branching process model. Either it reaches a site infecting
no further and terminating out, or it continues to infect healthy individuals through
contact processes. The quantity which can be used to identify whether an infection
persist or fades out is defined as basic reproductive number [6].

This basic reproductive number, τ, is the expected number of newly infected
individuals caused by a single already infected individual. In case where every indi-
vidual meets k new people and infects each with probability p, the basic reproductive
number is represented as

τ = pk (1.4)

It is quite essential as it helps in identifying whether or not an infection can spread
through a population of healthy individuals. The concept of τ was first proposed by
Alfred Lotka, and applied in the area of epidemiology by MacDonald [13].
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For non-complex population models, τ can be identified if information for ‘death
rate’ is present. Thus, considering death rate, d, and birth rate, b, at the same time,

τ = b

d
(1.5)

Moreover, τ can also be used to determine whether an infection will terminate, i.e.,
τ < 1 or it becomes an epidemic, i.e., τ > 1. But, it cannot be used for comparing
different infections at the same time on the basis of multiple parameters. Several
methods, such as identifying eigenvalues, Jacobian matrix, birth rate, equilibrium
states, population statistics can well be used to analyze and handle τ [18].

1.2.1.2 Branching Models

There are some standard branchingmodels that are existent for analyzing the progress
of infection in a healthy population or network. The first one, Reed-Frost model,
considers a homogeneous close set consisting of total number of individuals, tot. Let
num designate the number of individuals susceptible to infection at time t = 0 and
mnum the number of individuals infected by the infection at any time t [19]. Here,

num + mnum = tot (1.6)

mnum = num (1.7)

Here, Eq.1.7 is in case of a smaller population. It is assumed that an individual x is
infected at time t, whereas any individual y comes in contact with x with a probability

a
num , where a > 0. Likewise, if y is susceptible to infection then it becomes infected
at time t + 1 and x is removed from the population (Fig. 1.4a). In this figure, x or
v1(∗) represents the infection start site, y(v3), v2 are individuals that are susceptible
to infection, num = 0, tot = 11, and mnum = 1.

The second one, 3-clique model constructs a 3-clique sub-network randomly by
assigning a set of tot individuals. Here, for individual/vertex pair (vi, vj) with prob-
ability p1, the pair is included along with vertices triples (vi, vj, vk) with probability
p2. Thus, the corresponding pairs (vi, vj), (vj, vk) and (vk, vi) are also included. This
creates a network

G = g1
⋃

g2 (1.8)

Here, g1, g2 are two independent graphs, where g1 is a Bernoulli graph with edge
probability p1 and g2 with all possible triangles existing independently with a
probability p2 (Fig. 1.4b). In this figure, g1 = (v1, v2, v3), g2 = (v4, v5, v6),
g3 = (v7, v8, v9) are the three 3-clique sub-networks with tot = 9, and
G = g1

⋃
g2

⋃
g3 respectively [21].
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Fig. 1.4 Types of branching models illustrated in synthetic networks: a Reed-Frost, b 3-clique,
c Household
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The third one,Household model assumes that for a given a set of tot individuals or
vertices, g1 is a Bernoulli graph consisting of tot

b disjoint b−cliques, where b � tot
with edge probability p2. Thus, the network G is formed as the superposition of
the graphs g1 and g2, i.e., G = g1

⋃
g2. Moreover, g1 fragments the population

into mutually exclusive groups whereas g2 describes the relations among individuals
in the population. Thus, g1 does not allow any infection spread, as there are no
connections between the groups. But, when the relationship structure g2 is added,
the groups are linked together and the infection can now spread using relationship
connections (Fig. 1.4c). In this figure, tot = 10 where the individuals (v1 to v10) are
linked on the basis of randomly assigned p2 and b = 4 � tot = 10.

1.3 Network Architectures

The interconnected architecture of various networks have been of primary interest to
researchers in various scientific areas. In interconnected networks, failure in vertex
links in one network can cause failure of dependent vertices in other networks. This
results in cascading failures. Similarly, in case of networks without dependencies
among vertices, the level of information flow between the interconnected vertices
affects the epidemic transition on subset levels. Furthermore, percolation threshold
in interacting networks are lower than in single networks, with the appearance of
a giant component in certain cases (Fig. 1.5). A giant component is a connected
sub-graph of a random graph containing a constant fraction of total vertices of the
entire graph. These are extremely prominent in Erdős-Rényi graphs, where each
edge connecting vertex pairs for a set of n vertices remains independently of one
another with a probability p. Here, if p ≤ 1−ε

n for any constant ε > 0, then all the
connected components have size O(logn), and giant component is absent. But, for
p ≥ 1+ε

n a single giant component may reside. Figure1.5a–d illustrate the formation
of a giant component in a random graph with p = 0.002, 0.006, 0.009 in Fig. 1.5b–d
respectively [23].

Thus, it is essential to identify the conditions which results in an epidemic spread
in one network, with the presence of minimal isolated infections on other network
components. Moreover, depending on the parameters of individual sub-networks and
their internal connectivities, connecting them to one another creates marginal effect
on the spread of epidemic. Thus, identifying these conditions resulting in analyzing
spread of epidemic process is very essential. In this case, two different interconnected
network modules can be determined, namely, strongly and weakly coupled. In the
strongly coupled one, all modules are simultaneously either infection free or part of
an epidemic, whereas in the weakly coupled one a new mixed phase exists, where
the infection is epidemic on only one module, and not in others [25].



10 S. Tagore

Fig. 1.5 Emergence of giant component in an interconnected network. a Original network,
b emergence of giant component, c further emergence, and d final architecture

1.3.1 Concurrency

Generally, epidemicmodels consider contact networks to be static in nature,where all
links are existent throughout the infection course.Moreover, a property of infection is
that these are contagious and spread at a rate faster than the initially infected contact.
But, in cases like HIV, which spreads through a population over longer time scales,
the course of infection spread is heavily dependent on the properties of the contact
individuals. The reason for this being, certain individuals may have lesser contacts at
any single point in time and their identities can shift significantly with the infection
progress [25].

Thus, for modeling the contact network in such infections, transient contacts
are considered which may not last through the whole epidemic course, but only
for particular amount of time. In such cases, it is assumed that the contact links
are undirected. Furthermore, different individual timings do not affect those having
potential to spread an infection but the timing pattern also influences the sever-
ity of the overall epidemic spread. Similarly, individuals may also be involved in
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concurrent partnerships having two or more actively involved ones that overlap in
time. Thus, the concurrent pattern causes the infection to circulate vigorously through
the network [22].

1.4 Propagation Phenomena in Real World Networks

In the last decade, considerable amount of work has been done in characterizing as
well as analyzing and understanding the topological properties of networks. It has
been established that scale-free behavior is one of the most fundamental concepts for
understanding the organization various real-world networks. This scale-free property
has a resounding effect on all aspect of dynamic processes in the network, which
includes percolation. Likewise, for a wide range of scale-free networks, epidemic
threshold is not existent, and infections with low spreading rate prevail over the entire
population [10]. Furthermore, properties of networks such as topological fractality
etc. correlate to many aspects of the network structure and function. Also, some
of the recent developments have shown that the correlation between degree and
betweenness centrality of individuals is extremely weak in fractal network models
in comparison with non-fractal models [20].

Likewise, it is seen that fractal scale-free networks are dis-assortative, making
such scale-free networks more robust against targeted perturbations on hubs nodes.
Moreover, one can also relate fractality to infection dynamics in case of specif-
ically designed deterministic networks. Deterministic networks allow computing
functional, structural as well as topological properties. Similarly, in case of com-
plex networks, determination of topological characteristics has shown that these are
scale-free as well as highly clustered, but do not display small-world features. Also,
by mapping a standard Susceptible, Infected, Recovered (SIR) model to a percola-
tion problem, one can also find that there exists certain finite epidemic threshold.
In certain cases, the transmission rate needs to exceed a critical value for the infec-
tion to spread and prevail. This also specifies that the fractal networks are robust to
infections [11]. Meanwhile, scale-free networks exhibit various essential character-
istics such as power-law degree distribution, large clustering coefficient, large-world
phenomenon, to name a few [16].

1.5 Network Definition and Measurement

Network analysis can be used to describe the evolution and spread of information in
the populations along with understanding their internal dynamics and architecture.
Specifically, importance should be given to the nature of connections, and whether
a relationship between x and y individuals provide a relationship between y and x as
well. Likewise, this information could be further utilized for identifying transitivity-
based measures of cohesion (Fig. 1.6).
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Fig. 1.6 Architectural properties in a hypothetical. a Undirected, b directed network

Meanwhile, research in networks also provide some quantitative tools for describ-
ing and characterizing networks. Degree of a vertex is the number of connectivities
for each vertex in the formof links. For instance, degree(v4) = 3, degree(v2) = 4 (for
undirected graph (Fig. 1.6a)). Similarly for Fig. 1.6b, degreein(v2) = 3 (number of
incoming links),degreeout(v2) = 1 (number of outgoing links).Clustering coefficient
(CC) of a vertex is the compactness of the network, i.e.,
CC(vi) = 2∗link

degree(degree−1) , where degree = degree of vertex vi, link = number of links
among neighbors of vi. For instance, in Fig. 1.6a, CC(v2) = 0.33, CC(v4) = 0.6,
etc. Likewise, Shortest path is the minimum number of links that needs to be parsed
for traveling between two vertices. For instance, in Fig. 1.6a, shortest path between
v4 and v1 = (v4, v2, v1). Diameter of network is the maximum distance between
any two vertices or the longest of the shortest walks. Thus, in Fig. 1.6b, from v4,
one has (v4, v3, v2, v1), (v4, v2, v1), (v4, v5, v2, v1), from v3, we have (v3, v4, v5,

v2, v1), (v3, v4, v2, v1), (v3, v2, v1), from v5, we have (v5, v4, v3, v2, v1), (v5, v4,

v2, v1), (v5, v2, v1).Out of these the longest of the shortestwalks= (v3, v4, v5, v2, v1),
(v5, v4, v3, v2, v1) = 4. Thus, diameter = 4 [15].

Radius of a network is the minimum eccentricity (eccentricity of a vertex vi is
the greatest geodesic distance), i.e., distance between two vertices in a network is
the number of edges in a shortest path connecting them between vi and any other
vertex of any vertex. For instance, in Fig. 1.6b, radius of network = 2. Betweenness
centrality (g(vi)) is equal to the number of shortest paths from all vertices to all
others that pass through vertex vi, i.e.,

g(vi) = vxvy(vi)

vxvy
(1.9)

where vxvy is total number of shortest paths from vertex vx to vertex vy and vxvy(vi)

is the number of those paths that pass through vi. Thus, in Fig. 1.6b, g(v4) = 0.77.
Similarly, Closeness centrality (c(vi)) of a vertex vi describes the total distance of vi

to all other vertices in the network, i.e., sum the shortest paths of vi to all other vertices
in the network. For instance, in Fig. 1.6b, c(v4) = (v4, v3, v2, v1) + (v4, v2, v1) +
(v4, v5, v2, v1) = 8. Lastly, Stress centrality (s(vi)) is the simple accumulation of
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the number of shortest paths between all vertex pairs, sometimes interchangeable
with betweenness centrality [14].

Use of ‘adjacency matrix’, Avivj , describing the connections within a population
is also persistent. Likewise, various network quantities can be ascertained from the
adjacency matrix. For instance, size of a population is defined as the average number
of contacts per individual, i.e.,

num = 1

tot

∑

vivj

Avivj (1.10)

The powers of adjacency matrix can be used to calculate measures of transitiv-
ity [14].

1.5.1 Data Collection Process

One of the key pre-requisites of network analysis is initial data collection. For per-
forming a complete mixing network analysis for individuals residing in a popula-
tion, every relationship information is essential. This data provides great difficulty in
handling the entire population, as well as handling complicated network evaluation
issues. The reason being, individuals have contacts, and recall problems are quite
probable. Moreover, evaluation of contacts requires certain information which may
not always be readily present. Likewise, in case of epidemiological networks, con-
nections are included if they explain relationships capable of permitting the transfer
of infection. But, in most of the cases, clarity of defining such relations is absent.
Thus, various types of relationships bestow risks and judgments that needs to be
sorted for understanding likely transmission routes. One can also consider weighted
networks in which links are not merely present or absent but are given scores or
weights according to their strength [9].

Furthermore, different infections are passed by different routes, and a mixing
network is infection specific. For instance, a network used in HIV transmission
is different from the one used to examine influenza. Similarly, in case of airborne
infections like influenza andmeasles, various networks need to be considered because
differing levels of interaction are required to constitute a contact. The problems
with network definition and measurement imply that any mixing networks that are
obtained will depend on the assumptions and protocols of the data collection process.

Three main standard techniques can be employed to gather such information,
namely, infection searching, complete contact searching and diary-based studies [9].

1.5.1.1 Infection Searching

After an epidemic spread, major emphasis is laid on determining the source and
spread of infection. Thus, each infected individual is linked to one other from
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whom infection is spread as well as from whom the infection is transmitted. As
all connections represent actual transmission events, infection searching methods do
not suffer from problems with the link definition, but interactions not responsible for
this infection transmission are removed. Thus, the networks observed are of closed
architecture, without any loops, walks, cliques and complete sub-graphs [15].

Infection searching is a preliminarymethod for infectious diseaseswith lowpreva-
lence. These can also be simulated using several mathematical techniques based on
differential equations, control theories etc., assuming a homogeneous mixing of pop-
ulation. It can also be simulated in a manner so that infected individuals are identified
and cured at a rate proportional to the number of neighbors it has, analogous to the
infection process. But, it does not allow to compare various infection searching
budgets and thus a discrete-event simulation need to be undertaken. Moreover, a
number of studies have shown that analyses based on realistic models of disease
transmission in healthy networks yields significant projections of infection spread
than projections created using compartmental models [8]. Furthermore, depending
on the number of contacts for any infected individuals, their susceptible neighbors
are traced and removed. This is followed by identifying infection searching tech-
niques that yields different numbers of newly infected individuals on the spread of
the disease.

1.5.1.2 Complete Contact Searching

Contact searching identifies potential transmission contacts from an initially infected
individual by revealing some new individual set who are prone to infection and can
be subject of further searching effort. Nevertheless, it suffers from network definition
issues; is time consuming and depends on complete information about individuals
and their relationships. It has been used as a control strategy, in case of STDs. Itsmain
objective of contact searching is identifying asymptomatically infected individuals
who are either treated or quarantined.

Complete contact searching deals with identifying the susceptible and/or infected
individuals of already infected ones and conducting simulations and/or testing them
for degree of infection spread, treating them as well as searching their neighbors for
immunization. For instance, STDs have been found to be difficult for immunization.
The reason being, these have specifically long asymptomatic periods, during which
the virus can replicate and the infection is transmitted to healthy, closely related
neighbors. This is rapidly followed by severe effects, ultimately leading to the ter-
mination of the affected individual. Likewise, recognizing these infections as global
epidemic has led to the development of treatments that allow them to be managed by
suppressing the replication of the infection for as long as possible. Thus, complete
contact searching act as an essential strategy even in case when the infection seems
incurable [7].
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1.5.1.3 Diary-Based Studies

Diary-based studies consider individuals recording contacts as they occur and allow
a larger number of individuals to be sampled in detail. Thus, this variation from
the population approach of other tracing methods to the individual-level scale is
possible. But, this approach suffers from several disadvantages. For instance, the
data collection is at the discretion of the subjects and is difficult for researchers
to link this information into a comprehensive network, as the individual identifies
contacts that are not uniquely recorded [3].

Diary-based studies require the individuals to be part of some coherent group,
residing in small communities. Also, it is quite probable that this kind of a study may
result in a large number of disconnected sub-groups, with each of them representing
some locally connected set of individuals. Diary-based studies can be beneficial
in case of identifying infected and susceptible individuals as well as the degree of
infectivity. These also provide a comprehensive network for diseases that spread by
point-to-point contact and can be used to investigate the patterns infection spread.

1.6 Robustness

Robustness is an essential connectivity property of power-law graph. It defines that
power-law graphs are robust under random attack, but vulnerable under targeted
attack. Recent studies have shown that the robustness of power-law graph under
random and targeted attacks are simulated displaying that power-law graphs are very
robust under random errors but vulnerable when a small fraction of high degree
vertices or links are removed. Furthermore, some studies have also shown that if
vertices are deleted at random, then as long as any positive proportion remains, the
graph induced on the remaining vertices has a component of order of the total number
of vertices [15].

Many a times it can be observed that a network of individuals may be subject to
sudden change in the internal and/or external environment, due to some perturbation
events. For this reason, a balance needs to be maintained against perturbations while
being adaptable in the presence of changes, a property known as robustness. Studies
on the topological and functional properties of such networks have achieved some
progress, but still have limited understanding of their robustness. Furthermore, more
important a path is, higher is the chance to have a backup path. Thus, removing a link
or an individual from any sub-networkmay also lead to blocking the information flow
within that sub-network. The robustness of a model can also be assessed by means of
altering the various parameters and components associated with forming a particular
link.Robustness of a network can also be studiedwith respect to ‘resilience’, amethod
of analyzing the sensitivities of internal constituents under external perturbation, that
may be random or targeted in nature [18].
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1.7 Models of Infections

Basic disease models discuss the number of individuals in a population that are
susceptible, infected and/or recovered from a particular infection. For this purpose,
various differential equation based models have been used to simulate the events of
action during the infection spread. In this scenario, various details of the infection
progression are neglected, along with the difference in response between individuals.
Models of infections can be categorized as SIR and Susceptible, Infected, Susceptible
(SIS) [9].

1.7.1 Susceptible-Infected-Recovered (SIR)

The SIR model considers individuals to have long-lasting immunity, and divides the
population into those susceptible to the disease (S), infected (I) and recovered (R).
Thus, the total number of individuals (T ) considered in the population is

T = S + I + R (1.11)

the transition rate from S to I is κ and the recovery rate from I to R is ρ. Thus, the
SIR model can be represented as

dS

dT
= γ(T − S) − κ

I

T
S (1.12)

dI

dT
= κ

I

T
S − (γ + ρ)I (1.13)

dR

dT
= ρI − λR (1.14)

Likewise, the reproductivity (θ) of an infection can be identified as the average num-
ber of secondary instances a typical single infected instancewill cause in a population
with no immunity. It determines whether infections spreads through a population;
if θ < 1, the infection terminates in the long run; θ > 1, the infection spreads in a
population. Larger the value of θ, more difficult is to control the epidemic [12].

Furthermore, the proportion of the population that needs to be immunized can be
calculated by

θ = κ

γ + ρ
(1.15)

Similarly, for S(0), I(0), R(0), and θ <= 1,

lim
t→∞(S(t), I(t), R(t)) → (T , 0, 0) (1.16)



1 Epidemic Models: Their Spread, Analysis and Invasions … 17

known as disease free stability, whereas if θ > 1 and I(0) > 0, then

lim
t→∞(S(t), I(t), R(t)) → (

T

θ
,
γT

κ
(θ −1),

ρT

κ
(θ −1)) (1.17)

known as endemic stability can be identified.Depending upon these instances, immu-
nization strategies can be initiated [6].

1.7.1.1 Extensions to SIR Model

Although the contact network in a general SIR model can be arbitrarily complex, the
infection dynamics can still being studied as well as modeled in a simple fashion.
Contagion probabilities are set to a uniform value, i.e., p, and contagiousness has a
kind of ‘on-off’ property, i.e., an individual is equally contagious for each of the tI
steps while it has the infection, where 1 is present state of the system. One can extend
the idea that contagion is more likely between certain pairs of individuals or vertices
by assigning a separate probability pvi,vj to each pair of individuals or vertices vi and
vj, for which vi is linked to vj in a directed contact network.

Likewise, other extensions of the contact model involves separating the I state into
a sequence of early, middle, and late periods of the infection. For instance, it could
be used to model an infection with a high contagious incubation period, followed by
a less contagious period while symptoms are being expressed [16].

1.7.1.2 Percolations of SIR Model

In most of the cases, SIR epidemics are thought of dynamic processes, in which the
network state evolves step-by-step over time. It captures the temporal dynamics of
the infection as it spreads through a population. The SIR model has been found to be
suitable for infections, which provides lifelong immunity, like measles. In this case,
a property termed as the force of infection is existent, a function of the number of
infectious individuals is. It also contains information about the interactions between
individuals that lead to the transmission of infection.

One can also have a static view of the epidemics where SIR model for tI = 1.
This means that considering a point in an SIR epidemic when a vertex vi has just
become infectious, has one chance to infect vj (since tI = 1), with probability p. One
can visualize the outcome of this probabilistic process and also assume that for each
edge in the contact network, a probability signifying the relationship is identified.
Furthermore, one can also use the open and blocked healthy edges to represent the
course of the infection spread. A vertex vi will become infected during the epidemic
if and only if there is a path to vi from one of the initially infected nodes that consists
entirely of open edges [3].
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1.7.2 Susceptible-Infected-Susceptible (SIS)

The SIS model can be represented as

dS

dT
= ρI − κS (1.18)

dI

dT
= κS − ρI (1.19)

Removed state is absent in this case. Moreover, after a vertex is over with the Infec-
tious state, it reverts back to the Susceptible state and is ready to initiate the infection
again. Due to this alternation between the S and I states, the model is referred to as
SIS model. The mechanics of SIS model can be discussed as follows [2].

1. At the initial stage, some vertices remain in I state and all others are in S state.
2. Each vertex vi that enters the I state and remains infected for a certain number of

steps tI .
3. During each of these tI steps, vi has a probability p of passing the infection to

each of its susceptible directly linked neighbors.
4. After tI steps, vi no longer remains infected, and returns back to the S state.

The SIS model is predominantly used for simulating and understanding the
progress of STDs, where repeat infections are existent, like gonorrhoea. Moreover,
certain assumptions with regard to random mixing between individuals within each
pair of sub-networks are present. In this scenario, the number of neighbors for each
individual is considerably smaller than the total population size. Such models gener-
ally avoid random-mixing assumptions thereby assigning each individual to a specific
set of contacts that they can infect.

1.7.2.1 Life Cycle of SIS

An SIS epidemic, can run for long time duration as it can cycle through the vertices
multiple number of times. If at any time during the SIS epidemic all vertices are
simultaneously free of the infection, then the epidemic terminates forever. The reason
being, no infected individuals exist that can pass the infection to others. In case if the
network is finite in nature, a stage would arise when all attempts for further infection
of healthy individuals would simultaneously fail for tI steps in a row.

Likewise, for contact networks where the structure is mathematically tractable, a
particular critical value of the contagion probability p is existent, an SIS epidemic
undergoes a rapid shift from one that terminates out quickly to one that persists for
a long time. In this case, the critical value of the contagion probability depends on
the structure of the problem set [1].
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1.8 Epidemic Invasions, Propagations and Outbursts

The patterns by which epidemics spread through vertex groups is determined by the
properties of the pathogen, length of its infectious period, severity and the network
structures. The path for an infection spread are given by a population state, with
existence of direct contacts between the individuals or vertices. The functioning of
network system depends on the nature of interaction between their individuals. This
is essentially because of the effect of infection-causing individuals and topology of
networks. To analyze the complexity of epidemics, it is important to understand the
underlying principles of its distribution in the history of its existence. In recent years
it has been seen that the study of disease dynamics in social networks is relevant with
the spread of viruses and the nature of diseases [9].

Moreover, the pathogen and the network are closely intertwined with even within
the same group of individuals, the contact networks for two different infections are
different structures. This depends on respective modes of transmission of infections.
For instance, a highly contagious infection, involving airborne transmission, the
contact network includes a huge number of links, including any pair of individuals
that are in contactwith one another. Likewise, for an infection requiring close contact,
the contact network is much sparser, with fewer pairs of individuals connected by
links [7].

1.9 Combat and Immunization

Immunization is a site percolation problemwhere each immunized individual is con-
sidered to be a site which is removed from the infected network. Its aim is to trans-
fer the percolation threshold that leads to minimization of the number of infected
individuals. The model of SIR and immunization is regarded as a site-bond perco-
lation model, and immunization is considered successful if the infected a network
is below a predefined percolation threshold. Furthermore, immunizing randomly
selected individuals requires targeting a large fraction, frac, of the entire population.
For instance, some infections require 80–100% immunization. Meanwhile, target-
based immunization of the hubs requires global information about the network in
question, rendering it impractical in many cases, which is very difficult in certain
cases [6].

Likewise, social networks possess a broad distribution of the number of links,
conn, connecting individuals and analyzing them illustrate that that a large fraction,
frac, of the individuals need to be immunized before the integrity of the infected
network is compromised. This is essentially true for scale-free networks, where
P(conn) ≈ conn−η, 2 < η < 3, where the network remains connected even after
removal of most of its individuals or vertices. In this scenario, a random immuniza-
tion strategy requires that most of the individuals need to be immunized before an
epidemic is terminated [8].
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For various infections, it may be difficult to reach a critical level of immunization
for terminating the infection. In this case, each individual that is immunized is given
immunity against the infection, but also provides protection to other healthy individ-
uals within the population. Based on the SIR model, one can only achieve half of the
critical immunization level which reduces the level of infection in the population by
half. A crucial property of immunization is that these strategies are not perfect and
being immunized does not always confer immunity. In this case, the critical threshold
applies to a portion of the total population that needs to be immunized. For instance,
if the immunization fails to generate immunity in a portion, por, of those immunized,
then to achieve immunity one needs to immunize a portion

Im = τ −1
τ(1 − por)

(1.20)

Here, Im denotes immunity strength. Thus, in case if por is huge it is difficult to
remove infection using this strategy or provides partial immunity. It may also invoke
in various manners: the immunization reduces the susceptibility of an individual to a
particular infection, may reduce subsequent transmission if the individual becomes
infected, or it may increase recovery.

Such immunization strategies require the immunized individuals to become
infected and shift into a separate infected group, after which the critical immuniza-
tion threshold (SI ) needs to be established. Thus, if CIL is the number of secondary
infected individuals affected by an initial infectious individual, then

CIL = τ −1
τ −SI

(1.21)

Thus, SI needs to be less than one, else it is not possible to remove the infection. But,
one also needs to note that an immunization works equally efficiently if it reduces the
transmission or susceptibility and increases the recovery rate. Moreover, when the
immunization strategy fails to generate any protection in a proportion por of those
immunized, the rest 1−por are fully protected. In this scenario, it can be not possible
to remove the infection using random immunization. Thus, targeted immunization
provides better protection than random-based [13].

1.9.1 Complex Topologies and Heterogeneous Structures

In case of homogenous networks, the average degree, conn, fluctuates less and can
assume conn 
 conn, i.e., the number of links are approximately equal to average
degree. However, networks can also be heterogeneous. Likewise, in a homogeneous
network such as a random graph, P(conn) decays faster exponentially whereas for
heterogenous networks it decays as a power law for large conn.

The effect of heterogeneity on epidemic behavior studied in details for many
years for scale-free networks. These studies are mainly concerned with the stationary
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limit and existence of an endemic phase. An essential result of this analysis is the

expression of basic reproductive number which in this case is τ ∞ conn2
conn . Here, τ is

proportional to the second moment of degree, which finally diverges for increasing
network sizes [15].

1.9.2 Damage Patterns

It has been noticed that the degree of interconnection in between individuals for all
form of networks is quite unprecedented. Whereas, interconnection increases the
spread of information in social networks, another exhaustively studied area con-
tributes to the spread of infection throughout the healthy network. This rapid spread-
ing is done due to less stringency of its passage through the network. Moreover,
initial sickness nature and time of infection are unavailable most of the time, and the
only available information is related to the evolution of the sick-reporting process.
Thus, given complete knowledge of the network topology, the objective is to deter-
mine if the infection is an epidemic, or if individuals have become infected via an
independent infection mechanism that is external to the network, and not propagated
through the connected links.

If one considers a computer network undergoing cascading failures due to
worm propagation whereas random failures due to misconfiguration independent
of infected nodes, there are two possible causes of the sickness, namely, random and
infectious spread. In case of random sickness, infection spreads randomly and uni-
formly over the network where the network plays no role in spreading the infection;
and infectious spread, where the infection is caused through a contagion that spreads
through the network, with individual nodes being infected by direct neighbors with
a certain probability [6].

1.9.2.1 Random Sickness

In random damage, each individual becomes infected with an independent proba-
bility ψ1. At time t, each infected individual reports damage with an independent
probability ψ2. Thus, on an average, a fraction ψ of the network reports being
infected, where

ψ = ψ1.ψ2 (1.22)

It is already known that social networks possess a broad distribution of the number of
links, k, originating froman individual. Computer networks, both physical and logical
are also known to possess wide, scale-free, distributions. Studies of percolation on
broad-scale networks display that a large fraction, fc, of the individuals need to be
immunized before the integrity of the network is compromised. This is particularly
true for scale-free networks, where the percolation threshold tends to 1, and the
network remains contagious even after removal ofmost of its infected individuals [9].
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1.9.2.2 Infection Spread

When the hub individuals are targetedfirst, removal of just a fraction of these results in
the breakdownof the network.This has led to the suggestion of targeted immunization
of hubs. To implement this approach, the number for connections of each individual
needs to be known. During infection spread, at time 0, a randomly selected individual
in the network becomes infected. When a healthy individual becomes infected, a
time is set for each outgoing link to an adjacent individual that is not infected,
with expiration time exponentially distributed with unit average. Upon expiration
of a link’s time, the corresponding individual becomes infected, and in-turn begins
infecting its neighbors [7].

1.9.3 Immunity

In general, for an epidemic to occur in a susceptible population the basic reproductive
ratemust be greater than 1. Inmany circumstances not all contacts will be susceptible
to infection. In this case, some contacts remain immune, due to prior infection which
may have conferred life-long immunity, or due to some previous immunization.
Therefore, not all individuals are infected and the average number of secondary
infections decrease. Similarly, the epidemic threshold in this case is the number of
susceptible individuals within a population that is required for an epidemic to occur.
Similarly, the herd immunity is the proportion of population immune to a particular
infection. If this is achieved due to immunization, then each case leads to a new case
and the infection becomes more stable within the population [6].

One of the simplest immunization procedure consists of random introduction of
immune individuals in the population for achieving uniform immunization density. In
this case, for a fixed spreading rate, ξ , the relevant control parameter in the density
of immune individuals present in the network, the immunity, imm. At the mean-
field level, the presence of a uniform immunity reduces ξ by a factor 1 − imm, i.e.,
the probability of identifying and infecting a susceptible and non-immune individual
becomes ξ(1−imm). For homogeneous networks, one observes that, for aconstant ξ ,
the stationary prevalence is given by

ρimm = 0 (1.23)

for imm > immc and

ρimm = (immc − imm)/(1 − imm) (1.24)

for imm ≤ immc Here immc is the critical immunization value above which the
density of infected individuals in the stationary state is null and depends on ξ as
immc = 1 − ξc

ξ
.
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Thus, for a uniform immunization level larger than immc, the network is com-
pletely protected and no large epidemic outbreaks are possible. On the contrary,
uniform immunization strategies on scale-free heterogenous networks are totally
ineffective. The presence of uniform immunization elocally depresses the infections
prevalence for any value of ξ , and it is difficult to identify any critical fraction of
immunized individuals that ensures the eradication of infection [2].

1.10 Understanding Cascading Failures, Natural
Disturbances

Cascading, or epidemic processes are those where the actions, infections or failure of
certain individuals increase the susceptibility of others. This results in the successive
spread of infections from a small set of initially infected individuals to a larger
set. Initially developed as a way to study human disease propagation, cascades ares
useful models in a wide range of application. The vast majority of work on cascading
processes focused on understanding how the graph structure of the network affects
the spread of cascades. One can also focus on several critical issues for understanding
the cascading features in network for which studying the architecture of the network
is crucial [5].

The standard independent cascade epidemic model assumes that the network is
directed graph G = (V, E), for every directed edge between vi, vj, we say vi is a
parent andvj is a child of the correspondingother vertex. Parentmay infect child along
an edge, but the reverse cannot happen. Let V denote the set of parents of each vertex
vi, and for convenience vi ∈ V is included. Epidemics proceed in discrete timewhere
all vertices are initially in the susceptible state. At time 0, each vertex independently
becomes active, with probability pinit. This set of initially active vertices are called
‘seeds’. In each time step, the active vertices probabilistically infects its susceptible
children; if vertex vi is active at time t, it infects each susceptible child vj with
probability pvivj, independently. Correspondingly, a vertex vj susceptible at time t
becomes active in the next time step, i.e., at time t + 1, if any one of its parents
infects it. Finally, a vertex remains active for only one time slot, after which it
becomes inactive and does not spread the infection further as well as cannot be
infected again either [5]. Thus, in this kind of an SIR epidemic, where some vertices
remain forever susceptible because the epidemic never reaches them, while others
transition, susceptible → active for one time step → inactive.

1.11 Conclusions

In this chapter, we discussed some critical issues regarding epidemics and their
outbursts in static as well as dynamic network structures. We mainly focused
on SIR and SIS models as well as identifying key strategies for identifying the
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damage caused in networks. We also discussed the various modeling techniques for
studying cascading failures. Epidemics pass through populations and persists over
long time periods. Thus, efficient modeling of the underlying network plays a crucial
role in understanding the spread and prevention of an epidemic. Social, biological,
and communication systems can be explained as complex networks with their degree
distribution follows a power law, P(conn) ≈ conn−η, for the number of connections,
conn for individuals, representing scale-free (SF) networks.We also discussed certain
issues on epidemic spreading in SF networks characterized by complex topologies
with basic epidemic models describing the proportion of individuals susceptible,
infected and recovered from a particular disease. Likewise, we also explained the
significance of the basic reproduction rate of an infection, that can be identified as the
average number of secondary instances a typical single infected instance will cause
in a population with no immunity. Also, we explained how determining the complete
nature of a network required knowledge of every individual in a population and their
relationships as, the problems with network definition and measurement depend on
the assumptions of data collection processes. Nevertheless, we also illustrated the
importance of invasion resistance methods, with temporary immunity generating
oscillations in localized parts of the network, with certain patches following large
numbers of infections in concentrated areas. Similarly, we also explained the sig-
nificance of damages, namely, random, where the damage spreads randomly and
uniformly over the network and in particular the network plays no role in spreading
the damage; and infectious spread, where the damage spreads through the network,
with one node infecting others with some probability.
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