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Abstract. Parallel Matrix Matrix Multiplication (MMM) is used in sci-
entific codes across many disciplines. While it has been widely studied
how to optimally divide MMM among homogenous compute nodes, the
optimal solution for heterogeneous systems remains an open problem.
Dividing MMM across multiple processors or clusters requires consid-
eration of the performance characteristics of both the computation and
the communication subsystems. The degree to which each of these af-
fects execution time depends on the system and the algorithm used to
divide, communicate, and compute the MMM data. Our previous work
has determined the optimum shape must be, for all ratios of processing
power, communication bandwidth and matrix size, one of six well-defined
shapes for each of the five MMM algorithms studied. This paper further
reduces the number of potentially optimal candidate shapes to three
defined shapes known as Square Corner, Square Rectangle, and Block
Rectangle. We then find, for each algorithm and all ratios of computa-
tional power among processors, ratios of overall computational power and
communication speed, and problem size, the optimum shape. The Block
Rectangle, a traditional 2D rectangular partition shape, is predictably
optimal when using relatively homogeneous processors, and is also opti-
mal for heterogeneous systems with a fast, medium and slow processor.
However, the Square Corner shape is the optimum for heterogeneous en-
vironments with a powerful processor and two slower processors, and the
Square Rectangle is optimal for heterogeneous environments composed
of a two fast processors and a single less powerful processor. These theo-
retical results are confirmed using a series of experiments conducted on
Grid’5000, which show both that the predicted optimum shape is indeed
optimal, and that the remaining two partition shapes perform in their
predicted order.

1 Introduction

The problem of partitioning Parallel Matrix Matrix Multiplication (MMM)
optimally over an arbitrary number of processors has been the subject of ex-
tensive study. While this problem, when approached using homogeneous proces-
sors, presents a challenge, it is significantly more substantive when considering
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heterogeneous systems. High performance scientific computing platforms are in-
creasingly heterogeneous, so it is necessary to find the optimum heterogeneous
MMM data partition shape[1]. While a system may be heterogeneous in its com-
putational power, its communication interconnect, or some combination of both,
this paper will focus on heterogeneity in computational power.

Thebulk of theprevious studyofMMMpartitioning onheterogeneousplatforms
has been concernedwith finding the optimal rectangular partitioning[2][3][4]. Even
when restricting the optimality problem to only rectangular shapes, it is complex
and NP-complete for an arbitrary number of heterogeneous processors[5]. The un-
derlying assumption that the optimal shape shouldbe rectangular has only recently
been questioned.

Our previous work challenged this traditional assumption, and explored both
rectangular and non-rectangular data partition shapes[6][7]. These papers, en-
compassing work with both two and three processor systems, show optimal, and
potentially optimal, partition shapes that have both expected and unexpected
shapes. The two processor case, for instance, has an optimal data partition shape
which is non-rectangular for highly heterogeneous systems, i.e., when the ratio
of computational power between the two processors is greater than three.

The complexity of the optimal shape problem necessitates beginning with a
small number of processors in order to establish an extensible method for iden-
tifying potentially optimal partition shapes. This novel method, called the Push
Technique, incrementally improves a partition shape by decreasing its volume of
communication. The Push Technique has previously been applied to the case of
three heterogeneous processors, and identified six potentially optimal partition
shapes, called candidates. These are seen in Fig. 1.

1 2 3 4 5 6

Fig. 1. The candidate partition shapes previously identified as potentially optimal
three processor shapes. Processors P,R, and S are in white, grey, and black, respec-
tively. (1) Square Corner (2) Rectangle Corner (3) Square Rectangle (4) Block 2D
Rectangular (5) L Rectangular (6) Traditional 1D Rectangular.

These cases, with small numbers of processors, are also practically significant.
Consider a GPU-CPU hybrid system. The concept of abstract processors may
be used to model this type of system[8]. Each logical processor represents an
independent group of tightly coupled devices such as cores on the same socket,
or a GPU and its host core. In this way, a modern hybrid compute node is
modelled by a small number of abstract heterogeneous processors.

This paper proves that the optimal candidates may be further reduced to just
three optimal partition shapes, the Square Corner, the Square Rectangle, and the
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Block Rectangle. For each MMM algorithm, each of these shapes is optimal for a
subset of the possible ranges of computational power ratios and communication
bandwidths. Together, they describe the optimal shape for all possible ranges of
these values. These theoretical results are further verified using experiments on
GRID’5000.

2 Problem Description

Throughout, we will make several assumptions, as follows:

1. Matrices A, B and C are square, of size N ×N , and identically partitioned
among Processors P , R, and S, represented in figures as white, grey and
black, respectively.

2. Processor P computes faster than Processors R and S by ratio, Pr : Rr : Sr,
where Sr = 1.

3. All Processors may communicate with all other Processors, with no con-
straints on network topology.

For all algorithms, we use the Hockney Model[9] of communication Tcomm =
α × βM . For simplicity, we will set α = 0. The total volume of communication
is calculated as M =

∑N
i=1 N(pi − 1)+

∑N
j=1 N(pj − 1), where pi is the number

of processors assigned elements in row i, and pj is the number of processors
assigned elements in column j. The method of computation in all algorithms is
assumed to be SUMMA[10].

3 Theoretical Results

3.1 Methodology

Partition shapes have defined metrics that are used to determine the optimality
of a given shape in a particular problem space. Some of these metrics quantify the
volume of communication of a particular shape. The volume of communication
is, in turn, used to create the model of communication time, Tcomm, within
the constraints of the MMM algorithm. The volume of elements assigned to
each processor for computation, and the relative computational power of each
processor, is used to create the model of computation time, Tcomp. These two
fundamental parts of the MMM, Tcomm and Tcomp, are combined according to
the MMM algorithm to create a total execution time, Texe, for the particular
partition shape.

The partition shape which minimises the execution time for a specific MMM
algorithm is said to the be the optimum shape. However, no single shape is the
global optimum for an entire MMM algorithm. Each shape has unique charac-
teristics which allow for increased performance under certain conditions, such as
varied processor computational ratios, and the ratio between overall computa-
tion and communication speeds.
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The sections below describe the process of forming the Texe model for each
shape using each MMM algorithm and analysing those models to find the mini-
mum, and thereby the optimum. The proofs for all theorems found throughout
this paper may be examined in [11].

3.2 Pruning Candidates

Upon further inspection of the six potentially optimal candidate shapes found
in [7], it is possible to analytically reduce this to three candidate shapes.

Theorem 1 (Three Candidates). The three partition shapes known as Rect-
angle Corner, L Rectangle and Traditional Rectangle, have a higher theoretical
volume of communication than the Block Rectangle shape. The optimal shape
must be among the remaining three candidate shapes, Block Rectangle, Square
Rectangle and Square Corner.

From here, we will analyse only the remaining three candidate partition
shapes: Square Corner, Square Rectangle, and Block Rectangle.

3.3 Serial Communication with Barrier (SCB)

Serial Communication with Barrier (SCB) is a simple MMM algorithm in which
all data is sent by each processor serially, and only once communication com-
pletes among all processors does the computation proceed in parallel on each
processor.

The execution time is given by,

Texe = V β +max(cP , cR, cS)

where V is the volume of communication, β is the bandwidth of the communi-
cation links and cX is the time taken to compute the assigned portion of the
matrix on Processor X .

Each processor is assigned data in proportion to the computational power.

Processors P,R and S, with ratios Pr : Rr : 1 will be assigned PrN
2

T , RrN
2

T and
N2

T elements to compute, respectively. For all shapes, the computation time is
identical for barrier algorithms, so communication time is the focus.

Square Corner. The Square Corner shape is composed of a matrix partitioned
into two small squares for Processors R and S, while Processor P is assigned
the non-rectangular remainder of the matrix. This shape type is only valid for
computational power ratios such that non-overlapping squares for Processors R
and S may be formed, which is possible when Pr ≥ 2

√
Rr.

Tcomm(SC) = 2N

(√
RrN2

T
+

√
N2

T

)

× β (1)



Optimal Data Partitioning Shape for Matrix Multiplication 205

Square Rectangle. The Square Rectangle shape is composed of an N height
rectangle, R, and a square, S, while Processor P is assigned the non-rectangular
remainder of the matrix. The communication time is given by,

Tcomm(SR) =

(

N2 + 2N

√
N2

T

)

× β (2)

Block Rectangle. The Block Rectangle partition shape is composed of two h
height rectangles of combined width N . Processor P is assigned the rectangular
remainder of the matrix.

Tcomm(BR) =

(

2N2 − PrN
2

T

)

× β (3)

Optimum SCB Shape. The optimum data partitioning shape minimises
Tcomm. A graphical representation of these three functions can be seen in Fig. 2.

30 

1 

20 
Pr Rr 

Time 
(s) 

Fig. 2. The SCB Tcomm functions for the three candidate shapes, Square Corner (white
and grey stripes), Block Rectangle (solid grey), and Square Rectangle (white and grey
checkerboard). The x-axis is the relative computational power of P , Pr, from 1 to 30.
The y-axis is the relative computational power of R, Rr, from 1 to 20. The z-axis is
the communication time in seconds. The vertical black surface is the equation x = y,
and represents the problem constraint Pr ≥ Rr. On the left, viewed from the front, on
the right, viewed from underneath (the lowest function is optimal).

Theorem 2 (SCB Square Corner). The Square Corner partition shape min-
imises execution time, i.e. is the optimum, using the SCB MMM algorithm for
all processor computational power ratios such that Pr < 2T − 2

√
RrT − 2

√
T .

Theorem 3 (SCB Square Rectangle). The Square Rectangle partition shape
minimises execution time, i.e. is the optimum, using the SCB MMM algorithm
for all processor computational power ratios such that Pr < T − 2

√
T .
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Corollary 4 (SCB Block Rectangle) The Block Rectangle partition shape
minimises execution time, i.e. is the optimum, for all processor computational
power ratios except those specified in Theorems 2 and 3.

3.4 Parallel Communication with Barrier (PCB)

In the Parallel Communication with Barrier (PCB) algorithm, all data is sent
among processors in parallel, and only once communication completes does the
computation processed in parallel on each processor. The execution time of this
algorithm is given by,

Texe = max(vP , vR, vS)× β +max(cP , cR, cS)

where vX is the volume of data elements which must be sent by Processor X .
As with SCB, the focus in this algorithm is on communication time because
computation time is not dependent on the data partition shape.

Communication Time Functions. The communication times of partition
shapes Square Corner (SC), Square Rectangle (SR), and Block Rectangle (BR)
are given by,

Tcomm(SC) = 2N2β ×max

(√
Rr

T
− Rr

T
+

√
1

T
− 1

T
,
Rr

T
,
1

T

)

(4)

Tcomm(SR) = N2β ×max
(
1 +

2√
T

− Rr

T
− Rr

T
√
T

− 3

T
,
Rr

T
+

Rr

T
√
T
,
3

T

)
(5)

Tcomm(BR) = N2β ×max
(Pr

T
,
2Rr

T
,
2

T

)
(6)

PCB Optimal Shape. The optimum partition shape minimises Tcomm. The
graph of these three functions is found in Fig. 3.

Theorem 5 (PCB Square Corner). The Square Corner partitioning shape
minimizes execution time, i.e. is the optimum shape, when using the PCB MMM
algorithm and the computational power ratios are such that Pr > 2(

√
RrT−Rr+√

T − 1).

Theorem 6 (PCB Square Rectangle). The Square Rectangle partitioning
shape minimizes execution time, i.e. is the optimum shape, when using the PCB
MMM algorithm and the computational power ratios are such that Pr < 2Rr +
Rr√
T
− 2

√
T − 1 and Pr > 5 + Rr−2√

T
.

Corollary 7 (PCB Block Rectangle) The Block Rectangle partition shape
minimises execution time, i.e. is the optimum, for all processor computational
power ratios except those specified in Theorems 5 and 6.
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Fig. 3. The PCB Tcomm functions for the three candidate shapes, Square Corner (white
and grey stripes), Block Rectangle (solid grey), and Square Rectangle (white and grey
checkerboard). The vertical black surface is the equation x = y, and represents the
problem constraint Pr ≥ Rr. On the left, viewed from the front, on the right, view
from underneath (the lowest function is optimal).

3.5 Serial Communication with Bulk Overlap (SCO)

In the Serial Communication with Bulk Overlap (SCO) algorithm, all data is sent
by each processor serially, while in parallel any elements that can be computed
without communication are computed. Only once both communication and over-
lapped computation are complete does the remainder of the computation begin.
The execution time is given by,

Texe = max
(
max(Tcomm, oP )+cP ,max(Tcomm, oR)+cR,max(Tcomm, oS)+cS

)

where Tcomm is the same as that of the SCB algorithm, oX is the number of
seconds taken by Processor X to compute any elements not requiring communi-
cation, and cX is the number of seconds taken to compute the remainder of the
elements assigned to Processor X .

Square Corner Of the three candidate partitions, only the Square Corner has
an oX term which is not equal to zero, i.e. it contains elements which may
be computed without any communication amongst processors. The overlap-able
area may be seen Fig. 4. The addition of the non-zero oP term implies that cP
will no longer be equal to cR and cS if we continue to naively assign the volume

of elements as N2Pr

T . As Processor P should be assigned a larger portion of the
matrix to compute than suggested by Pr.

To determine this optimal size, we first assume that the volumes (and thereby
the size of the squares) assigned to Processors R and S should decrease in pro-
portion to each other, so their computation times remain equal (cR = cS). The

size of a side of the square R, r, and a side of the square S, s, is set at s =
√

r2

Rr
.
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We may safely ignore the third term (Processor S) of the SCO max function,
as it will always be equal to the second term (Processor R). Execution time is
given by,

Texe

N3β
= max

(

max

(
2

N

(√Rr

T
+

√
1

T

)
,
1− r√

Rr
− 2r + r2

Rr
+ 2r2√

Rr
+ r2

c

)

+
2

c

(
r − r2 − r2√

Rr

+
r√
Rr

− r2

Rr

)
,

2

N

(√Rr

T
+

√
1

T

)
+

r2Pr

cRr

)

In order to make the execution time equations easier to analyse, the constant
factor N3β has been removed. This introduces a new variable, a ratio between
computation and communication speeds, c = Spβ, where Sp

N is the number of
elements computed per second by Processor P . The size of N and r have been
normalised, so that r

N becomes r, and r is understood to be 0 ≤ r < 1.

P 
overlap 

area 

P 

P 

Fig. 4. On the left, the area of Processor P which does not require communication in
the Square Corner partition shape is enclosed in dotted lines. On the right, the graph
of execution time functions for the SCO algorithm. Axes as are in previous graphs, and
N = 3000 and c = 50.

Optimal Size of R and S. The optimal size of r is given by,

r =

√

−( Pr

Rr
+ 1 + 1

Rr
)(2cN

√
Rr

T + 2c
N

√
1
T − 1)

( Pr

Rr
+ 1 + 1

Rr
)

(7)

The full derivation of this value may be found in [11].
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Square Rectangle and Block Rectangle. The computation of no portion of
matrix C may be overlapped with communication. The execution time function
is equivalent to that for the SCB algorithm. Total execution time is given by,

Texe(SR)

N3β
=

1

N
+

2

N

√
1

T
+max

(
Pr

Tc
,
Pr

Tc
,
Pr

Tc

)

Texe(BR)

N3β
=

2

N
− Pr

TN
+max

(
Pr

Tc
,
Pr

Tc
,
Pr

Tc

)

SCO Optimal Shape

Theorem 8 (SCO Square Corner). The Square Corner partition
shape minimizes execution time, i.e. is the optimum shape, when us-
ing the SCO MMM algorithm for computational ratios such that

Pr >
2
N (

√
Rr
T +

√
1
T )+ 2

c (r−r2− r2√
Rr

+ r√
Rr

− r2

Rr
)− 2

N
1
Tc− 1

TN

and Pr > 2c
N (

√
RrT +

√
T ) +

2T (r − r2 − r2√
Rr

+ r√
Rr

− r2

Rr
)− Tc

N − 2c
N

√
T , where r is the optimal size of the

square R, given in (7).

Theorem 9 (SCO Square Rectangle). The Square Rectangle partition shape
minimizes execution time, i.e. is the optimum shape, when using the SCO MMM
algorithm for computational ratios such that Pr < T−2

√
T and Pr < 2c

N (
√
RrT+√

T ) + 2T (r − r2 − r2√
Rr

+ r√
Rr

− r2

Rr
)− Tc

N − 2c
N

√
T

Corollary 10 (SCO Block Rectangle) The Block Rectangle partition shape
minimizes execution time, i.e. is the optimum shape, for all processor computa-
tional power ratios except those specified in Theorems 8 and 9.

3.6 Parallel Communication with Bulk Overlap (PCO)

In the Parallel Communication with Bulk Overlap (PCO) algorithm all data
is sent among processors in parallel, while in parallel any elements that can be
computed without communication are computed. Once both communication and
overlapped computation are complete, the remainder of the computation begins.
The execution time for this algorithm is given by,

Texe = max
(
max(Tcomm, oP )+cP ,max(Tcomm, oR)+cR,max(Tcomm, oS)+cS

)

where Tcomm is the same as that of the PCB algorithm. As with the SCO al-
gorithm, we simplify the equations by removing constant N3β, normalising N ,
and making the size of s dependent on the size of r. The optimal size of r is
derived in [11].
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Square Corner

Texe

N3β
= max

(
max

(
2

N
max

(
r − r2 +

r√
Rr

− r2

Rr
, r2

)
,
1− r√

Rr
− 2r + r2

Rr
+ 2r2√

Rr
+ r2

c

)
(8)

+2
r − r2 + r√

Rr
− r2√

Rr
− r2

Rr

c
,

2

N
max

(
r − r2 +

r√
Rr

− r2

Rr
, r2

)
+

r2Pr

cRr

)

Square Rectangle and Block Rectangle. As with the SCO algorithm, the
Square Rectangle and Block Rectangle shapes do not have a portion which may
be overlapped with communication. The time of execution, as with PCB model,
is given by,

Texe(SR)

N3β
= max

( 1

N
+

2

N
√
T

− Rr

NT
− Rr

NT
√
T

− 3

NT
,
Rr

NT
+

Rr

NT
√
T
,

3

NT

)
+

Pr

Tc
(9)

Texe(BR)

N3β
= max

(
Pr

NT
,
2Rr

NT
,

2

NT

)
+

Pr

Tc
(10)

PCO Optimal Shape. As with the PCB algorithm, the Block Rectangle shape
is superior to the Square Rectangle shape when Pr > 2Rr+

Rr√
T
−2

√
T+2. When

examining all three shapes to determine the optimal, we see that as c decreases,
all three equations converge. However, for larger values of c, the clear winner for
all computational power ratios is the Square Corner shape as seen in Fig. 5. The
full proof of this is found in [11].

Fig. 5. The PCO execution time functions for Square Corner (white and grey stripes),
Block Rectangle (solid grey), and Square Rectangle (white and grey checkerboard).
The x-axis, Pr, is 1 to 30, and the y-axis, Rr displays values 1 to 20. The vertical
black surface is x = y. The Square Corner shape is increasingly superior as c increases.
Shown here is N = 3000 and c = 300.
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3.7 Parallel Interleaving Overlap (PIO)

The Parallel Interleaving Overlap (PIO) algorithm, unlike the previous algo-
rithms described, does not use bulk communication. At each step data is sent,
a row and a column (or k rows and columns) at a time, by the relevant proces-
sor(s) to all processor(s) requiring those elements, while, in parallel, all processors
compute using the data sent in the previous step. The execution time for this
algorithm is given by,

Texe = Send k + (N − 1)×max

(

β(Vk),max
(
kP , kR, kS

)
)

+ Compute (k + 1)

where Vk is the number of elements sent at step k, and kX is the number of
seconds to compute step k on Processor X .

In the case of the PIO algorithm, the processors compute at the same time,
meaning the optimal distribution will be in proportion to their computational

power. The optimal size of the r and s is therefore
√

RrN2

T and
√

N2

T , respec-

tively. In order to analyse the equations, we remove the constant factor N4β and
focus on the dominant middle term which is multiplied by (N − 1).

Execution Time. The execution time for each partition shape, Square Corner
(SC), Square Rectangle (SR), and Block Rectangle (BR), is given by,

Texe(SC)

N4β
= max

(
2

N2

(√
Rr

T
+

√
1

T

)

,
Pr

Tc

)

(11)

Texe(SR)

N4β
= max

(
2

N2

(

1 + 2

√
1

T

)

,
Pr

Tc

)

(12)

Texe(BR)

N4β
= max

(
Pr

N2T
,
Pr

Tc

)

(13)

PIO Optimal Shape. When computation time dominates, all three parti-
tion shapes are equivalent. However, when communication time dominates, they
differ.

Theorem 11 (PIO Block Rectangle). The Block Rectangle partition shape
minimises execution time when using the PIO algorithm for computational power
ratios such that Pr < 4

√
T .

Corollary 12 (PIO Square Corner) The Square Corner partition shape
minimises execution time, i.e. is the optimum shape, for all processor compu-
tational power ratios except those specified in Theorem 11 when using the PIO
algorithm.
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4 Experimental Results

To validate the theoretical results of this paper we present experiments under-
taken on Grid’5000 in France using the Edel cluster at the Grenoble site. Each
algorithm was tested using three nodes, comprised of 2 Intel Xeon E5520 2.2
GHz CPUs per node, with 4 cores per CPU. The communication interconnect
is MPI over gigabit ethernet, and the computations use ATLAS. Heterogeneity
in processing power was achieved using the cpulimit program, an open source
code that limits the number of cycles a process may be active on the CPU to a
percentage of the total. For space considerations, we present only results from
SCB and PCB here.

4.1 Serial Communication with Barrier

The experimental results, for communication time, with the SCB algorithm can
be found in Fig. 6. Note it is not possible to form a Square Corner shape at
ratio 1 : 1 : 1. These experiments show that the theoretical optimum does indeed
outperform the other possible shapes, which also perform in the expected order.
We did find, that while the Square Corner and Square Rectangle shapes are
theoretically identical at the 14 : 5 : 1 ratio, the Square Rectangle performed
slightly better experimentally.

Fig. 6. On the left is the theoretical relative communication time for Square Corner,
Square Rectangle and Block Rectangle when using the SCB algorithm. On the right is
the experimental communication time (in seconds) for given ratios of Pr : Rr : 1. The
value of N is 5000.

4.2 Parallel Communication with Barrier

The experimental results, for communication time, with the PCB algorithm can
be found in Fig. 7. Note it is not possible to form a Square Corner shape at ratio
1 : 1 : 1. The results conform to the theoretical predictions with the optimum
shape performing best, and the other two shapes performing in their predicted
order.
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Fig. 7. On the left is the theoretical relative communication time for Square Corner,
Square Rectangle and Block Rectangle partition shapes when using the PCB algorithm.
On the right is the experimental communication time (in seconds) for given ratios of
Pr : Rr : 1. The value of N is 5000.

5 Conclusions

On three fully connected heterogeneous processors, the optimal data partition
shape depends on the relative computational power of each processor and the
ratio between computational power and communication speed and is one of just
three well-defined shapes. In general, the Square Corner shape is optimal for
systems with a single fast processor, and two slower processors, the Square Rect-
angle shape is optimal for systems with two fast processors and a less powerful
processor, and the Block Rectangle shape is optimal for relatively homogeneous
systems and systems with a faster, medium and slower processor.

These results show that the optimal data partition is not exclusively rectan-
gular. Of the three optimal shapes, two are non-rectangular. One of these, the
Square Rectangle, has never before been considered. Without the Push tech-
nique, this non-symmetrical and unconventional shape would not be known to
be the optimum.

Acknowledgement. Experiments presented in this paper were carried out us-
ing the Grid’5000 experimental testbed, being developed under the INRIA AL-
ADDIN development action with support from CNRS, RENATER and several
Universities as well as other funding bodies (see https://www.grid5000.fr). This
research was conducted with the financial support of Science Foundation Ireland
under Grant Number 08/IN./I2054.

References

1. Dongarra, J.J., Meuer, H.W., Simon, H.D., Strohmaier, E.: Top500 supercomputer
sites, http://www.top500.org/

2. Clarke, D., Lastovetsky, A., Rychkov, V.: Column-based matrix partitioning for
parallel matrix multiplication on heterogeneous processors based on functional per-
formance models. In: Alexander, M., et al. (eds.) Euro-Par 2011, Part I. LNCS,
vol. 7155, pp. 450–459. Springer, Heidelberg (2012)

http://www.top500.org/


214 A. DeFlumere and A. Lastovetsky

3. Dovolnov, E., Kalinov, A., Kilmov, S.: Natural bloc data decomposition for hetero-
geneous clusters. In: Proceedings of the 17th International Parallel and Distributed
Processing Symposium, IPDPS 2003 (April 2003)

4. Kalinov, A., Lastovetsky, A.: Heterogeneous distribution of computations solving
linear algebra problems on networks of heterogeneous computers. Journal of Par-
allel and Distributed Computing 61, 520–535 (2001)

5. Beaumont, O., Boudet, V., Rastello, F., Robert, Y.: Partitioning a square into
rectangles: NP-completeness and approximation algorithms. Algorithmica 34,
217–239 (2002)

6. DeFlumere,A., Lastovetsky,A.,Becker,B.A.:Partitioning for parallelmatrix-matrix
multiplication with heterogeneous processors: The optimal solution. In: Parallel and
Distributed Processing SymposiumWorkshops (IPDPSW), pp. 125–139 (2012)

7. DeFlumere, A., Lastovetsky, A.: Searching for the optimal data partitioning shape
for parallel matrix matrix multiplication on 3 heterogeneous processors. In: Parallel
and Distributed Processing Symposium Workshops, IPDPSW (2014)

8. Zhong, Z., Rychkov, V., Lastovetsky, A.: Data partitioning on heterogeneous
multicore and multi-GPU systems using functional performance models of data-
parallel applications. In: IEEE International Conference on Cluster Computing
(CLUSTER), pp. 191–199. IEEE (2012)

9. Hockney, R.: The communication challenge for mpp: Intel paragon and meiko cs-2.
Parallel Computing 20(3), 389–398 (1994)

10. Van De Geijn, R., Watts, J.: SUMMA: Scalable universal matrix multiplication
algorithm. Concurrency-Practice and Experience 9(4), 255–274 (1997)

11. DeFlumere, A., Lastovetsky, A.: Theoretical results on optimal partitioning for
matrix matrix multiplication on three fully connected heterogeneous processors.
School of Computer Science and Informatics, University College Dublin, Tech.
Rep. UCD-CSI-2014-01 (2014)


	Optimal Data Partitioning Shape for Matrix Multiplication on Three Fully Connected Heterogeneous Processors
	1
Introduction
	2
Problem Description
	3
Theoretical Results
	3.1
Methodology
	3.2
Pruning Candidates
	3.3
Serial Communication with Barrier (SCB)
	3.4
Parallel Communication with Barrier (PCB)
	3.5
Serial Communication with Bulk Overlap (SCO)
	3.6
Parallel Communication with Bulk Overlap (PCO)
	3.7
Parallel Interleaving Overlap (PIO)

	4
Experimental Results
	4.1
Serial Communication with Barrier
	4.2
Parallel Communication with Barrier

	5
Conclusions
	References




