Fast Parallel Connected Components Algorithms
on GPUs

Guojing Cong' and Paul Muzio?

1 IBM TJ Watson research center, Yorktown Heights, NY 10598, USA
gcong@us.ibm.com
2 CUNY High Performance Computing Center, Staten Island, New York, 10324

p.muzio@csi.cuny.edu

Abstract. We study parallel connected components algorithms on GPUs
in comparison with CPUs. Although straightforward implementation of
PRAM algorithms performs relatively better on GPUs than on CPUs, the
GPU memory subsystem performance is poor due to non-coalesced ran-
dom accesses.

We argue that generic sort-based access coalescing is too costly on
GPUs. We propose a new coalescing technique and a new meta algorithm
to improve locality and performance. Our optimization achieves up to 2.7
times speedup over the straightforward implementation. Interestingly,
our optimization also works well on CPUs.

Comparing the best-performing algorithms on GPUs and CPUs, we
find our new algorithm is the fastest on GPUs and the second fastest
on CPUs, while the parallel Rem’s algorithm is the fastest on CPUs but
does not perform well on GPUs due to path divergence.

Keywords: Multi-core, GPU, CPU, Connected Components.

1 Introduction

GPUs have become alternative platforms to traditional CPUs for algorithms with
substantial data parallelism. We study connected components (CC) algorithms
with large, sparse inputs on GPUs in comparison with CPUs. CC is represen-
tative of graph problems with fast theoretic parallel algorithms that oftentimes
perform poorly on cache-based machines due to irregular memory accesses.

Prior studies show that several parallel graph algorithms perform better on
GPUs than on CPUs (e.g., see [12,10,15]). Our experiments with CC confirm
the performance advantage of GPUs for the straightforward implementation of
PRAM algorithms. The memory subsystem performance is nonetheless still poor
due to non-coalesced random accesses. We argue that generic sort based coa-
lescing is ineffective for improving performance on GPUs unless the hardware
coalescing width is increased.

Several architectural features (see Section 2 for details) make it challenging
for locality optimization on GPUs. The amount of GPU device memory is lim-
ited, and the overhead to improve locality is large while the performance gain

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part I, LNCS 8805, pp. 153-164, 2014.
© Springer International Publishing Switzerland 2014

154 G. Cong and P. Muzio

is modest. Large asymptotic overhead in most cache-friendly and I/O-efficient
algorithms makes it unlikely for them to perform well on GPUs.

We propose a low-cost technique to improve coalescing for CC on GPUs.
We aslo present a new meta algorithm motivated by evolution random graph
theory that further improves locality for graft-and-shortcut based algorithms.
Our implementation achieves up to 2.7 times speedup over the straightforward
implementation. Interestingly, the same optimizations apply on our target CPU,
and our implementation beats the best prior cache-friendly implementation.

We rank the performance of the optimized algorithms on GPUs and CPUs.
Our new algorithm is the fastest on the target GPU and the second fastest on
the target CPU, while parallel Rem’s algorithm is the fastest on the CPU but
does not perform very well on the GPU. On average the best algorithms on the
two platforms have comparable performance over a range of input graphs.

Our study focuses primarily on random graphs and scale-free graphs [11]. Both
have small diameters. They are the most challenging inputs in terms of memory
performance. The input graph is represented as G = (V, E), with |V| = n and
|E| = m = O(n). We create a random graph with n vertices and m edges
by randomly adding m unique edges to the vertex set. Scale-free graphs are
generated using the R-MAT model [6] with a=0.45, b=0.15, ¢=0.15, d=0.25.
In ranking the best implementations on the two platforms, we also include a
large-diameter graph and a real-life twitter graph. We defer the introduction of
these graphs to Section 6.

The rest of the paper is organized as follows. Section 2 introduces the target
platforms and the baseline algorithm. Section 3 evaluates prior techniques for
improving locality on GPUs. Section 4 presents an optimization for the graft-
and-shortcut approach, and section 5 introduces the meta algorithm that further
improves coalescing for CC. Section 6 ranks the best implementations on the two
platforms. In section 7 we give our conclusion and future work.

2 The Platforms and the Base-Line Algorithm

GPUs and CPUs are markedly different. CPU cores typically run at higher fre-
quency than GPU cores, and exploit instruction level parallelism through out-of-
order execution. Large caches, sophisticated prefetching, and branch prediction
are common in mainstream CPUs. In contrast, the streaming multiprocessor
(SM) in GPUs is relatively simple. Each SM has a single fetch unit and multiple
scalar units. An instruction is fetched and executed in parallel on all scalar units
for a group of data elements (a warp). Path divergence occurs on a conditional
branch where threads take different paths. The threads on diverging paths are
serialized. While each hardware thread is relatively light-weight and weak, GPU
employs a large number of them to hide memory latency.

We use NVIDIA Tesla S2050 and IBM P755 as our GPU based platform
and CPU based platform, respectively. These machines were introduced to the
market at approximately the same time. P755 has 4 Power7 chips. Each chip has
8 cores running at 3.61 GHz, and each core is capable of four-way simultaneous

Fast Parallel Connected Components Algorithms on GPUs 155

multithreading (SMT). P755 supports up to 128 threads. Each Power7 core has
32KB L1, 256KB L2, and 4MB on-chip L3 caches. The Tesla S2050 has four
Fermi GPUs running at 1.15GHz. We use one GPU as we study only shared-
memory algorithms. Each GPU has 14 SMs, 448 cores, and 2GB global memory.
Fermi has 64 KB configurable shared memory and L1 cache. The shared L2 is
768K.

We use a variant of the classic Shiloach-Vishkin algorithm (SV) [19] as our
baseline algorithm on GPUs. We denote this algorithm CC when in no danger
of confusion with the problem it solves. CC was shown to run faster than SV on
CPUs [4].

CC uses m processors. It starts with n isolated vertices. Each processor in-
spects an edge, and tries to graft the larger endpoint (by index) to the smaller
one. Grafting creates £ > 1 connected components, and each component is then
shortcut to a single super-vertex. Grafting and shortcutting continue on the re-
duced graph G’ = (V', E’) with V' being the set of super-vertices and E’ being
the set of edges among super-vertices until no grafting is possible. The formal
description of one graft-and-shortcut iteration in CC is shown in Algorithm 1.1

Algorithm 1. CC(El, D), El is the input edge list, D[i] is the current compo-
nent vertex i belongs to

1: for 1 < i < m parallel do {graft} 6: for 1 <4 < n parallel do {shortcut}
2: if D[El[i].u] < D[El[{].v] then 7. while D[i] # D[D[i]] do

3: DIDI[EIl[i].v]] + DIEl[i].u] 8: D[i] + DI[D[i]]

4: end if 9: end while

5: end for 10: end for

Figure 1 shows the best performance of CC, with up to 128 threads on P755
and 14 SMs, 448 cores on 52050, on three inputs — a random graph with 50M
vertices, 200M edges, a random graph with 100M vertices, 200M edges, and a
scale-free graph with 20M vertices, 200M edges. For these inputs, CC is about
2.5 to 4 times faster on S2050 than on P755.

In our experiments, unless noted otherwise, we use maximum input sizes that
fit in the GPU global memory. In Figure 1 the performance on P755 peaked with
32 threads instead of 128 threads. The performance on S2050 peaked at 12 SMs
instead of 14 SMs. Our experiments confirm that straightforward implementation
of PRAM algorithms tends to run faster on GPUs than on CPUs.

The memory subsystem on neither platform delivers data fast enough to keep
all processors busy. This is largely due to the indirect, random accesses in CC.
As profiling shows that graft dominates the execution time (on both platforms

! For simplicity and following the tradition of SV, Algorithm 1. assumes that each edge
(u,v) appears twice in the edge list as < u,v > and < v,u >. In our implementation
each edge appears once to limit memory consumption.

156 G. Cong and P. Muzio

cc CC-updt

P755 mmmm P755 mmmmm
$2050 E=== $2050 E==

g ¢ 8 4
H H
£ L
.
ok
25F
'
o}
2 15

random-100M-200M random-50M-200M 51-20M-200M
input input

Fig. 1. Straightforward implementation Fig. 2. With coalescing

between 90 and 95 percent of time is spent on graft), in our study we focus our
optimization effort on graft.

3 Locality Optimization on GPUs

Coalescing, that is, merging multiple accesses to memory locations within a
short range into one transaction, is critical to performance on GPUs. We consider
improving locality to facilitate coalescing (improved locality also results in better
cache performance).

Cache-friendly sequential algorithms on CPUs abound in literature (e.g., see
[1,13]). Cache-friendly parallel algorithms are proposed for modern multicore
systems (e.g., see [5,2,8,3]). In practice these parallel algorithms are oftentimes
too complex to implement, and have very large algorithmic overhead. Cong
and Makarychev proposed coordinated scheduling of parallel irregular accesses
to improve locality [9]. On cache-based platforms their implementation (Schd)
achieved superior performance over the straightforward implementation for CC
and other graph problems. Unfortunately, in our experiments even Schd incurs
too much overhead relative to its performance gain on GPUs.

Chiang et al. proposed a sort-based PRAM simulation approach for designing
graph algorithms with good locality [7]. A generic sort based approach to order
memory accesses for coalescing works as follows for graft. Each edge (u,v) € El
is augmented as an edge (u,v,u’,v’) € El’. Here u’ and v’ store the component
that u and v belong to, respectively. El’ is first sorted with u as key, and all
Elfi]w = D|El[i].u] (1 < i < m) are retrieved. Then El’ is sorted again with
v as key, and all Eifi].v’ = D[EIl[i].v] (1 < i < m) are retrieved. After two
rounds of sorting, v’ = Du] and v' = D[v] for each edge (u,v,u’,v") € El'. Note
that the retrievals of D[u] and Dv] corresponding to line 2 in Algorithm 1. are
coalesced. Random accesses at line 3 can be handled similarly.

We analyze the overhead and performance gain of sorting relative to line 2 in
Algorithm 1.. We argue that even the fastest integer sort on current GPUs (i.e.,
radix sort [18]) is too costly for improving coalescing.

Fast Parallel Connected Components Algorithms on GPUs 157

Assume on a GPU w > 1 is the coalescing width, that is, random accesses
to a range of w words are coalesced. Let T,,;; be the memory access time for
retrieving Ds on line 2 of Algorithm 1., and T+ be the memory access time
used in the sort based approach, respectively.

Theorem 1. For a graph of n vertices and m = O(n) edges, it is necessary that
w > 28/41logn for Tsort < Tom’g-

Proof. Let S and R be the time of sequentially accessing 2m words and the time
of randomly accessing 2m words, respectively. Ty > R.

In the sort-based approach, as w > 1, a linear ordering on the accesses is not
necessary for coalescing. The n vertices are partitioned into blocks of size w. El’
is sorted with the block ids of the endpoints as keys. First El[i].u/w is used as
key for the retrieval of D[FE![i].u], then El[i].v/w is used ask key for the retrieval
of D[El[i].v]. Each pass of radix sort works with b key bits. It takes log(:/w)
passes to sort m keys ranging between 1 and n/w. Computing the histogram
in each pass requires one round of sequential accesses to 4m words (v’ and v’
are carried along) that costs 25. Copying to the target locations takes [2°/w]S
time. Thus T, is at least

2 (10%);) <1+ PbD 25 = 4(logn — logw) TZJ])S

w

For any given n and w, Tsort is minimized at b = log w with the value 8(logn —
logw)S/logw. In order that Tsors < Torig, we need 8(logn — logw)S/logw <
R < wS, and we have w > 28/41logn

For a sparse graph with n = 200M vertices and m = 400M edges that
fits in memory, we need w > 73.01 for the sort-based approach to beat the
straightforward implementation. On most GPUs w < 32. Unless the coalescing
width is increased, sort-based techniques that have been shown to work on CPUs
do not improve performance on GPUs.

Software prefetching is another technique to improve the memory performance
of parallel graph algorithms on CPUs [9]. In our experiments we did not observe
any performance improvement on S2050 with software prefetching. Inter-thread
prefetching shows modest performance improvement (e.g., 16%) on simulators
(e.g., see[14]). In practice, as thread and thread block scheduling is not deter-
ministic, no studies on actual hardware as we know have shown any significant
performance improvement for graph algorithms.

4 Optimizing Graft-and-Shortcut

We have argued that generic sort-based approaches are too costly on current
GPUs. We now explore optimizations specific to the graft-and-shortcut pattern
in CC.

Accesses to D at lines 2-3 in Algorithm 1. are irregular and not coalesced. Line
2 compares the current components that u and v are in, and line 3 makes a union

158 G. Cong and P. Muzio

of the two components by grafting the tree rooted at the larger endpoint to the
one rooted at the smaller endpoint. While accesses to D[u]s and D[v]s determined
by edges (u,v) € E are random, the D values evolve in a pattern that can be
exploited for coalescing. First, D[i] is non-increasing for each vertex i (1 < i < n)
from one iteration to the next. In fact, for most vertices their D values steadily
decrease, and the number of unique D values (hence the number of unique super-
vertices) also decreases. Instead of retrieving the current components using v and
v as indices, we introduce an update step after shortcut that replaces each edge
(u,v) with (D[u], D[v]). The revised algorithm CC-updt is shown in Algorithm 2..
The update step is done at lines 11-13.

Algorithm 2. CC-updt(El, D), |El|=m, |D|=n

1: for 1 < ¢ < m parallel do {graft} 8: D[i] < D[D[i]]

2: if Elfi].u < El[{].v then 9: end while

3: DIEIl[i].w] < El[i].u 10: end for

4: endif 11: for 1 < i < m parallel do {update}
5: end for 12: Ellilw < D[El[{].u], Elflilv <+
6: for 1 <14 < n parallel do {shortcut} DI[E![i].v]

7. while D[i] # D[D[i]] do 13: end for

In comparison with CC (Algorithm 1.), at first glance CC-updt simply shifts
the random accesses from line 2 to line 12. Assuming in each iteration the same
grafting choices are made in CC and CC-updt (races among processors may
result in different drafting patterns), the same amount of random memory ac-
cesses appear to occur in both algorithms. However, as D values become more
and more regular, we show accesses to D become increasingly more likely to be
coalesced.

Theorem 2. On average in each iteration CC-updt issues at least n/2 fewer
random accesses than CC.

Proof. In the first iteration both algorithms have the same number of random
accesses. The number of unique active super-vertices (where grafting can happen)
is reduced at least by half by each iteration in CC-updt. After the first iteration,
at least n/2 edges have two endpoints within the same super-vetex, and for them
the accesses to D are coalesced in the second iteration. The number of random
accesses is thus reduced by at least n/2. The reduction is at least n/2+n/4 in the
third iteration, and at least n/2 +n/4 +--- +n/2""1 in the i-th (1 <i < logn)
iteration. In the last iteration where no grafting is possible, the reduction is
m > n = 2(n/2). Thus on average each iteration issues at least n/2 fewer
random accesses.

We evaluate the performance of CC-updt on S2050. The results with a scale-
free graph of 20M vertices and 200M edges are shown in Figure 2. Speedups

Fast Parallel Connected Components Algorithms on GPUs 159

between 1.75 and 1.83 are achieved. The observed performance improvement is
due to better coalescing and possibly better cache performance. Performance
study of CC-updt in comparison to CC is also done on P755. The speedups are
between 1.66 and 3.0, as shown in Figure 2. Comparing Figures 1 and 2, we notice
that the performance gap between P755 and S2050 is reduced for CC-updt.

5 A Meta Algorithm for Further Improvement

We propose a new meta algorithm motivated by the following result from evo-
lution random graph theory [16] that further improves coalescing.

Theorem 3. Under the Erdds-Rényi model there is a unique giant component
of order f(c)n in the graph when m ~ cn with ¢ > 1/2.

Function f(c) approaches 1 as c¢ increases?. We exploit the giant component
for coalescing. The algorithm, Stages, is shown in Algorithm 3..

Stages first permutes the edges in El, and then divides them into groups,
Eli, Ely,---,El,, with |El;] > n/2 (1 < i < g — 1) except possibly for El,.
Next for each group El; (1 < i < g) Stages invokes a connected components
algorithm, say, CC, with Fl; and D, and updates the endpoints of each edge
in Fl;11 with the current components they belong to. When Stages terminates,
DJi] (1 <1i<mn) is the connected component for vertex 1.

Algorithm 3. Stages(El, D), |El| =m, |D|=n, 1/2 < q¢<m/n
1: randomly permute El
2: divide El into groups El1, Ela,- - -, Elg, with |El;| = gn,1 <i < g,1/2 < g < m/n,
and |Ely| =m — (g — 1)gn

3: for1 <i<gdo

4: Call CC (El;,D)

5: if i < g then {update}

6: for 1 < j < |El;+1]| parallel do

7 Eli+1[j].u — D[Elprl[]]u], El¢+1[j].v < D[Elprl[]]v}
8: end for

9: end if

10: end for

Theorem 4. Algorithm 3. computes connected components.

Proof. By induction. By the correctness of CC, the connected components of the
induced graph with El; are computed and contracted. Each vertex i (1 <i < n)
belongs to a component represented by D[i]. Assume after processing k groups
Ely, Els,- -+, Elj of edges (1 < k < g), the connected components of the induced

kk—l

2 fley=1~ 21(: ZZL k! (20@726)k~

160 G. Cong and P. Muzio

graph are computed and contracted, and D[i] is the connected component for
vertex i (1 <4 < n). The update step in Algorithm 3. transforms the edges in
E).41 of the original graph into edges of the current contracted graph. Subsequent
computation in CC is with edges in Ej41 on super-vertices with ¢ = D[i] (1 <
i < n). All other vertices have D[i] < i, that is, each of them shoots a pointer to
its super-vertex. The components for these vertices are updated in the shortcut
step in CC when it sets D[i] « D[D]i]] for all vertices. After CC, connected
components on edges induced by Elj, Fla, -, Ely41 are computed with D[]
representing the current component for each vertex i (1 <i < n).

CC takes O(log®n) time with O(m + n) processors under CRCW PRAM.
With p processors CC takes O <m;r" log2 n) time. Graft-and-shortcut in Stages

takes O (p?;n (qgn + n) log? n) time, while update takes O (ZL 10gn> time. CC
and Stages have the same asymptotic complexity when gn = O(m). Stages

degenerates into CC when gn = m.
Let T, and Ts:q4s be the (worst-case) number of non-coalesced random accesses
in graft for CC and Stages, respectively.

Lemma 1. T, — Tiigs > (Qm —2qn — ;’;L(l — fZ(q)) logn

Proof. As CC takes at most logn arounds of graft with 2m random accesses
each, T.. = 2mlogn. Similarly, in Stages the first group of gn edges incur at
most 2gn logn random accesses. A component of size f(q)n forms after the first
group of edges are processed. For the second group the probability that an
edge is contained in the giant component is f2(g). The expected number of
random accesses is at most 2(1 — f2(q))gnlog((1 — f(q))n + 1). Before the j**
(1 < j < g) group of gn edges, the giant component is of size f((j — 1)g)n,

and the number of random accesses in processing the j*" group is at most 2(1 —

F2((= Da))gnlog((L = F((= Da))n +1). Let f(0) = 0, we have
0 (1= £2(ka))2qnlog((1 — f(kq))n + 1)
2qn (logn + 27, (1 = f2(a) log((1 = f(@)n + 1))

= 2qn (logn + (72 = 1) (1= £2(0)) log((1 = f(a))n + 1))

Tstgs

IN

IN

T.c = Tugs > 2mlogn —2gn (logn + (72 — 1) (1= () log((1 = f(@))n + 1))

> (2m —2qn— 2 (1— fz(q))> logn

The extra cost of random memory accesses in update is at most 2m — 2gn.
T > Tee — Tstgs when n is large enough and m = O(n).

Our results are derived for random graphs. The experiments below show the
technique is effective for other graphs.

Fast Parallel Connected Components Algorithms on GPUs 161

Speedups Stages

Schd mm—

SV mm—

P755 o SV-updt E===1
$2050 mm— SV(P755) mmmmm
Ee=—

input input

Fig. 3. CC-updt speedups Fig. 4. Stages speedups

Figure 3 shows the speedups of Stages over CC for three different inputs on
P755 and S2050. We use 128 hardware threads on P755 and 14 SMs on S2050.
In our implementation g = 1. The speedups achieved on S2050 are between 1.7
to 2.3. Stages is much faster than CC on P755. The speedups are between 2.4
and 4.5. In the figure Schd shows the speedup of coordinated scheduling over
CC on P755. Schd is the best prior locality optimized implementation of CC.
On P755 Stages clearly outperforms Schd.

As a meta algorithm, Stages can be used to optimize other parallel connected
components algorithms. Figure 4 shows for a random graph and a scale-free
graph the speedup of stages over various connected components algorithms. SV,
SV-updt (with an additional update step), and Schd are called at line 4 of Algo-
rithm 3. instead of CC. For each input, the two bars on the left are the speedups
of Stages over SV and SV-updt on S2050, and the two bars on the right are
the speedups over SV and Schd on P755. We use 14 SMs on S2050 and 128
threads on P755. Stages improves the performance of all algorithms studied.
The speedups on S2050 are between 1.07 to 2.6, and the speedups on P755 are
between 1.3 and 3.1.

6 Ranking the Algorithms

We now rank the performance of the algorithms on S2050. Due to their simi-
larity to CC and CC-updt, we do not include SV and SV-updt in our rankings.
We include parallel Rem’s algorithm (Rem) by Patwary et al. [17] in our study.
In comparison to CC and SV, Rem is not based on the PRAM model. It does
not shortcut the trees, and uses union-find structures to determine whether two
vertices are in the same component. Rem is largely asynchronous and resolves
data races through a verification algorithm. Rem is efficient for a moderate num-
ber of threads. One drawback of Rem is that increasing the available parallelism
can result in many rounds of verification and thus degrades performance. Rem
is faster than CC on current CPUs [17]. Our optimizations do not apply to Rem
as it does not shortcut the trees.

162 G. Cong and P. Muzio

Random graph (S0M vertices, 200M edges) Scalefree graph (20M vertices, 200M edges)

cc
14 CC-updt ——
R
1 Stages —=+—

time (seconds)
time (seconds)

#SMs

Fig.5. Performance of four implementa- Fig. 6. Performance of four implementa-
tions on a random graph tions on a scale-free graph

Best Performance

Rem(P755) mmmm
Stages(52050) =1

time (seconds)

random-100M random-50M s-20M-200M torus-100M twitter-200M
input

Fig. 7. Performance comparison on P755 and S2050

Figures 5 and 6 show on S2050 the performance of CC, CC-updt, Stages, and
Rem with the same inputs, that is, a random graph with 50M vertices, 200M
edges, and a scale-free graph with 20M vertices, 200M edges, respectively. CC-
updt is always faster than CC, and Stages is always faster than CC-updt. Rem
is slower than CC-updt for the scale-free graph.

Our new algorithm, Stages, is the fastest on S2050, while Rem (with software
prefetching) is the fastest on P755 (due to limited space, we do not show the
performance plots for CC, CC-updt, Stages, Schd, and Rem on P755). The
relative poor performance of Rem on S2050 is largely due to path divergence
resulted from its complex control flow in union-find.

We compare the performance of Stages on S2050 and Rem on P755. In ad-
dition to random graphs and scale-free graphs, we include a 2D torus and a
sample of the twitter network in our test. Torus represents graphs (such as VLSI
circuits) of regular topology with long diameters, and the twitter network is an
example of real life social networks. The torus has about 100M vertices. The
twitter sample has 35M vertices and 200M edges.

Figure 7 shows the performance of the fastest implementations on the two
platforms. We use 128 threads on P755 and 14 SMs on S2050. The two algorithms
have roughly comparable performance for small-world graphs. Stages on S2050

Fast Parallel Connected Components Algorithms on GPUs 163

is faster than Rem on P755 with the random graphs and the scale-free graph.
Rem on P755 is faster than Stages on S2050 with the torus. They have similar
performance with the twitter graph.

7 Conclusion and Future Work

We present our study of optimizing connected components algorithms on GPUs
in comparison with CPUs. We show that straightforward implementation of
PRAM algorithms performs relatively better on GPUs than on CPUs. However,
the memory subsystem of GPUs does not deliver data fast enough keep all SMs
busy.

We argue that generic techniques to improve locality for better performance
are too costly on GPUs. We propose a low-cost coalescing optimization for CC.
We further present a meta algorithm that improves coalescing for several con-
nected components algorithms. Interestingly, these optimizations also improve
performance on CPUs. In fact, our implementation beats the best prior locality-
optimized implementation on P755.

We find that Stages is consistently the fastest algorithm on S2050. Rem is fast
on P755, but its performance suffers from path divergence on S2050. Rem has
similar performance as CC-updt on S2050. Stages on S2050 and Rem on P755
on average have similar performance over a range of inputs.

In future work we will study graph algorithms on multi-GPUs and a cluster of
GPUs. We will also study architectural support for efficient execution of graph
algorithms on emerging architectures.

References

1. Arge, L., Bender, M.A., Demaine, E.D., Holland-Minkley, B., Munro, J.I.: Cache-
oblivious priority queue and graph algorithm applications. In: Proceedings of the
34th Annual ACM Symposium on Theory of Computing, Montreal, Canada, pp.
268-276 (2002)

2. Arge, L., Goodrich, M.T., Nelson, M., Sitchinava, N.: Fundamental parallel algo-
rithms for private-cache chip multiprocessors. In: Proceedings of the Twentieth
Annual Symposium on Parallelism in Algorithms and Architectures, SPAA 2008,
pp. 197-206. ACM, New York (2008)

3. Arge, L., Goodrich, M.T., Sitchinava, N.: Parallel external memory graph algo-
rithms. In: 24th IEEE International Parallel & Distributed Processing Symposium,
Atlanta, Georgia, USA (2010)

4. Bader, D.A., Cong, G.: A fast, parallel spanning tree algorithm for symmetric
multiprocessors (SMPs). In: Proceedings of the 18th International Parallel and
Distributed Processing Symposium (IPDPS 2004), Santa Fe, New Mexico (April
2004)

5. Blelloch, G.E., Chowdhury, R.A.,; Gibbons, P.B., Ramachandran, V., Chen, S.,
Kozuch, M.: Provably good multicore cache performance for divide-and-conquer al-
gorithms. In: In Proc. 19th ACM-SIAM Sympos. Discrete Algorithms, pp. 501-510
(2008)

164

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Cong and P. Muzio

Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A recursive model for graph
mining. In: Proc. 4th STAM Intl. Conf. on Data Mining (April 2004)

Chiang, Y.-J., Goodrich, M.T., Grove, E.F., Tamassia, R., Vengroff, D.E., Vitter,
J.S.: External-memory graph algorithms. In: Proceedings of the 1995 Symposium
on Discrete Algorithms, pp. 139-149 (1995)

Chowdhury, R., Silvestri, F., Blakeley, B., Ramachandran, V.: Oblivious algorithms
for multicores and network of processors. In: 24th IEEE International Parallel &
Distributed Processing Symposium, Atlanta, Georgia, USA (2010)

Cong, G., Makarychev, K.: Optimizing large-scale graph analysis on multi-
threaded, multi-core platforms. In: Proceedings of the 2012 IEEE International
Parallel & Distributed Processing Symposium, IPDPS 2012, pp. 414-425. IEEE
Computer Society, Washington, DC (2012)

Dehne, F., Yogaratnam, K.: Exploring the limits of GPUs with parallel graph
algorithms. CoRR, abs/1002.4482 (2010)

Goh, K.-I.; Oh, E., Jeong, H., Kahng, B., Kim, D.: Classification of scale-free
networks. Proc. Natl. Acad. Sci. 99, 12583-12588 (2002)

Hong, S., Oguntebi, T., Olukotun, K.: Efficient parallel graph exploration on multi-
core cpu and gpu. In: 2011 Int’l Conf. on Parallel Architectures and Compilation
Techniques (PACT), pp. 78-88 (October 2011)

Ladner, R., Fix, J.D., LaMarca, A.: The cache performance of traversals and ran-
dom accesses. In: Proc. 10th Ann. Symp. Discrete Algorithms (SODA-1999), pp.
613-622. ACM-SIAM, Baltimore (1999)

Lee, J., Lakshminarayanaand, N.B., Hyesoon, K., Vuduc, R.: Many-thread aware
prefetching mechanisms for GPGPU applications. In: 43rd Annual IEEE/ACM
Int’l Symp on Microarchitecture (MICRO), pp. 213-224 (December 2010)

Luo, L., Wong, M., Hwu, W.: An effective gpu implementation of breadth-first
search. In: 2010 47th ACM/IEEE Design Automation Conference (DAC), pp. 52-55
(June 2010)

Palmer, E.M.: Graphical evolution. Wiley-Interscience Series in Discrete Mathe-
matics. Wiley (1985)

Patwary, M.A., Ref, P., Manne, F.: Multi-core spanning forest algorithms using the
disjoint-set data structure. In: Proceedings of the 2012 IEEE International Parallel
& Distributed Processing Symposium, IPDPS 2012, pp. 827-835. IEEE Computer
Society Press, Washington, DC (2012)

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: Proceedings of the 2009 IEEE Int’l Symp. on Parallel&Distributed
Processing, IPDPS 2009, pp. 1-10. IEEE Computer Society, Washington, DC
(2009)

Shiloach, Y., Vishkin, U.: An O(log n) parallel connectivity algorithm. J. Algs 3(1),
57-67 (1982)

	Fast Parallel Connected Components Algorithms on GPUs
	1 Introduction
	2 The Platforms and the Base-Line Algorithm
	3 Locality Optimization on GPUs
	4 Optimizing Graft-and-Shortcut
	5 A Meta Algorithm for Further Improvement
	6 Ranking the Algorithms
	7 Conclusion and Future Work
	References

