
Cloud Federation to Elastically Increase

MapReduce Processing Resources

Alfonso Panarello, Maria Fazio, Antonio Celesti,
Antonio Puliafito, and Massimo Villari

DICIEAMA, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
apanarello{mfazio,acelesti,apuliafito,mvillari}@unime.it

Abstract. MapReduce is a programming model that allows users the
parallel processing of large data sets into a cluster. One of its major
implementation is the Apache Hadoop framework that couples both big
data storage and processing features. In this paper, we aim to make
Hadoop Cloud-like and more resilient adding a further level of paral-
lelization by means of cooperation of federated Clouds. Such an approach
allows Cloud providers to elastically scale up/down the system used for
parallel job processing. More specifically, we present a system prototype
integrating the Hadoop framework and CLEVER, a Message Oriented
Middleware supporting federated Cloud environments. In addition, in or-
der to minimize overhead of data transmission among federated Clouds,
we considered a shared memory system based on the Amazon S3 Cloud
Storage Provider.Experimental results highlight the major factors in-
volved for job deployment in a federated Cloud environment.

Keywords: Cloud Computing, Federation, Big data, MapReduce,
Hadoop.

1 Introduction

MapReduce is a programming model for the parallel processing of large data
sets. Hadoop MapReduce is one of the major implementation of the MapRe-
duce paradigm developed and maintained by the Apache Hadoop project, that
works in tandem with the parallel Hadoop File System (HDFS). Parallelization
capabilities of a system strongly depends on available resources into the clus-
ter. To fulfill several requests from many different users, an elastic approach for
resource management is required. Cloud computing, offers such a feature. By
means of virtualization resources can elastycally scale up/down. However for
each Cloud Provider (CP) the number of available virtual resources depends on
its own physical assets. In order to overcame such a limit, CPs can rent Virtual
Machines (VMs) from big commercial provider or they can establish a federation
relationship. The latter approch allows small-medium provider to cooperate in
order borrow/lend resources according to particual agreements. In this manner,
Cloud federation also offers to small/medium CPs new business opportunities,
guaranteeing high flexibility in service provisioning in a trasparent way for end

L. Lopes et al. (Eds.): Euro-Par 2014 Workshops, Part II, LNCS 8806, pp. 97–108, 2014.
c© Springer International Publishing Switzerland 2014

98 A. Panarello et al.

users. We chose to use CLEVER because, although it arises as middleware for
the management of IAAS, it has been designed looking to the future and keeping
an eye to the federation issues [1]. In fact, all communications, both inter-domain
that intra-domain, use the technology XMPP, which in our opinion is a powerful
solution to manage and to support the Cluod federation. So, our work aims to
provide a Platform as a Service (PaaS) for a MapReduce processing of big data
in a federated Cloud scenario. In particular, the solution we propose integrates
the Hadoop functionalities into the the above mentioned CLEVER. Whenever a
client submits a job to a Cloud, it, which may be not able to meet the client’s re-
quest for computational tasks, processes the job exploiting resources distributed
across different administrative domains. Each CP offers its processing resources
according to the policies of the federation agreements and the provider that re-
ceives a commitment from the client manages the available pool of resources in
the federation till the job processing ends. Our work, therefore, by exploiting
the federated system potentialities, aims to add another parallelization layer to
Hadoop Framework, thus making it elastic, scalable and cloud-like.

The rest of the paper is organized as follows. In Section 2, we provide a brief
overview of current works on the topics dealt in the paper. Section 3 presents
the proposed distributed processing service and one of many possible use cases.
In Section 4, we introduce the technologies adopted in this work to arrange a
real federated environment, i.e., Hadoop, CLEVER which is a Message Oriented
Middleware (MOM) exploiting the Extensible Messaging and Presence Protocol
(XMPP) technologies to handle the communication among the different adminis-
trative domains. Architectural details on how to integrate Hadoop and CLEVER
are discussed in Section 4.3. In Section 5, we present experimental results high-
lighting the major factors involved for job deployment in a federated Cloud
environment arranged by means of Hadoop and CLEVER. Section 6 concludes
the paper.

2 Related Works

In the near future, the heavy penetration of sensing devices into Internet ap-
plications will cause the explosion of the amount of data to be stored and pro-
cessed. This problem, well known as Big Data issue, is becoming the new buz-
zword in ICT world, involving both IoT and Cloud Computing, [2] technologies.
Cloud Computing is already a consolidated technology useful for spreading mas-
sive computations on heterogeneous environments. In this perspective Cloud is
becoming even more the basis for Big Data computation needs. At the Infras-
tructure as a Service (IaaS) level, Big Data can leverage the Computation ca-
pabilities of Clouds where the computation relying onVMs. Such an example is
given in [3], where Hadoop is installed into VMs exploiting the Public Cloud
as Amazon EC2. Here the authors re-modeled the resource provisioning of the
VMs in public cloud platforms for big data applications. In particular the authors
relied only on modifying the configuration of two types of EC2 VM instances
that is Small instance and Extra Large (XLarge) instance for optimizing the

Cloud Federation to Elastically Increase MapReduce Processing Resources 99

processing of Big Data. Our work uses a similar approach of this ([3]), but we
believe is much more challenging to setup a Hadoop environment in Federated
Clouds. Cloud Federation [4] [5] represents a compelling opportunity in which
IaaS Cloud Operators might achieve great business benefits, renting to others
cloud operators the computation resources on-demand (see [6]). The well-know
Hadoop platform can represent an appealing opportunity in this way because
its architecture is well consolidated and widely used. Any Cloud Operator might
offer Hadoop computation resources on-fly joining a federated cloud environ-
ment. Hadoop uses MapReduce paradigm, an high-level programming model for
data-intensive applications using transparent fault detection and recovery, widely
adopted in cloud datacenters such as Microsoft, Google, Yahoo, and Facebook.
Hadoop is an opensource implementation firstly developed by Yahoo [7]. In our
work it is possible to setup a high-level programming model even in Federated
and Heterogeneous Clouds. Deploying VMs in federated scenarios with Hadoop
nodes inside, is a challenge as shown in [8].Many works are trying to optimize
Hadoop computations in heterogeneous environment like shown in LATE [9],
TARAZU [10], Cross-Phase Optimization [11] and PIKACHU [12].These works
look at the paradigm attempting to optimize all processing tasks, in particular
the three main phases: map, shuffle and reduce. At the first stage of our solu-
tion, we are looking at the possibility to elastically increase the computation
resources leveraging even more VMs. A step over we should also consider similar
approach in which to organizer all MapReduces phases and tasks in a federated
way, that is selecting federated providers and deploying suitable VMs. Another
example of Big Data processing in the Cloud is presented in [13]. In this work the
computation framework used is Sailfish, a new MapReduce environment similar
to Hadoop. Sailfish was conceived for improving the disk performance for large
scale MapReduce computations. Hence it is possible to make the selection of
federated contributors based on types of MapReduce paradigms.

3 Distributed Processing Service in Cloud Federation

In a federated Cloud environment, a CP can benefit of the storage and compu-
tational resources other CPs acting on other administrative domains. To satisfy
client’s requests, each CP in the federation asks for available resources to the
other members of the federation, which offer their unused resources at that time.
Of course, the amount of resources offered for each request can be regulated by
specific federation agreements, but such issue is out of the scope of this paper. A
CP can require to establish a partnership with other CPs for multiple reasons: it
has saturated its own resources and it needs external assets, it wants to perform
software consolidation in order to save energy cost, it want to move part of pro-
cessing into other providers for improving security or performance in order to
respect particular Service Level Agreements (SLAs). In particular, in this paper,
we focus on a federated Cloud scenario offering MapReduce processing service.
MapReduce can take the advantages of data location, processing it on closer
storage assets in order to reduce data trasmission delay. Thus, in our scenario,

100 A. Panarello et al.

Fig. 1. Processing service management

CPs hold their internal storage system where deploying data sets they have to
process. Since each CP stores a portion of data for local processing, we assume
that big files that have to be processed are stored in an external Cloud Storage
Providers (CSPs), such as Amazon S3, Google Drive, Dropbox, etc. The choise to
rely on external public CSP was made to minimize the overhead associated to the
data transmission between the federated domains. They, in this manner, have to
exchange, each other, only coordination and sincronization messages. The idea
behind such a service is shown in Figure 1. When a user requests to run a job,
he contacts his Cloud Provider (CP A in the example in Figure 1) and sends an
input file (Xml file) containing the parameters nedeed to the job to be executed.
CP A involves all (or just a part of, depending on the job requirements) the
CPs in the federation, giving them directives on the task they have to process.
Supposing that the input data to process is memorized in a CSP that supports
multipart download (i.e., the CSP splits the file in several blocks that clients
are able to download), each involved CP to accomplish its task has to download
only particular blocks of file. It is important to say that the system can scale
both horizontally and vertically. It scales horizontally when a CP A (Home CP)
dynamically forwards the user task request to the federated domains (Foreign
CP). But the system can also scales vertically when a chosen foreign CP, for some
reason, cannnot longer fully meet the forwarded request by the home CP. So the
foreign CP may in turn forward the sub-request to others available foreign CP.
In this case, therefore, the CP plays both the role of foreign CP, towards the CP
that initially sent the request, and the role of home cloud towards the new CPs
to which it is forwarding the sub-request. Once each CP have download their
respective blocks of data from CSP, it has to parallel process them by means
of pieces of parallel processing middleware running on VMs. Each downloaded
blocks is further divided in smaller chunks by the middleware used for parallel
processing running on the Cloud domain. For simplicity, we assume that each
CP in the scenario has an image of the VM including the piece of middleware for
processing the task. However, additional mechanisms for VM image provisioning
can be implemented to improve the flexibility of the offered service. At the end
of the task, each CP uploads the results of the processing into the repository
system and it notifies that to CP A. As soon as all the CP end their work, CP A

Cloud Federation to Elastically Increase MapReduce Processing Resources 101

Fig. 2. Processing service management

informs the client about the result of the processing. To better understand the
benefits of this scenario, let us consider a video transcoding job as possible use
case. A user would like to enjoy a movie that is available on a remote storage
repository by using his mobile device. Unfortunately, the movie is stored as HD
file and the user device is not able to play it. Thus, the user needs an on-fly
video transcoding to convert the file to another format. The steps accomplished
to obtain the transcoded video are shown in Figure 2. A client submits to his
provider (CP A) the job together with his credentials to access the service. If the
authentication process has success, CP A starts a resources discovery into the
federated environment to look for available resources. The generic CP n offers
its storage and computational resources, if possible, and waits for instruction on
the task to carry on and the chunks of file to process. The Hadoop framework
at CP A, exploiting the MapReduce features, parallelizes the transcoding pro-
cess of the video file thus to involve as much resources as possible. As soon as
CP n receives the file localization information, it starts the download of the file
chunks and put them (uploads) in its HDFS cluster for local processing. At the
end of the processing step, CP n stores the result of its processing in the CSP
and sends to CP A an end task notification. Once CP A has received all the
end task notifications from all the involved CPs, it generates a SMIL file, i.e., an
XML file used to play the video avoiding to merge all the processed chunks. Also
the SMIL file is uploaded into the CSP and it provides the base location of the
video chunks and the necessary information for the client player to rebuild the
whole video file. Finally, CP A notifies its client about the end of job execution
and provides him the location of the SMIL file.

102 A. Panarello et al.

4 Reference Scenario

In this Section, we describe our reference scenario including CLEVER, Hadoop,
and Amazon S3.

4.1 Hadoop Overview

Hadoop MapReduce is a software framework to write and run applications in
processing in parallel huge amounts of data (e.g. terabyte of datasets) on large
clusters in a reliable, fault tolerant manner. A MapReduce job usually splits
the input data set into independent chunks, which are processed by the map
tasks in a completely parallel manner. The framework sorts the outputs of the
maps, which are then input to the reduce tasks. Both the input and the output
of the job are stored in a distributed file system, that is the Hadoop File Sys-
tem (HDFS).Typically the compute nodes and the storage nodes are the same,
that is, the MapReduce framework and the HDFS are running on the same set
of nodes. This configuration allows the framework to effectively schedule tasks
on the nodes where data is already present, resulting in very high aggregate
bandwidth across the cluster. The Hadoop framework has a Master/Slave ar-
chitecture. MapReduce components consist of a single master JobTracker and
one slave TaskTracker per cluster-node. The master is responsible for scheduling
the jobs’ component tasks on the slaves, monitoring them and re-executing the
failed tasks. The slaves execute the tasks as directed by the master. The master
node of the HDFS is called NameNode. It manages the namespace file system by
maintaining a file metadata image that includes file name, location and replica-
tion state. DataNodes manage storage resources into the host they run on and
allow read/write accesses. A typical Block size is 64 MB. Thus, a HDFS file is
chopped up into 64 MB chunks, and, if possible, chunks are located at different
DataNodes.

4.2 CLEVER Overview

The CLoud-Enabled Virtual EnviRonment (CLEVER) is a Message-Oriented
Middleware for Cloud comptuting (MOM4C), able to support several Cloud-
based services [14]. Each CLEVER Cloud includes several distributed hosts
organized in a cluster. Each Phisical Machine (PM) is controlled by a man-
agement module, called Host Manager (HM), and only one host runs a cluster
management module, called Cluster Manager (CM) that acts as interface be-
tween Cloud and clients. CM receives commands from clients, gives instructions
to HMs, elaborates information and finally sends back results to clients. It also
performs tasks for cluster orchestration. A CLEVER Cloud makes use of XMPP
to exchange all communication messages and presence information in a near-real
time fashion. A Jabber/XMPP server provides basic messaging, presence, and
XML routing features within the Cloud. All the PMs in the Cloud are connected
via a Multi User Chat (MUC) and cooperate according to the CM orchestration

Cloud Federation to Elastically Increase MapReduce Processing Resources 103

directives. In CLEVER, CM and HMs implements software Agents communicat-
ing through XMPP. Hence, it is easy to include new modules and functionalities
to the CLEVER environment by adding new Agents and updating the CM and
HMs configurations for the correct delivering of messages.

Fig. 3. CLEVER Federation Management

With CLEVER, each Cloud involved in the federation is identified by a Jabber
ID (JID). As shown in Figure 3, in order to set up a federation, CMs belonging
to different administrative domains exchange messages through the MUC with
the unique room ID Federation, and only the authenticated, by the XMPP server
itself or by external third party entities [15], ACTIVE CMs of federated Clouds
can access it.

4.3 Integration of Hadoop in CLEVER

To make the Hadoop functionalities cloud like, we make use of a virtual infras-
tructure provided by CLEVER. VMs run on HMs and work as slaves of the
Hadoop cluster. Virtual Hadoop slaves are coordinated by the Hadoop Master
arranged at the CLEVER CM. The first advantage of the integration of Hadoop
in CLEVER is that, typically, Hadoop uses the TCP/IP layer for communication,
and it is a problem during the inter-domain comunication due to heavy usage of
firewalls by each domain which take part to federation. Infact firewalls can block
inter-domain communication. So, integrating Hadoop in CLEVER, federation
messages can be sent on port 80 thanks to XMPP technology.The second one
is that the system can automatically scale according to real time requirements.
The two main software agents enabling CLEVER to integrate Hadoop are the
Hadoop Master Node (HMN) Agent and Hadoop Slave Node (HSN) Agent. In
the following, we discuss their activities and synchronization processes. Figure
4.a shows the software components at the CM. Through the HMs interface, the
CC communicates with all the HMs in the cluster, exchanging information on
available resources, running tasks, work specifications and offered services. The
CC makes use of the Client interface to interact with Cloud clients, in order
to receive client requests, and to give back inquired services. The Client in-
terface allows service provisioning to clients exchanging XML messages into the

104 A. Panarello et al.

(a) Cluster Manager design. (b) Host Manager design.

Fig. 4. Integration of Hadoop in CLEVER

Shell Room. The VIM is the agent designed for managing virtual infrastructures.
Moreover, the CM makes use of an internal NoSQL database for storing current
system configurations, which is properly updated by the Data Base Manager
(DBM). Figure 4.b shows the software components at the HM. The agent specif-
ically designed to support the Hadoop activities in the Cloud is the HMN Agent.
It provides the configuration settings to all the virtual nodes in the Hadoop
cluster. The CLEVER HMN works as master for Hadoop cluster. Specifically,
it implements the Hadoop functionalities to manage the hadoop system. At the
startup, the HMN Agent reads the Hadoop configuration setup and then the CC
subscribes this new Agent in the list of all the active agents of CLEVER, in
order to make it reachable from the agents instantiated in the HMs. After the
early registration, the HMN Agent can receive Notifications from the agents at
the HMs.

4.4 Amazon S3

Amazon S3 is Cloud storage service. It is designed to make web-scale computing
easier for developers. Amazon S3 provides a simple web-services interface that
can be used to store and retrieve any amount of data, at any time, from anywhere
on the web. It gives any developer access to the same highly scalable, reliable,
secure, fast, inexpensive infrastructure that Amazon uses to run its own global
network of web sites. The service aims to maximize benefits of scale and to pass
those benefits on to developers.

5 Experiments

In this Section, we discuss several experiments, we conducted on a real testbed
involving four CLEVER/Hadoop administrative domains (i.e., A, B, C, and D)
acting as federated Cloud providers and Amazon S3 acting as real Cloud storage
provider. The objective of the experiments described in this Section consists to
know what are the main factors needed for the job submission in a federated

Cloud Federation to Elastically Increase MapReduce Processing Resources 105

Cloud environments and demonstrating, considering a real testbed, how Cloud
federation can enable Cloud providers to take the advantages of parallel dis-
tributed processing. it is important to emphasize that integrating Hadoop in
CLEVER we are adding a second livel of parallelization. In order to test the
whole environment, we considered a parallel video transcoding use case involv-
ing several federated cloud providers. In particular, we arranged the testbed
considering four physical servers (one per Cloud domain) running in total 10
VMs and Amazon S3. Experiments were conducted with the following hard-
ware configuration: CPU: Intel(R) Core(TM)2 CPU 6300; 1.86GHz, 3GB RAM,
running Linux Ubuntu 12.04 x86 64 OS and VirtualBox. Each experiment was
repeated 50 times in order to consider mean values and a low confidence inter-
vals.In the following, we summarize the main phases involved in our experiments.
The process starts at time t0 when a Cloud client sends a video transcoding re-
quest to a particular CLEVER domain. At time t1 the CLEVER cloud that
receives the request decides to establish a federation with the other CLEVER
domains, retrieving domains information. For simplicity, in this paper, we have
not treated how this process can be accomplished in autonomic fashion, but
we a priori arranged the environment using the CLEVER commands. At t2, the
Cloud provider, that has initiated the federation establishment process, performs
a task assignment involving the whole federated environment. Supposing that
the Cloud that has started the process uses an external Cloud storage service
provided by Amazon S3, each involved federated CLEVER Cloud will down-
load only a particular number of video chunks for processing using the multipart
download mechanism. In the end, t4 indicates the time taken by each CLEVER
Cloud to upload the previously downloaded video chunks in HDFS of the local
domain, so that the Hadoop task tracker slave node, controlled by means of
CLEVER, can process them. Figure 5.a shows the average time required for the
accomplishment of phase 1 (t1− t0). It is possible to observe that, independently
from the number of external administrative domains, the time for retrieving do-
main information remains constant taking roughly 5 seconds. We attribute this
overhead at the access operation to the local database needed to CLEVER to

(a) Average time required to retrieve
domain information on Clouds.

(b) Average time required to forward
a request to federated Clouds.

Fig. 5. Retrieving information and forward request times

106 A. Panarello et al.

(a) Download Time
histogram for 20MB
block size.

(b) Download Time
histogram for 10MB
block size.

(c) Download Time
histogram for 7MB
block size.

Fig. 6. Download time from Amazon S3

retrieve the network parameters of the other domains. At phase 2, t2 − t1 in-
terval indicates the time required to forward the video transcoding request to
the external federated CLEVER Clouds domains. These times are shown in the
Figure 5.b. After that the CLEVER Cloud that has started the process, obtained
the network information regarding external Cloud domains, runs a new thread
for each of them, sending the requests in parallel. Thus, the average time does
not change if the number of the foreign domains does. Figure 5.a, 5.b, and 5.c
show respectively the distribution of the download times of 1/3, 1/2, and the
whole video files from Amazon S3. In our timing diagram, this time is repre-
sented by the t3 − t2 interval. Observing the Figure 6.a, 6.b, and 6.c, we can
notice that, if there is only one domain which takes part to the federation, it has
to download the whole video file(20MB), instead when there are other domains
into the federetion, each of them has to retrive only a block of the original file.
So, when the number of the federated domains increases, the download-time de-
creases. In particular Figure6.a, shows the download time when a single external
CLEVER Cloud administrative domain takes part to the federation, so that, it
has to download the whole video file(20MB) from Amazon S3. Figures 6.b and
6.c, instead, respectively show the download times when two and three external
CLEVER Cloud administration domains take part to the federation. In fact,
each domain downloads only specific block of video file. Observing the graphs,
we can note that the download time for the whole 20MB file takes roughly 40
seconds, while the times needed for downloading half file (10MB) and a third of
file (7MB) take respectively roughly 22 and 15 seconds. Figure 5 summarizes
the aforementioned results. Moreover, each download takes place in parallel, so
we have a double benefit, the first one due to the smaller blocks size to be down-
loaded, the second one due to the parallelization of the download in these blocks.
The average download time is depicted in Figure 7.a. Instead, Figure 7.b shows
how the average upload time of blocks of file in the HDFS of each domain. This
time changes according to the number of active DataNodes and video file sizes.
Observing the graph depicted in Figure 7.b, we can notice that increasing the
number of Hadoop Data Nodes the upload time increases too. We can motivate

Cloud Federation to Elastically Increase MapReduce Processing Resources 107

(a) Average download time of file
blocks from Amazon S3.

(b) Average Upload time of file
blocks in Hadoop.

Fig. 7. Average download and upload

this trend remembering that the Hadoop has been configured with a redundancy
parameter equal to 2. In fact with a single active DataNode, the upload time
has a very low value, because the system does not have the need to replicate
the file. Instead, due to Hadoop’s data replication mechanisms, increasing the
number of Data Nodes, we can notice a linear increase of the upload.

6 Conclusion

In this paper, we discussed how can be possible to apply theMapReduce paradigm
in a federatedCloud environment.MapReduce allows to performaparallel process-
ing of large data set stored into a file system. The Hadoop framework couples the
MapReduce algorithmswith theHDFSstorage system.Theproposed solution inte-
grates the Hadoop framework into CLEVERand uses Amazon S3 as external CSP.
We deeply discussed the proposed processing service focusing on job submission.

References

1. Panarello, A., Celesti, A., Fazio, M., Villari, M., Puliafito, A.: A Requirements
Analysis for IaaS Cloud Federation. In: 4th International Conference on Cloud
Computing and Services Science, Barcelona, Spain (2014)

2. Petruch, K., Stantchev, V., Tamm, G.: A survey on it-governance aspects of cloud
computing. IJWGS 7(3), 268–303 (2011)

3. Yuan, Y., Wang, H., Wang, D., Liu, J.: On interference-aware provisioning for
cloud-based big data processing. In: 2013 IEEE/ACM 21st International Sympo-
sium on Quality of Service (IWQoS), pp. 1–6 (June 2013)

4. Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., Tordsson,
J., Ragusa, C., Villari, M., Clayman, S., Levy, E., Maraschini, A., Massonet, P.,
Muñoz, H., Tofetti, G.: Reservoir - when one cloud is not enough. Computer 44,
44–51 (2011)

108 A. Panarello et al.

5. Kertesz, A., Kecskemeti, G., Marosi, A., Oriol, M., Franch, X., Marco, J.: Inte-
grated monitoring approach for seamless service provisioning in federated clouds.
In: 2012 20th Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp. 567–574 (February 2012)

6. Toosi, A.N., Calheiros, R.N., Buyya, R.: Interconnected cloud computing environ-
ments: Challenges, taxonomy, and survey. ACM Comput. Surv. 47, 7:1–7:47 (2014)

7. The Apache Hadoop project: the open-source software for reliable, scalable, dis-
tributed computing, http://hadoop.apache.org/

8. Gahlawat, M., Sharma, P.: Survey of virtual machine placement in federated clouds.
In: 2014 IEEE International Advance Computing Conference (IACC), pp. 735–738
(February 2014)

9. Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving mapre-
duce performance in heterogeneous environments. In: 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI 2008, pp. 29–42. USENIX
Association, Berkeley (2008)

10. Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.N.: Tarazu: Opti-
mizing mapreduce on heterogeneous clusters. SIGARCH Comput. Archit. News 40,
61–74 (2012)

11. Heintz, B., Wang, C., Chandra, A., Weissman, J.: Cross-phase optimization in
mapreduce. In: Proceedings of the 2013 IEEE International Conference on Cloud
Engineering, IC2E 2013, pp. 338–347. IEEE Computer Society, Washington, DC
(2013)

12. Gandhi, R., Xie, D., Hu, Y.C.: Pikachu: How to rebalance load in optimizing
mapreduce on heterogeneous clusters. In: USENIX Conference on Annual Tech-
nical Conference, USENIX ATC 2013, pp. 61–66. USENIX Association, Berkeley
(2013)

13. Rao, S., Ramakrishnan, R., Silberstein, A., Ovsiannikov, M., Reeves, D.: Sailfish: A
framework for large scale data processing. In: Proceedings of the Third ACM Sym-
posium on Cloud Computing, SoCC 2012, pp. 4:1–4:14. ACM, New York (2012)

14. Fazio, M., Celesti, A., Puliafito, A., Villari, M.: A message oriented middleware
for cloud computing to improve efficiency in risk management systems. Scalable
Computing: Practice and Experience (SCPE) 14, 201–213 (2013)

15. Celesti, A., Fazio, M., Villari, M.: Se clever: A secure message oriented middleware
for cloud federation. In: IEEE Symposium on Computers and Communications
(ISCC), pp. 35–40 (July 2013)

http://hadoop.apache.org/

	Cloud Federation to Elastically Increase MapReduce Processing Resources
	1
Introduction
	2
Related Works
	3
Distributed Processing Service in Cloud Federation
	4
Reference Scenario
	4.1
Hadoop Overview
	4.2
CLEVER Overview
	4.3
Integration of Hadoop in CLEVER
	4.4
Amazon S3

	5
Experiments
	6
Conclusion
	References

