Skip to main content

Accurate Motion Estimation Based on Moment Invariants and High Order Statistics for Frames Interpolation in Stereo Vision

  • Chapter
Knowledge-Based Information Systems in Practice

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 30))

Abstract

At present, stereo video sequences are actively used in the movie industry, geographical information systems, and in navigation systems, among others. A novel motion estimation method simplifies the frames interpolation by forming an accurate set of local motion vectors in neighbour frames. First, the motion in a scene is estimated by block-matching algorithm roughly. Second, the accurate estimations are calculated according to type and velocity of motion. The Hu moments are used for a fast and transition motion in a scene. The Zernike moments are applied for fast and noisy scenes with a transition/rotation motion. The high statistical moments (kurtosis particularly) are reasonable for the accurate analysis of a slow motion. Such approach provides a smooth motion into additional interpolated frames that improves significantly the final stereo video sequence. Experimental results show the efficiency of the proposed method for frames interpolation. The detection of local motion vectors achieves 86% accuracy by usage the Zernike moments and 88% accuracy by a kurtosis calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Winkler, S., Min, D.: Stereo/multiview picture quality: Overview and recent advances. Signal Processing: Image Communication 28(10), 1358–1373 (2013)

    Google Scholar 

  2. Hu, M.K.: Visual Pattern Recognition by Moment Invariant. IRE Trans Info Theory IT-8, 179–187 (1962)

    Google Scholar 

  3. Yang, Z.L., Guo, B.L.: Image Registration Using Feature Points Extraction and Pseudo-Zernike Moments. In: Int. Conf. on Intelligent Information Hiding and Multimedia Signal Proc, pp. 752–755 (2008)

    Google Scholar 

  4. Revaud, J., Lavoue, G., Baskurt, A.: Improving Zernike moments comparison for optimal similarity and rotation angle retrieval. IEEE Trans on Pattern Analysis and Machine Intelligence 31(4), 627–636

    Google Scholar 

  5. Favorskaya, M.: Motion Estimation for Object Analysis and Detection in Videos. In: Kountchev, R., Nakamatsu, K. (eds.) Advances in Reasoning-Based Image Processing, Analysis and Intelligent Systems, vol. 29, pp. 211–253 (2012)

    Google Scholar 

  6. Richardson, I.E.: H.264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia, 281 p. John Wiley and Sons, England (2003)

    Google Scholar 

  7. Zhu, C., Lin, X., Chau, L., Po, L.M.: Enhanced Hexagonal Search for Fast Block Motion Estimation. IEE Trans on Circuits and Systems for Video Technology 14(10), 1210–1214 (2004)

    Article  Google Scholar 

  8. Cai, J., Pan, W.D.: On fast and accurate block-based motion estimation algorithms using particle swarm optimization. Info. Sci. 197, 53–64 (2012)

    Article  Google Scholar 

  9. Jing, X., Chau, L.P.: An efficient three-step search algorithm for block motion estimation. IEEE Trans Multimedia 6(3), 435–438 (2004)

    Article  Google Scholar 

  10. Po, L., Ma, W.: A novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol. 6(3), 313–317 (1996)

    Article  Google Scholar 

  11. Li, R., Zeng, B., Liou, M.: A new three-step search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol 4(4), 438–442 (1994)

    Article  Google Scholar 

  12. Liu, L., Feig, E.: A block-based gradient descent search algorithm for block motion estimation in video coding. IEEE Trans. Circuits Syst. Video Technol. 6(4), 419–422 (1996)

    Article  Google Scholar 

  13. Zhu, S., Ma, K.K.: A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans. on Image Proc. 9(2), 287–290 (2000)

    Article  MathSciNet  Google Scholar 

  14. Cheung, C.H., Po, L.M.: A novel cross-diamond search algorithm for fast block motion estimation. IEEE Trans on Circuits and Systems for Video Technology 12(12), 1168–1177 (2002)

    Article  Google Scholar 

  15. Cheung, C., Po, L.: A novel small-cross-diamond search algorithm for fast video coding and video conferencing applications. IEEE ICIP 12, 681–684 (2002)

    Google Scholar 

  16. Lam, C., Po, L., Cheung, C.: A novel kite-cross-diamond search algorithm for fast video coding and video conferencing applications. IEEE ICASSP-2004 3, 365–368 (2004)

    Google Scholar 

  17. Li, S., Xu, W., Zheng, N., Wang, H.: A novel fast motion estimation method based on genetic algorithm. Acta Electronica Sinica 28(6), 114–117 (2000)

    Google Scholar 

  18. Chu, W., Gao, X., Sorooshian, S.: A new evolutionary search strategy for global optimization of high-dimensional problems. Info. Sci. 181(22), 4909–4927 (2011)

    Article  Google Scholar 

  19. Wang, H., Wu, Z., Rahnamayan, S., Liu, Y., Ventresca, M.: Enhancing particle swarm optimization using generalized opposition-based learning. Information Sciences 181(20), 4699–4714 (2011)

    Article  MathSciNet  Google Scholar 

  20. Alzoubi, H., Pan, W.: Fast and accurate global motion estimation algorithm using pixel subsampling. Info. Sci. 178(17), 3415–3425 (2008)

    Article  Google Scholar 

  21. Yin, S., Na, J., Choi, J., Oh, S.: Hierarchical Kalman-particle filter with adaptation to motion changes for object tracking. Comput. Vision Image Understand. 115(6), 885–900 (2011)

    Article  Google Scholar 

  22. Cui, Z., Jiang, G., Yang, S., Wu, C.: A new fast motion estimation algorithm based on the loopepipolar constraint for multiview video coding. Signal Process and Image Commun 27(2), 172–179 (2012)

    Article  Google Scholar 

  23. Tedmori, S., Al-Najdawi, N.: Hierarchical stochastic fast search motion estimation algorithm. IET Comput. Vis. 6(1), 21–28 (2012)

    Article  MathSciNet  Google Scholar 

  24. Cuevasa, E., Zaldivara, D., Perez-Cisnerosa, M., Sossab, H., Osunab, V.: Block matching algorithm for motion estimation based on artificial bee colony (ABC). Appl in Soft Comput 13(6), 3047–3059 (2013)

    Article  Google Scholar 

  25. Je, C., Park, H.M.: Optimized hierarchical block matching for fast and accurate image regis-tration. Signal Process Image Commun 28(7), 779–791 (2013)

    Article  Google Scholar 

  26. Lowe, D.: Distinctive image features from scale-invariant key points. Int. J. of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  27. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  28. Tomasi, C., Kanade, T.: Detection and tracking of point features. Image Rochester NY, Technical Report CMU: 91–132 (1991)

    Google Scholar 

  29. Doshi, A., Bors, A.G.: Smoothing of optical flow using robustified diffusion kernels. Image and Vision Computing 28(12), 1575–1589 (2010)

    Article  Google Scholar 

  30. Huang, A.M., Nguyen, T.: Correlation-based motion vector processing with adaptive interpolation scheme for motion-compensated frame interpolation. IEEE Trans on Image Proc. 18(4), 740–752 (2009)

    Article  MathSciNet  Google Scholar 

  31. Guo, D., Shao, L., Han, J.: Feature-based motion compensated interpolation for frame rate up-conversion. Neurocomputing 123, 390–397 (2014)

    Article  Google Scholar 

  32. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. Proc. 7th Int Joint Conf on Artificial Intelligence 2, 674–679 (1981)

    Google Scholar 

  33. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  34. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  35. Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T.: Variational method for super-resolution optical flow. Signal Processing 91(7), 1535–1567 (2011)

    Article  MATH  Google Scholar 

  36. Yan, B., Chen, Y.: Low complexity image interpolation method based on path selection. J. Vis. Commun. Image R 24(6), 661–668 (2013)

    Article  Google Scholar 

  37. Nisar, H., Malik, A.S., Choi, T.S.: Content adaptive fast motion estimation based on spatio-temporal homogeneity analysis and motion classification. Pattern Recognition Letters 33(1), 52–61 (2012)

    Article  Google Scholar 

  38. Chen, W., Mied, R.P.: Optical flow estimation for motion-compensated compression. Image and Vision Computing 31(3), 275–289 (2013)

    Article  Google Scholar 

  39. Chen, Y., Cai, C., Mab, K.-K., Wang, X.: Layered moving-object segmentation for stereoscopic video using motion and depth information. J Vis Commun. Image R 24(7), 829–837 (2013)

    Article  Google Scholar 

  40. Park, C.S.: Level-set-based motion estimation algorithm for multiple reference frame motion estimation. J Vis Commun Image R 24(8), 1269–1275 (2013)

    Article  Google Scholar 

  41. Huang, Z., Leng, J.: Analysis of Hus Moment Invariants on Image Scaling and Rotation. In: 2nd Int Conf on Computer Engineering and Technology (ICCET), vol. 7, pp. 476–480 (2010)

    Google Scholar 

  42. Zhang, H., Shu, H., Coatrieux, G., Zhu, J., Wu, Q.M.J., Zhang, Y., Zhu, H., Luo, L.: Affine Legendre Moment Invariants for Image Watermarking Robust to Geometric Distortions. IEEE Transactions on Image Processing 20(8), 2189–2199 (2011)

    Article  MathSciNet  Google Scholar 

  43. Rao, C.H.S., Kumar, S.S., Mohan, B.C.: Content Based Image Retrieval using Exact Legendre Moments and Support Vector Machine. Int J of Multimedia & Its Applications 2(2), 69–79 (2010)

    Article  Google Scholar 

  44. Zhang, H., Shu, H.Z., Han, G.N., Coatrieux, G., Luo, L.M., Coatrieux, J.L.: Blurred image recognition by Legendre moment invariants. IEEE Trans Image Process 19(3), 596–611 (2010)

    Article  MathSciNet  Google Scholar 

  45. Chen, Z., Sun, S.K.: A Zernike moment phase-based descriptor for local image representation and matching. IEEE Trans Image Process 19, 205–219 (2010)

    Article  MathSciNet  Google Scholar 

  46. Shutler, J.D., Nixon, M.S.: Zernike velocity moments for sequence-based description of moving features. Image and Vision Computing 24(4), 343–356 (2006)

    Article  Google Scholar 

  47. Yang, H., Pei, L.: Fast algorithm of subpixel edge detection based on Zernike moments. 4th Int Congress on Image and Signal Processing (CISP) 3, 1236–1240 (2011)

    Google Scholar 

  48. Sanjeev, K., Haleh, A., Mainak, B., Truong, N.: Real-Time Affine Global Motion Estimation Using Phase Correlation and its Application for Digital Image Stabilization. IEEE Transactions on Image Processing 20(12), 3406–3418 (2011)

    Article  MathSciNet  Google Scholar 

  49. Vyas, V.S., Rege, P.P.: Geometric transform Invariant Texture Analysis based on Modified Zernike Moments. J Fundamenta Informaticae 88(1–2), 177–192 (2008)

    MATH  MathSciNet  Google Scholar 

  50. Frejlichowski, D.: Application of Zernike Moments to the problem of General Shape Analysis. Control & Cybernetics 40(2), 5–15 (2011)

    MathSciNet  Google Scholar 

  51. Chandan, S., Neerja, M., Ekta, W.: Face recognition using Zernike and complex Zernike moment features. Pattern Recognition and Image Analysis 21(1), 71–81 (2011)

    Article  Google Scholar 

  52. Chen, B.J., Shu, H.Z., Zhang, H., Chen, G., Toumoulin, C., Dillenseger, J.L., Luo, L.M.: Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Processing 92(2), 308–318 (2012)

    Article  Google Scholar 

  53. Guo, L.Q., Zhu, M.: Quaternion Fourier-Mellin moments for color image. Pattern Recognit 44(2), 187–195 (2011)

    Article  MATH  Google Scholar 

  54. Wee, C.Y., Paramesran, R., Mukundan, R.: Fast computation of geometric moments using a symmetric kernel. Pattern Recognition 41(7), 2369–2380 (2008)

    Article  MATH  Google Scholar 

  55. Papakostas, G.A., Koulouriotis, D.E.: A unified methodology for the efficient computation of discrete orthogonal image moments. Inform Sci 176(20), 3619–3633 (2009)

    Article  MathSciNet  Google Scholar 

  56. Boveiri, H.R.: On Pattern Classification Using Statistical Moments. Int J of Signal Pro-cessing, Image Processing and Pattern Recognition 3(4), 15–24 (2010)

    Google Scholar 

  57. Mukundan, R., Ong, S.H., Lee, P.A.: Image analysis by Tchebichef moments. IEEE Trans on Image Proc 10(9), 1357–1364 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  58. Yap, P.T., Paramedran, R., Ong, S.H.: Image analysis by Krawtchouk moments. IEEE Trans on Image Proc 12(11), 1367–1377 (2003)

    Article  Google Scholar 

  59. Yap, P.T., Paramedran, R., Ong, S.H.: Image analysis using Hahn moments. IEEE Trans on Pattern Analysis and Machine Intelligence 29(11), 2057–2062 (2007)

    Article  Google Scholar 

  60. Mukundan, R.: A new class of rotational invariants using discrete orthogonal moments. In: 6th IASTED Conf on Signal and Image Processing SIP 2004, pp. 80–84 (2004)

    Google Scholar 

  61. Han, J.W., Suryanto, K., Kim, J.H., Sull, S., Ko, S.J.: New edge-adaptive image interpolation us-ing anisotropic Gaussian filters. Digital Signal Processing 23(1), 110–117 (2013)

    Article  MathSciNet  Google Scholar 

  62. Leung, T., Malik, J.: Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43(1), 29–44 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margarita Favorskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Favorskaya, M., Pyankov, D., Popov, A. (2015). Accurate Motion Estimation Based on Moment Invariants and High Order Statistics for Frames Interpolation in Stereo Vision. In: Tweedale, J., Jain, L., Watada, J., Howlett, R. (eds) Knowledge-Based Information Systems in Practice. Smart Innovation, Systems and Technologies, vol 30. Springer, Cham. https://doi.org/10.1007/978-3-319-13545-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-13545-8_19

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-13544-1

  • Online ISBN: 978-3-319-13545-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics