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Abstract. Error-tolerant side-channel cube attacks have been recently
introduced as an efficient cryptanalytic technique against block ciphers.
The known Dinur-Shamir model and its extensions require error-free data
for at least part of the measurements. Then, a new model was proposed at
CHES 2013, which can recover the key in the scenario that each measure-
ment contains noise. The key recovery problem is converted to a decoding
problem under a binary symmetric channel. In this paper, we propose
a high error-tolerant side-channel cube attack. The error-tolerant rate is
significantly improved by utilizing the polynomial approximation and a
new variant of cube attack. The simulation results on PRESENT show
that given about 2! measurements, each with an error probability of
40.5 %, the new model achieves a success probability of 50 % for the key
recovery. The error-tolerant level can be enhanced further if the attacker
can obtain more measurements.
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1 Introduction

Cube attack was formally proposed by Dinur and Shamir at Eurocrypt 2009 [8]
as an efficient cryptanalytic technique which can be applied to many types of
well-designed cryptosystems by exploiting an low degree multivariate polynomial
of a single output bit. It is an extension of high-order differential attacks [13]
and algebraic IV differential attacks [17,18]. It shows superior performance on
several stream ciphers [1,2,7,8,11], however, most block ciphers are immune to
it, as they iterate a highly non-linear round function for a number of times and
the degree of the polynomial for the ciphertext bits is much higher.

Since the master polynomials of some intermediate variables in the early
rounds are of relatively low degree, cube attack becomes a convincing method
to attack block ciphers by combining physical attacks, where the attackers can
exploit some leaked information about the intermediate variables, i.e., state reg-
isters. The attacker only needs to learn the value of a single wire or register
in each execution, it is thus ideal for probing attacks. The main challenge is to
overcome the measurement noise, thus how to launch an efficient error-tolerant
side-channel cube attack in a realistic setting is a highly interesting topic.

Dinur and Shamir initialized the first study on error-tolerant side-channel
cube attack (ET-SCCA) [10]. They treat the uncertain bits as new erasure vari-
ables and it was further enhanced in [6,9] by utilizing more trivial equations of
high dimensional cubes to correct the errors. The success of this model is based
on an assumption that the adversary possesses the exact knowledge of error
positions and partial measurements are error-free. Then, at CHES 2013 [19],
Li et. al. proposed a new model, which can recover the key when each measure-
ment contains noise. The key recovery problem is converted to decoding a [L, n]
linear code. However, the error-tolerant level is still very low.

This paper introduces a new ET-SCCA which can tolerate heavy noise inter-
ference. The error-tolerant rate can be improved significantly by utilizing the
polynomial approximation technique and applying a new variant of cube attack.
The main idea of polynomial approximation is to appropriately remove some
key variables to reduce the code dimension n of a [L,n] code. Moreover, a new
variant of cube attack is proposed, inspired by the idea of dynamic cube attack
[7]. The main idea is to increase the number of linear equations, i.e., code length
L, by adaptively choosing the plaintext. Consequently, the bound of error prob-
ability has been refined. Compared with the simulation results on PRESENT
n [19], the error probability for each measurement can be improved to 40.5 %
given about 2212 measurements and 227 time complexity. The error-tolerant
rate can be enhanced further if the attacker can obtain more measurements.
Table 1 summarized our simulation results on PRESENT.

This paper is organized as follows. We first introduce the basic idea of cube
attack and ET-SCCA in Sect.2. In Sect. 3, we present the new model. Error
probability evaluation is developed and analyzed in Sect.4. Section5 presents
the simulations on PRESENT. The comparison is given in Sect. 6, followed by
some further discussions. Finally, we conclude the paper in Sect. 7.
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Table 1. Simulation results on PRESENT

Time complexity | Data (measurements) | Error probability | Scenario

2316 101 23.2% Lower measurements
2276 2162 29.5% Balanced

2276 9212 40.5 % Higher error tolerance

The success probability is about 50 %.
The memory requirement is negligible.

2 Preliminaries

2.1 Cube Attack

Consider a block cipher T and its encryption function (cy,...,¢m) = E(kq, ...,
kn,v1,...,Um), where ¢;, k; and v, are ciphertext, encryption key and plaintext
bits, respectively. One can always represent c¢;, i € [1,m], with a multivariate
polynomial in the plaintext and key bits, namely, ¢; = p(k1, ..., kn, v1, ..., U ). Let
I € {1,...,m} be an index subset, and ¢; = [],.; v, the polynomial p is divided
into two parts: p(ki, ..., kn, V1, ..., Um) = tr - ps(r) + q(k1, o kn,y v, o0, ), where
no item in ¢ contains t;. Here pg(sy is called the superpoly of I in p. A maxterm
of p is a term ¢; such that deg(pg(;)) = 1 verified by the BLR test [4] and this
ps(r) is called maxterm equation of #.

Erample 1. Let p(kl, ko, k3, Ul,’l}27’l)3) = wou3zky + vovzks + V1Vov3 + vikoks +
koks 4+ v3 + k1 + 1 be a polynomial of degree 3 in 3 secret variables and 3 public
variables. Let I = {2,3} be an index subset of the public variables. We can
represent p as p(ki, ko, k3, v1,v2,v3) = vovs(k1 + kg + v1) + (vikoks + koks +
vz + k1 + 1), where t1 = vovs, pg(r) = k1 + k2 +v1 and q(k1, ko, k3, v1,v2,v3) =
v1koks + koks +v3 + k1 + 1.

Let d be the size of I, then a cube on I is defined as a set C; of 2¢ vectors
that cover all the possible combinations of t; and leave all the other variables
undetermined. Any vector 7 € C7 defines a new derived polynomial p|, with
n — d variables. Summing these derived polynomials over all the 2¢ possible
vectors in Cr results in exactly pg(s) (cf. Theorem 1, [8]). For p and I defined
in Example 1, we have C; = {71, 72, 73,74}, where 71 = [k1, ko, k3,v1,0,0], 70 =
[kl, kQ, k37 V1, 0, 1]7 T3 = [kl, kz, kg, V1, ].7 0}, and T4 = [kl, kz, k3, V1, ]., ].} It is easy
to verify that p;, +pjr, + Pjry +Pjr, = k1 + k2 +v1 = ps(r)- Here pg(r) is called
the maxterm equation of ¢;. In the off-line phase, the attacker tries to find as
many maxterms and their corresponding maxterm equations as possible.

In the on-line phase, the secret key is fixed. The attacker chooses plaintexts
7 € Cr and obtains the evaluation of p at 7. By summing up p),, for all the 20
vectors in (7, he obtains pg(r), a linear equation in k;. The attacker repeats this
process for all the maxterms found in the off-line phase, and obtains a group of
equations, which he can solve to recover the key.
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2.2 Error-Tolerant Side-Channel Cube Attack(ET-SCCA)

At CHES 2013, Li et. al. [19] proposed a new model for ET-SCCA, which can
retrieve the key when all the leaked bits are noisy. The leaked data observed is
regarded as the received channel output of some linear code transmitted through
a binary symmetric channel (BSC). The problem of recovering the n secret key
bits in L linear equations can be considered as the problem of decoding a binary
linear [L,n] code with L being the code length and n the dimension as follows.

ll : a%kl—i—a%kg—l——f—a’fkn :bl
lo: a%kl + a%kg + ...+ agkn =by ( )
. 1

I : atky +a2ko+ ...+ alk, = by

where a € {0,1} (1 < < L,1 < j < n) denotes the coefficient. Note that
b; € {0,1} is obtained by summing up the evaluation of the maxterm equation
over the it" cube C;, namely, b; = ZTEQ p|- The value of p, is obtained via
measurements. Ideally, the measurement is error-free and the attacker obtains
the correct sequence B = [by, ba, ..., br]. In reality, however, the attacker is likely
to observe a different sequence Z = z1, 29, ..., 2z, due to the measurement errors.

Denote ¢ as the probability that a bit may flip in each measurement and
assume that ¢ < 1/2, then 1 — ¢ = 1/2 + p is the probability of an accurate

measurement and ¢ = 0 means a random guess. Since b; = Zreci p|r, and C;
has t = 29 elements (d is the average size of cubes), and each measurement
can be treated as an independent event, according to the piling-up lemma [14],
Pr{b; = z;} 29 —p= %+2t_1ut. Thus, each z; can be regarded as the output of
a BSC with p = 1/2 —¢ (¢ = 2!~ !u?) being the crossover probability. Therefore,
the key recovery problem is converted to decoding a [L, n] linear code. Maximum
likelihood decoding (ML-decoding, see Appendix C) is used and they derive the
error-tolerant bound in Lemma 1.

Lemma 1. To ensure 50 % success probability of decoding a [L,n] code to retrieve

7. . 1
the key, the error probability q of each measurement should satisfy ¢ < 3-

(1- (W)ﬁ -2%), where t = 29 denotes the number of summations to evalu-
ate each linear equation.

The simulation results on PRESENT-80 show that given about 2'°2 measure-
ments, each with an error probability ¢ = 19.4%, it achieves 50.1 % of success
rate for the key recovery. However, the error-tolerant rate is still very low.

3 A New ET-SCCA with Higher Error-Tolerant Rate

3.1 Polynomial Approximation

The main target is to remove several secret variables while keeping the number of
maxterm equations reduced as few as possible. In this way, the code dimension
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n can be reduced while keeping the code length L reduced as little as possi-
ble. However, removing secret variables might be a challenging task as previous
studies on Trivium [8], Serpent [9,10], KATAN [12], LBlock [20] and PRESENT
[19] show that most of the maxterm equations have a low density. Removing
secret variables will probably lead to the reduction of the maxterm equations.
We propose two basic strategies of removing key variables as follows.

Lower Reduction Factor. The removed secret variables should not be those
that solely exist in the maxterm equations and should be those that exist in the
maxterm equations with multiple secret variables. (e.g., suppose we have derived
2 maxterm equations, one is k1 4+ ko and the other is k3 + 1, then the removed
secret variables should contain k; or ko, but not ks, since removing ks will lead
to the second maxterm equation become a trivial one.) Note that this selection
process can be finished in the off-line phase, since all the maxterm equations are
available. Suppose the number of removed key variables is n’ and the number
of maxterm equations reduced is 7 - n’, where ~ is the reduction factor. v = 0
means the removed secret variables will not influence the number of the maxterm
equations and the value of v depends on the choice of removed secret variables.
The problem now convert to decoding a [L — - n/,n — n'] code.

Higher Approximation Rate. Suppose a polynomial p containing n secret
variables and m public variables, the removed key set is R = {ki,, kiy, ..., ki, },
where 1 < i; < n, 1 < ¢ < r. The approximation rate between p and p
after removing variables in R is defined as A(p,p)|r = €/2™™" = 1/2 + o,
where e is the number of the equal evaluations and o (0 < o < 1/2)! is the
bias factor. In reality, there might be more than one leakage function. Suppose
P = {p1,p2, ..., pu } are all the associated leakage functions and the corresponding
removed key variable sets are Ri, Ry, ..., R, respectively?, the average approxi-
mation rate is defined as

q- Sy Alpe, )| R, .
u

(2)

The candidate key variables to remove should be those with maximum A. Note
that this process can also be finished in the off-line phase, i.e., all the removed
key variables are set to 0 for the evaluation of p.

3.2 A New Variant of Cube Attack

The main idea is to increase the number of maxterm equations by choosing
the static public variables, which are those variables that are not part of the
cube variables. In the traditional applications of cube attacks and cube testers
[1,2,8], these static variables will be set to constant values. We find that multiple

! For the case of 1/2 — o, convert it to 1/2 + o by adding 1 to the evaluation of p
Ry = (kb kY Ry = 6B RE )

31 0 Vig 9 i3 0 NVig o Vi,
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maxterm equations can be derived for each maxterm by choosing static variables.
In Example 1 of Sect.2, the maxterm equation for the maxterm t; = wovs is
Ps(r)y = k1 + k2 +v1, where vy is a static variable. If we set v; = 0, then we can
derive a maxterm equation ki + ko. Similarly, if we set v; = 1, another variant
maxterm equation ki + ko + 1 can be derived. Then, we have the following
theorem (please refer to Appendix A for the details of the proof).

Theorem 1. For the mazterm equation psy of mazterm tr, the number of
variant mazterm equations which can be derived is at most 2™~ ¢ and each can
be classified into the following two types.

1. pgpy + €, where C € {0,1}. (Type 1)
2. pg(l) +Co+ Cikn, + Cokpy + ... + Crky,., where C; € {0,1}, \Vi_; C; # 0 and
Cy represents a constant term. (Type II)

pg(l) is the equation of ps(ry when we set all static variables to 0.

The previous Example 1 of Sect. 2 describes the scenario of Type I. The following
example shows the scenario of Type II.

Ezxample 2. Suppose a polynomial p = vi1vsky 4+ v1v9v3ks 4+ v3vgkikoks + vive =
v1vg - (k1 + vska + 1) + vsvski koks, then t; = vivy with T = {1,2} is a maxterm,
Ps(r) = k1 + vskz + 1 is the maxterm equation and pgm =k + 1.

The static variables is thus {vs,v4}. If we choose v3 = 1, then a variant of
maxterm equation appears as k1 + ko +1 = pg(l) + ko, which fits into Type II.

In the traditional cube attack, most of these variant maxterm equations are
trivial and make no contribution to the key recovery. However, in our model,
these variants can be treated as redundant information, which are beneficial to
the decoding algorithm. For a linear code considering polynomial approximation
[L —~-n',n —n'], the total number of maxterm equations can be increased
by a factor of E. Now the problem of key recovery is converted to decoding a
(L —~-n)- E,n—n'] linear code, where 1 < E < 2m~<,

4 Error Probability Evaluation

By utilizing ML-decoding, we derive a new bound for error-tolerant rate in Corol-
lary 1 (Please refer to Appendix B for the details of the proof).

Corollary 1. To ensure 50 % success probability of decoding a [L*,n*] code to
retrieve the key, the error probability q of each measurement should satisfy

where n* =n—n', L* =(L—~-n/)-E, 1 < E <24 and t = 2.
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If n = 0 and E = 1, it reduces to the original ET-SCCA. The cost for the
polynomial approximation is that the removed key variables will add more noise
to those associated maxterm equations, but this kind of noise can be ignored if
we only remove a few key variables and keep the number of maxterm equations
influenced as little as possible. Moveover, the rest of the n’ key variables removed
can be exhaustively searched. The cost for choosing static public variables is that
the number of measurements will increase accordingly.

Suppose L = 1000, then the error probabilities under different number of
removed key variables n’ = 0,10, 30 with v = 1 and F = 1 are depicted in Fig. 1.

n'=0 - — n'=10 n'=30 [ (n',B)=(10,1) — — (n",E)=(10,256) (n',E)=(10,1024)]

0149

0.10

0.06-

Error probability
Error probability

0.04- N 010

2 i 3 s 0 - 2 3 . 5 o 2
Average cube size Average cube size

Fig. 1. Error probability ¢ as a func- Fig. 2. Error probability ¢ as a func-
tion of d (Given n’ = 0,10,30, v = 1, tion of d (Given n’ = 10, v = 1,
E =1 and L = 1000) E =1,256,1024 and L = 1000)

Figure 1 shows that the error probability gradually increased with the growth
of n/. By applying the new variant of cube attack with F = 1,256 and 1024,
shown in Fig. 2, which demonstrates that the error probability increased with
the growth of E. Similar results can also be obtained if we choose other size of
L. These results demonstrate that the error probability can be further improved
under the same noise channel and utilizing the same decoding algorithm.

5 Simulations on PRESENT

To compare our model with the original ET-SCCA in [19], we will apply the
model to PRESENT-80, a standardized round based lightweight block cipher
[5]. We assume PRESENT cipher is implemented on a 8-bit processor. Under
Hamming weight leakage model, the attacker exploits the Hamming weight leak-
age containing noise when the state variables are loaded from memory to ALU.

5.1 Off-Line Phase

We enumerate all the small candidate cubes, each size is at most 2. The time
complexity is thus P = (%')-2+(5')-22 = 2!3 encryptions. The leakage function is
the LSB (least significant bit) of the Hamming weight of the state byte after the
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first round. There are altogether 8 state bytes bytey, bytes, ..., bytes, correspond-
ing to 8 leakage functions. We can derive 304 maxterm equations containing 64
key variables (Appendix D) and the average cube size is d = 1.9. Compared with
the special cube searching strategy in the original ET-SCCA [19], the process of
off-line phase in our model requires no knowledge of the internal round function.

Now we need to figure out which key variables should be removed according
to the distribution of key variables in all the maxterm equations. For the leakage
function of byte; (or bytes), there are only 16 maxterm equations (Tables 9,10
Appendix D), each of which only contains a single key variable, it is thus hard to
decide which key variables should be removed. For the leakage function of bytes,
considering those maxterm equations containing {ki7, ks, k19, k20}, removing
k17 will lead to 3 maxterm equations (corresponding to maxterm {2,3}, {2,4}
and {3, 4} respectively) become trivial and removing kg will lead to 2 maxterm
equations (corresponding to maxterm {1,2} and {1, 3} respectively) reduced for
the leakage function of bytes. Removing kig or k19 is a good choice since it only
lead to one maxterm equation (corresponding to maxterm {3} or {2}) reduced
for the leakage function of byte; and it will not affect other state bytes. We choose
k1g as a representative variable. Similarly, we can also derive other representative
variables kos, kog, k30, k34, k3s, k42, k4g from other ranges for the leakage function
of bytes. All the candidate key variables are summarized in Table 2.

Table 2. Candidate key variables for removing

State byte | Candidate key variables

bytes, byter | k1s, ka2, k2s, k30, k34, k3s, ka2, kas

bytes, bytes | kso, ksa, kss, ke2, kes, k70, k74, k7s

These variables will not lead to any reduction of the maxterm equations for
both bytes and byteg, each only lead to one reduction of the maxterm equations
for byte; or bytes. Therefore, n' € [0,16] and the reduction factor v = 1.

5.2 Polynomial Approximation for PRESENT-80

Now we need to select the optimal combinations of these candidates that can
maximize the approximation rate. We enumerate all the possible combinations
and calculate the average approximation rate according to equation (2). The
optimal combinations for each |R| € [1, 8] are listed in the following table.

From Table 3, we can see that the value of o decreases with the growth of
|R|. We will not consider those candidate key variables set with |R| > 8, since
the bias ¢ becomes trivial and more removed key variables will add more noise
to the evaluations of those associated maxterm equations.
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Table 3. Optimal combinations

R o R o
{kso} 0.267 | {k1s, ka2, ke, ka2, kso } 0.162
{ka6, kra} 0.263 | {ka2, k5o, ksa, kss, ke, k74 } 0.154

{ksa, kss, ks } 0.207 | {k22, kso, ksa, kss, ke, k7o, k7a } 0.152
{k1s, kee, k70, k7s} | 0.176 | {k1s, k26, k30, k34, kas, ka2, kae, ksa} | 0.148

5.3 On-Line Phase

From the previous analysis, we know that n’ = |R| and v = 1. The key recovery
problem is now equivalent to decoding a [L — n’,n — n/] linear code.

For the sake of comparison, grouping strategy and list decoding are also uti-
lized in the model as in [19]. More precisely, all the key variables are divided
into 4 groups G1,Ge,Gs and G4 with several overlapping bits. ML-decoding is
applied in each group as a direct application of the ML-decoding has a time com-
plexity of 264=1" Ty increase the success probability, we save a candidate list of T’
closest solutions for each group. The configurations with R = {kis, kes, k70, k7s }
are listed in the following Table 4.

Table 4. Groups with R = {]{218, kes, k7o, k78}

Group | [L, n] Key bits Owerlapping bits

Gi  |[113,23] | [ki7, k1o, ..., kao] | & with G2

Ga | [114,24] | [kss, ksa, ..., kss] | 8 with G, 8 with G
[
[

Gg 94 19} [k49, k)so, ceny k’ﬁg] 8 With GQ, 8 With G4
Gy 92, 17} [k‘sl, ko2, ... kso] 8 with G3

We have simulated the decoding algorithm for 100 runs with 7' = 200. For
each run, we randomly generate a key and construct the linear code in each
group. The noise was simulated by a random binary number generator according
to the crossover probability p (e.g., suppose ko = 1,k; = 0 and there is a
maxterm equation 1+ kg + k1 = 0, the value 0 will flip to 1 with probability p
and remain unchanged with probability 1—p). We have conducted the simulation
for 10 times and the average number of successful decoding out of a batch of 100
runs are recorded. The comparison results are shown in Fig. 3, which indicates
that under the same success probability, decoding with removing 4 key variables
can tolerate more noise. The comparisons with various size of R are summarized
in Fig. 4, which demonstrates that under the same success probability, more noise
can be tolerated with the growth of |R|.
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Fig.3. Comparison results of list
decoding

Fig. 4. Comparison results of list
decoding with various size of R

p is the crossover probability for each evaluation of the maxterm equation.
Since p = 1/2 — 21yt t = 2% and 1 — ¢ = 1/2 + p, the error probability ¢ for
each measurement are listed in Table 5.

Table 5. g with various R under the decoding success probability of 50 %

|R| | p q |R| p q
0.428 0.191 |6 | 0.459 | 0.232
0.439 1 0.204 |8 | 0.467]0.247
0.447 | 0.214

The whole attack contains two phases, the first phase is the decoding in each
group. The results are the candidate lists. Denote t; as the time complexity of
decoding in group G;, 1 as the number of the groups and n; as the code dimension
in G;, the time complexity is thus >, ¢;, where ¢; = 2" key trials. The second
is the verification phase. Since each candidate only contains 64 — n’ master key
variables, we need to verify it by combining the removed n’ key variables and
the rest of 16 master key bits, using the known plaintext/ciphertext pairs. The
time complexity is thus V(T) = T" - 2"l+16/2” encryptions®, where 2" is the
reduction factor related to the number of overlapping bits. Therefore, the attack
complexity is bounded by maz{ Y7, t;, T" - 2" +16/27 1. The attack results
with various R on PRESENT are given in Table 6.

From Table 6, we can see that the model can tolerate more errors if more
candidate key variables are removed. The growth of the key variables removed
will lead to the increase of the time complexity in the verification phase and will
add more noise due to the polynomial approximation. Therefore, R should be
carefully chosen so that the error-tolerant rate can be optimal while keeping the
time complexity practical.

3 The verification complexity in [19] is actually incorrect. When 16 bits of the key are
missing, they can be exhaustively searched (in time complexity of 2'9).
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Table 6. Simulations by utilizing polynomial approximation

Size of | Time | Data Reduction | Error
R (measurements) | factor r | probability
0 225-1 11152 24 19.1%
2 2247 11148 24 20.4 %
4 2276 | 1144 23 21.4%
6 231-6 11140 21 23.2%
8 2316 11136 23 24.7%

The decoding success probability is about 50 %.

5.4 Applying the New Variant of Cube Attack to the On-Line
Phase

In this section, we will show that the error-tolerant rate can be further improved
by choosing static public variables. The key recovery problem is now converted
to decoding a [(L —~v-n') - E,n—n'] linear code, where 1 < E < 2™~ 9 represents
the size of the redundant maxterm equations.

For PRESENT-80, m = 64 and d ~ 2, then 1 < E < 262 All the complexity
remain unaltered except for the data complexity. Deriving more redundant max-
term equations will lead to higher measurements. Suppose n’ = 4, the simulation
results under various E are summarized in Table 7.

Table 7. Simulations by choosing static variables

E | Data (measurements) | Total size of L | Error probability
1 |2102 304 21.4%
20 | o162 19456 29.5%
28 | 9182 77824 34.1%
210 | 9202 311296 38.6 %
ol | 9212 622592 40.5%

The decoding success probability is about 50 %.
The time complexity is 227-% encryptions (verification phase).
R = {kis, kes, kv0, kvs}.

From Table 7, it is shown that the error-tolerant rate increased with the
growth of the E. It can be increased closely to 50 % on the condition that we
can obtain more measurements, which means that our model can still work even
if the measurement contains heavy noise.
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6 Comparison and Discussions

6.1 ET-SCCA Comparisons

Compared with the original ET-SCCA [19], the error-tolerant level of the new
ET-SCCA is improved significantly by utilizing the polynomial approximation
and applying the new variant of cube attack. It is more flexible, since the attacker
can choose appropriate size of E according to his ability (e.g., accuracy of the
measurements). The comparison results are summarized in Table 8.

Table 8. Comparison between the original ET-SCCA and our model

Time complezity | Data (measurements) | Error probability | Reference
2346 2102 19.1% [19]

231.6 9101 24.7% this paper
9276 9212 40.5% this paper

The success probability is about 50 % for both models.

6.2 Motivation of the New Variant of Cube Attack

The motivation of the new variant of cube attack comes from the dynamic cube
attack [7]. The difference is that dynamic cube attacks transform some of the
static public variables to dynamic variables and each one of these dynamic vari-
ables is assigned a function that depends on some of the cube variables and some
expressions of secret variables. These functions are carefully chosen usually to
zero some state bits to simplify the expression and amplify the bias of the cube
tester. It requires a more complex analysis of the internal structure of the cipher.
Moveover, the main purpose of dynamic cube attack is to improve the standard
cube testers and construct a more efficient distinguisher, then filtering right key
using this distinguisher. While the new variant (also mentioned in [15]) applied
in this paper is to derive more redundant maxterm equations to facilitate the
decoding process, which requires no knowledge of the round function.

6.3 About the Definition of Maxterm Equation

Recall the formal definition of maxterm equation in [8]. The maxterm equation
ps(r) of a maxterm ¢ satisfies deg(pg(r)) = 1, which holds whenever static vari-
ables are Os or 1s. In most applications, e.g., Trivium, all the maxterm equations
are derived when they are set to 0s. However, some researchers [3] verified all
the maxterm equations derived from Trivium [8] by chosen the static variables.
Among 1000 runs, each of which a random IV was chosen, almost all the max-
term equations pass through a linear test with probability of about 50 %, i.e.,
deg(ps(ry)) = 1 cannot hold for half of the runs. All these will have a negligible
influence to our simulation on PRESENT), since the number of variant maxterm
equations (i.e., E) is low and we can always get enough maxterm equations by
choosing the static variables.
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6.4 Attacking Implementations with Masking

Masking is a widely used countermeasure against side-channel attacks. The prin-
ciple is to randomly split every sensitive variable (e.g., variables involving secret
keys) occurring in the computation into d+ 1 shares, where d is called the mask-
ing order and plays the role of a security parameter. Suppose a state byte S is
split into d + 1 random shares Sy, St, ..., S4, satisfying So & S1 B ... Sy = S
and the computations are on the masked data. Suppose the attacker observe
the value of each share containing noise as Sy @ eg, S1 D e1,...,54 D eq, where e;
is the observation noise. By summing all these values up, S @ > ;_,e; can be
derived. Compared with an implementation without masking, the only influence
to the ET-SCCA is that the observation noise for a masking implementation is
relatively higher, which is exponentially increased with the growth of the mask-
ing order d (according to piling-up lemma). However, in reality, d is small since
almost all the current masking schemes suffered from the efficiency problems
when d becomes bigger. Therefore, we believe that our model can still be avail-
able to a implementation with masking.

7 Conclusion and Open Problems

In this paper, we have revisited the error-tolerant side-channel cube attack
and proposed a more robust model. By appropriately utilizing the polynomial
approximation technique, the error-tolerant rate can be improved compared to
the original ET-SCCA. We also presented an efficient way of finding the key
variables that should be removed, by defining the average approximation rate.
Moreover, a new variant of cube attack was proposed inspired by the idea of
dynamic cube attack. The error-tolerant rate has been refined. Both theoretical
analysis and simulation results indicated that the improved model is more flex-
ible, exploiting measurements with heavy noise interference, which solves one
of the open problems listed in [19]. The simulation results on PRESENT show
that given about 22!'2 measurements, each with an error probability of 40.5 %,
it achieves 50 % success probability of the key recovery. The error-tolerant level
can be enhanced further if the attacker can obtain more measurements. Hence,
we believe these results have both a theoretical and practical relevance.

A  Proof of Theorem 1

Proof. The fact that we can derive at most 2™~¢ variant maxterm equations
is obvious, since the number of static public variables is m — d. The master
multivariate polynomial p can be represented as p(ki, ..., kn,v1, ..., 0m) = tr -
ps(ry + q(k1, ..., kn, 01, ..., Up). Since t; is a maxterm, then the degree of pg(p
in secret variables is deg(ps(j)) = 1. Then pg(;) can be represented as pg) =
C + Cy + Ciky + Coka + ... + Cpky,, where C € {0,1} is a constant and Cj,
0 < < n contains only static public variables.
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Since deg(ps(r)) = 1, then V7, Ci # 0, which means that there is at least
one key variables k; with C; = 1. Suppose the set of key variables with all their
coefficients equal to 1 is K = {k;,, ki,,..., ki, } and each C;, = 1,1 <t < u.
By setting all the static public variables to 0, then pg(l) =C+ Z;ﬁ“:il k;. The
variant maxterm equations by choosing those static public variables can thus be
represented as

P/S(I) =psuy +Co+ Z Cjk; (4)
3@ {i1,02sein}

Then, if the chosen static public variables make all the C; = 0, where 1 < j <n
and j ¢ {i1,42,...,9,}, then equation (4) is the Type I variant. Inversely, if the
chosen static public variables make that there is at least one C; # 0, where
1<j<nandj¢ {i,i,..., iy}, the equation (4) is the Type II variant. |

B Proof of Corollary 1

Proof. The key recovery problem is now converted to decoding a [(L —~-n’) -
E,n — n'] linear code, where 1 < E < 2™~4. Suppose L* = (L —v-n') - E
and n* = n — n/. Recall that the error probability p for each evaluation of the
maxterm equation is p = 1/2 — e. The capacity of BSC can be approximated as
C(p) ~ €2 -2/(In(2)). Simulations [16] show that the critical length L* > 0.35 -
n*-e~2 provides the probability of successful decoding close to 1/2. Thus we get
£ > /2350 Since ¢ = 2/~ uf holds, then we can derive y > (23507 )77 . 271,

1 1

From ¢ =1/2 — p, wehaveqﬁ%-(l—(o'ggi;"*)ﬁﬂf). O

C ML-decoding

Siegenthaler [16] firstly proposed the use of ML-decoding in cryptanalysis of a
stream cipher by exhaustively searching through all the codewords of [L, n] code.
The complexity is about O(2"-n/C(p)). Let A = (a!)pxn (1 <i < L,1 <j <n)
be the generator matrix of (1) and A; denote the i-th row vector of A. The aim
of the decoding is to find the closet codeword (b1,bs,...,br,) to the received
vector (z1, 22, ..., 2,), and decode the key variables k = (k1, k2, ..., k) such that
b, = k-AiT, where T' denotes the matrix transpose, i.e., find such k that minimizes
D(k) = Ele(zi P b;). It is known that ML-decoding is optimal since it has the
smallest error probability among all decoding algorithms.
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D Maxterm Equations for All the 8 Leakage Functions

Table 9. Maxterms and maxterm Table 10. Maxterms and maxterm
equations equations
Leakage function of byte Leakage function of byle:
Cube Mazterm Cube Magzterm Cube Mazterm Cube Mazterm
Indezes equations indexes equations Indeges equations indewes equations
127 %19 37 T T kis 1,2 1+ k20 1,3 %20
167 723 7T T+ k22 1,1 1+ k18 + k10 2,4 11 k17
10 k27 11 1+ k26 3.4 k17 5.6 14 k24
14 k31 15 1+ k30 ;; - J’:Z,jzl ;: 1+ ki;* k25
18 k35 19 1 79,107 T+ k28 19,11} 728
22 23 1 19,12} 1T k26 F k27 10,12 T+ k25
26 27 1 11,12 %25 13, 14 1t k32
30 31 1 13,15 k32 13,16 1+ k30 + k31
Teakage function of bytes 1‘7‘ ig 1 i 29 13 12 :2;2
5 3 T%E , L 3
g; :;é g; i = 2;2 17,20 T+ k34 + k35 | {18,20 T+ k33
it 19, 20 %33 21,22 1+ k40
42 k59 43 1 21, 23 %40 21, 24 1+ k38 + k39
46 k63 47 £l 22,24 1t k37 23,24 ®37
50 k67 51 1 25, 26 1+ kad %Ad
54 k71 55 1 25,28 1+ k42 + k43 1+ k41
58 k75 59 1 27,28 Al 29, 30 1+ k48
62 k79 63 1+ k78 [{29,31 k48 29, 32 1+ k46 + kA7
Teakage Function of byie 30,32 1t k45 31,32 k45
F19 + K20 1.3 718 T 720 Teakage function of byte
k18 + k19 2,3 k17 33,34 1+ k52 33,35 k52
T+ k17 3,4 T+ k17 Jf,d{: 1+ k50 4+ k51 ?34.‘30 l+k‘f${
k23 + k24 5,7 k22 + k24 | 185,36 k49 37,38 14 k56
= = 1 37,39 %56 37, 40 1+ kb4 | k55
k22 + k23 6,7 k21 38, 40 T+ k53 39, 40 %53
1+ k21 7.8 1+ k21 a1, 42 1+ k60 41,43 %60
k27 + k28 {9,11} k26 + k28 a1, 44 1+ k58 + k59 42, 44 1+ k57
k26 + k27 10,11 k25 43, 44 k57 45, 46 1+ k64
1+ k25 11,12 1+ k25 15,47 k64 15, 48 T 1 k62 F k63
k31 | k32 13,15 k30 + k32 16, 48 1+ k61 47,48 R61
%30 + k31 14,15 %29 19, 50 T+ k68 19,51 768
T+ k29 15,16 TF k29 19,52 1+ k66 + k67 50, 52 1+ k65
%35 + k36 17,19 k34 + k36 51,52 k65 53,54 14 k72
k34 + k35 18, 19 %33 ij f; : ffsg ff‘ fg 1+ k:g; k71
: 54, 5 G 55,5 g
1+ k33 19, 20 1+ k33 57, 58 1+ k76 57,59 k76
k39 + k40 21,23 k38 + k40 57,60 T+ k74 + k75 58, 60 1t k73
k38 4 k39 22,23 k37 59,60 %73 61,62 1+ k80
1+ k37 23,24 1+ k37 61, 63 %80 61, 64 1+ k78 + k79
k43 + k44 25, 27 k42 + k44 62, 64 1+ k77 63, 64 KTT
k42 + k43 26, 27 k41 Teakage function of byte
1+ k4l 27, 28 1+ k4l F19 + k20 1.3 F18 F k20
k47 | k48 29, 31 k46 + k48 SEEwsT) 3 T RiT
. k46 + kAT 30, 31 k45 R BN T17
30, 32 1+ k45 31, 32 1+ k45 %23 + k24 5,7 k22 + k24
Leakage function of bytey ’”’22;;1‘"23 S'; 1 tz’”f‘
kﬁl + k52 33,35 k50 + k52 k27 + k28 {9, 11} %26 + k28
k50 + k51 34, 35 k49 k26 + k27 10,11 1+ k25
1+ k49 35, 36 1+ k49 735 VST 535
5 + k56 37,39 k54 + k56 k31 + k32 13,15 k30 + k32
k54 + k55 38, 39 k53 k30 + k31 14,15 1§ k29
1+ k53 39, 40 1+ k53 %29 15,16 %29
59 1 k60 41,43 %58 T k60 %35 + k36 17,10 %34 f k36
%58 + k59 13,43 "5T %34 + k35 18,10 1§ k33
1+ k57 43, 44 1+ k57 k33 19, 20 k33
k63 + k64 45,47 k62 + k64 k39 + k40 21,23 k38 + k40
%62 | k63 16, 47 %61 “it:” 22, fj 1 J}:t;‘;‘”
L+ k6L 47, 48 1+ k61 K43 + ka4 25, 27 k42 + k44
k67 + k68 49,51 %66 | k68 RN 56 o7 T 71
k66 + k67 50, 51 k65 a1 5738 Ta1
1+ k65 51,52 1+ k65 k4T + k48 29,31 k46 + k48
k71T k72 53, 55 k70 I k72 FA6 kAT 30,51 T k45
k70 + k71 54, 55 %69 k45 31,32 k45
1+ k69 55, 56 1+ k69 Toakage function of byte
k75 + k76 57,59 k74 + k76 33, 34 k51 + k52 33, 35 k50 + k52
k74 + k75 58, 59 kT3 33, 36 k50 + k51 34, 35 T+ k49
1+ k73 59, 60 1+ k73 34, 36 749 35, 36 749
k79 + k80 61,63 k78 + k80 37, 38 k55 + k56 37,39 k54 + k56
%78 + k79 62, 63 Yéd 37, 40 k54 + k55 38, 39 1+ k53
1+ k77 63, 64 1+ k77 38, 40 k53 39, 40 k53
a1, 42 %59 + k60 a1, 43 %58 + k60
i1, 44 k58 + k59 12,43 T+ ko7
12,44 K57 13,44 K57
15, 46 %63 + k64 45, 47 %62 + k64
15,48 k62 + k63 16,47 T+ k61
46, 48 k61 47,48 k61
19, 50 %67 + k68 19,51 %66 + k68
10,52 k66 + k67 50, 51 T+ k65
50, %65 51,52 %65
53, 54 k71 + k72 53, 55 k70 + k72
53, 56 K70 + k71 54,55 T+ k69
54,56 769 55,56 769
57,58 k75 4+ k76 57,59 k74 + k76
57, 60 K74 + k75 58, 50 T+ k73
58, 60 k73 59, 60 k73
61, 62 k79 + k80 61, 63 k78 + k80
61,64 ®78 + k79 62,63 T+ k77
62, 64 id 63, 64 i
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