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Abstract. This work proposes the use of functional data analysis to
represent 3D faces for recognition tasks. This approach allows exploi-
ting and studying characteristics of the continuous nature of this type of
data. The basic idea of our proposal is to approximate the 3D face sur-
face through an expansion of a basis functions set. These functions are
used for a global representation of the entire face, and a local representa-
tion, where pre-selected face regions are used to construct multiple local
representations. In both cases, the functions are fitted to the 3D data
by means of the least squares method. Univariate attribute selection is
finally applied to reduce the dimensionality of the new representation.
The experiments prove the validity of the proposed approach, showing
competitive results with respect to the state of the art solutions. More-
over, the dimensionality of the data is considerably reduced with respect
to the original size, which is one of the goals of using this approach.

Keywords: 3D face recognition, functional data analysis.

1 Introduction

Biometrics solutions based on face recognition have been studied for a long
time using 2D still images and videos. More recently, face recognition based on
3D scans has been experimented as an alternative or complementary approach,
which can improve recognition especially in the presence of facial expressions,
illumination and pose changes, or spoofing attacks [3,13]. In order to perform
recognition by meas of scans matching, an attractive solution is represented
by functional data analysis [4]. This approach has some potential advantages:
the functional representation is capable of capturing the continuous behavior
and the dynamic aspects of the original data; the data can be represented as
a whole; the most significant features of the function, such as monotony, differ-
entiability and smoothness can be analyzed. An additional interesting property
of this representation is that a function not only provides the coordinates of
all the points in the domain, but also expresses the relationship between them,
an aspect that is commonly lost in vector based representations. However, find-
ing the functions that better approximate the discrete data is a key challenge.
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The use of functional basis expansion is a common way to approach the prob-
lem, but the selection of the basis set and the fitting, including the selection
of the coefficients must be performed in order to obtain a discriminative repre-
sentation with a small dimension. On the other hand, determining the position
of the origin and the coordinate axes with respect to which the representation
should be constructed, has a great influence on the accuracy of the functional
representation.

Based on these premises, in this paper we propose the use of functional data
analysis for representing 3D faces for recognition purposes. To this end, 3D face
scans are first aligned to a common reference model, so as to normalize their
pose. Then, the cloud of points of a scan is regarded as providing samples of a
surface modeled by a function over a spatial domain. Based on the characteristics
of the data and the results of state of the art studies [1], Bivariate Splines [9] on a
rectangular domain, and Zernike polynomials [12] on a circular domain, together
with their local counterparts on multi-rectangles and annular supports [10], have
been considered as basis functions to model this type of data. In all the cases, the
functions are fitted to the 3D data by using the least squares method. Attribute
selection is finally performed to select the most discriminative coefficients with
minimal dimension. The schema in Fig. 1 summarizes the proposed solution.

The paper is organized as follows: Preprocessing of 3D face scans and selection
of basis functions are described in Section 2. The least squares fitting method for
computing the coefficients of the 3D face representation; an attribute selection
for reducing the number of coefficients, and their use for functional matching
are proposed in Section 3. The experiments and a discussion of the results are
reported in Section 4. Finally, conclusions and future work are mentioned.
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Fig. 1. The proposed solution for 3D face recognition based on functional data analysis

2 Preprocessing and Basis Selection

Preprocessing, including position and orientation normalization is an important
step for any 3D face analysis algorithm [13]. In our case, PCA is first used in
order to obtain a rough alignment of the principal axis of the face to a common
reference system; then, the nose tip is detected and the points of the mesh that
fall within a sphere of radius 100mm centered on it are retained. Finally, the
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cropped region of the face is used to perform fine alignment to a reference model
by using the ICP algorithm. A further step, including hole filling and smoothing
is performed. The resulting face surface is regarded as a function f directed in
the positive z axis, with the positive direction pointing backwards (see Fig. 1),
and defined on a 2D support spanned by either Cartesian or Polar coordinates.

In order to derive a functional representation of the 3D surface, a 2D knot
control grid for all models is defined. In this work, we consider: a sampling grid
in Cartesian coordinates (see Fig. 2(a)), which allows the function f(x, y) be
represented as a linear combination of basis functions on a (multi-)rectangular
domain; a circular and an annular grid (see Fig. 2(b)), which require a functional
representation f(ρ, θ) in polar coordinates. According to this, for a surface de-
fined on a 2D support, the general equations for the functional representation in
Cartesian and polar coordinates are, respectively:

f(x, y) =

K∑

k=1

ckbk(x, y) , f(ρ, θ) =

K∑

k=1

ckbk(ρ, θ) , (1)

where {bk(x, y)} and {bk(ρ, θ)} denote the sets of the K basis functions, and
{ck} represent the coefficients of the expansion. In our work, three sets of basis
functions were selected: the Bivariate Splines for the rectangular domain (global
and local grid); the circular Zernike polynomials for the global representation
on the circular domain; and the annular Zernike polynomials for the local rep-
resentation on the annular domain.

(a) (b)

Fig. 2. (a) Global and local rectangular control grid in Cartesian coordinates; (b)
Global circular and local annular control grid in polar coordinates

The Bivariate Splines – The B-spline surfaces are a generalization of the
univariate B-spline curves, with the simplest generalization obtained by a tensor
product of univariate B-splines [15]. The main advantage of B-splines in rep-
resenting surfaces of high local variability is their intrinsic zonal character [1].
The B-splines are polynomial curves of degree k−1 along each interval [tj , tj+1];
products of such functions are polynomial surfaces of degree (k1 − 1) + (k2 − 1)
over each rectangular domain [si, si+1][tj , tj+1] in R

2. The surface is given by:

f(x, y) =
n∑

i=1

m∑

j=1

cijφi,k(x)λj,l(y) , (2)

where ci,j are the control points, acting as sub-area control parameters, and
φi(x) and λj(y) are the i-th and j-th B-Spline of degree k − 1 and l − 1 in the
x and y direction, respectively.
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The number of breakpoints NBPx (NBPy) in the interval, the degree of
the B-spline k − 1 (l − 1), and the level of smoothness at the limits of the
subintervals given by the continuity of the function and its derivatives μsx (μsy)
are parameters that the must be set. They have a decisive impact on the final
representation by splines. The following equation provides a relationship between
these parameters and the number of control points n+ 1, defined in Eq. 2 [1]:

n+ 1 = [

[NBPx]−2∑

s=1

k − μsx] + k . (3)

In our research, a value of k = l = 4 (cubic spline), not multiple control points,
and the uniform type of knot vector were used for both x and y directions.

The Circular and Annular Zernike Polynomials – The global represen-
tation by Zernike polynomials requires the coordinates to be normalized by the
radius, as these polynomials are orthogonal on the unit disk. The original domain
of radius R, given by the region of the face to be represented, is transformed so
as to obtain the normalized radial coordinate ρ = r/R, for each radius r. The
basis of circular Zernike polynomials is a tensor product of the Fourier basis in
the angular direction, and a special Jacobi polynomial in the radial direction:

Zm
n (ρ, θ) =

{
Nm

n R
|m|
n (ρ) cos (mθ) for m ≥ 0, 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π

−Nm
n R

|m|
n (ρ) sin (mθ) for m < 0, 0 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π

, (4)

being θ the azimuthal angle. For a given radial order or polynomial order n, the
azimuthal frequency or Fourier order m can only take values of −n,−n+2,−n+
4, . . . , n [12]. In Eq. (4), Nm

n is the normalization factor:

Nm
n =

√
2(n+ 1)

1 + δm0
, with δm0 =

{
1 if m = 0
0 if m �= 0

, (5)

and R
|m|
n (ρ) is the representation for the Jacobi polynomial:

R|m|
n (ρ) =

(n−|m|)/2∑

s=0

(−1)s(n−m)!ρ(n−2s)(1/s!)

[0.5(n + |m|)− s]! [0.5(n − |m|)− s]!
. (6)

The annular Zernike polynomials are derived from the circular Zernike polyno-
mials by the Gram-Schmidt orthogonalization process [10]. They maintain their
orthogonality, but in an annulus instead of a circle. The parameter ρ ∈ [0, 1], for
the radial coordinate, and θ ∈ [0, 2π] for the azimuthal component are the same,
whereas a new parameter ε is used to restrict the inner radius.

One of the main features of these bases is their orthogonality [1], which implies
total linear independence among each mode and the others. In the case of a
discrete domain, orthogonality is fulfilled only approximately. Due to the fact
that Zernike polynomials are orthonormal in the unit circle, then the operations
(e.g., inner products and norms) between functions expressed on this basis reduce
to operations between their corresponding coefficients.
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Determination of the Number of Coefficients – Once the basis set for
each domain has been selected, the most suitable number of basis functions for
the representation must be determined. A large number of terms may result in
a more accurate representation of the surface, but this in turn increases the size
of the description. We used the Bootstrap method for determining the number
of coefficients [6]. This algorithm randomly reassigns the observations, and re-
computes the estimates where a distribution knowledge of the measurement and
modeling error is not needed. In the case of local representations, the bootstrap-
ping is performed separately for each sub-domain, so that a different number of
coefficients can be obtained for each region.

3 3D Face Functional Representation

Once the number of coefficients is determined, the surface is fitted by the least
square method, with SVD as the selected solution method. Although this method
has a high computational order (∼2mn2 + 11n3 flops, being n and m the ma-
trix dimensions), it can deal with rank deficiency and matrix singularity prob-
lems, providing a unique solution that makes this method more suitable than
the QR or the Cholesky decomposition. In the case of gridded data, the prob-
lem of approximating a surface is reduced to that of minimizing the square of
the difference between the obtained function fi,j and the original function data
(xi, yj , gi,j)

m1,m2

i=1,j=1 [9]:

min
f∈S1

⊗
S2

m1∑

i=1

m2∑

j=1

wiwj [f(xi, yj)− gi,j ]
2
, (7)

where wi, wj are positive weights, and S1, S2 are univariate spline spaces. The
minimization problem using the method of least squares can be decomposed
into a sequence of univariate interpolations, simplifying its solution [9]. Then,
the total number of weights is m1+m2, instead of the number of points m1×m2.
The first goal of doing so is to maintain an applicable dissimilarity between the
resulting models and the reference scans to allow their identification. Figure 3
shows an example of approximating a 3D face scan using the proposed approach.

(a) (b)

Fig. 3. 3D scan of a subject and its reconstructed models on the rectangular and
circular domains (both centered on the nose tip): (a) global/local bivariate splines (a
different area of the face is covered); (b) circular/annular Zernike polynomials
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Attribute Selection and Functional Matching – In order to reduce the
number of coefficients obtained in the representations, while maintaining their
discriminative power, an attribute selection approach has been used. In our
case, where attributes coincide with the coefficients of the functional represen-
tation, this method has the advantage that it does not transform the original
attributes, so that the original values of the coefficients of the function are main-
tained unchanged. This is particularly relevant for the functional case, since the
coefficients may provide a direct interpretation of the features of the face. In
this work, we use the strategy of the univariate selection and evaluation for
each feature (coefficient) as mentioned and formalized in [5]. The most success-
ful method used in our case for the selection of attributes was the Chi-Square
statistics. It evaluates the features individually by measuring their chi-squared
statistic with respect to the classes. Then, they are ranked according to the result
of the evaluation. After the feature selection, the matching step is performed.
Given a probe face P and a gallery face G, their distance can be computed as
in Eq. 8, where p and g are their corresponding functions, defined on a common
domain [a, b]× [c, d]. For the norm Ln, the following distance is used [7]:

d(p, g) =

(∫ b

a

∫ d

c

|p(x, y)− g(x, y)|n dxdy

)1/n

(8)

4 Experimental Results

The proposed 3D face recognition approach has been evaluated on the 2D/3D
Florence dataset [2], and the Gavab database [14]. These datasets include scans
acquired with different devices and show different challenges (i.e., non-frontal
pose, presence of hair, neck, shoulders). For each dataset, four different represen-
tations were constructed based on: global circular Zernike polynomials (GCZP)
on a circular domain covering the face; local annular Zernike polynomials (LAZP)
on two circular crowns, the innermost containing the nose region, the outermost
the lips, cheeks and eyes; global and local bivariate splines (GBVS and LBVS)
defined, respectively, on a rectangular domain covering the face, and on three
disjoint rectangular regions, the upper one containing the eyes and eyelashes,
the central the nose and cheekbones, the lower the lips and jaw. The Bootstrap
algorithm and attribute selection are used to determine the number of terms in
each case. A summary of these representations is given in Table 1 (refer also to
Fig. 2 and Fig. 3 to visualize the different domains).

Florence Dataset – The 3D part of the 2D/3D Florence face dataset [2] (UF-
3D), consists of high-resolution scans of 54 subjects (14 females and 40 males)
of Caucasian ethnicity, with age ranging from 20 to 60 years. Two 3D frontal
scans with neutral expression (N) have been acquired for each subject in the
same session, though some scan exhibits moderate facial expressions.
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Table 1. Summary of the representations used in the experiments. The pronasale has
been used as origin of the domain in all the cases.

function domain control-grid (mm) step

GCZP circular radial 60 1◦ angular / 1mm radial
LAZP annular 0÷ 30 / 30÷ 60 1◦ angular / 1mm radial
GBVS rectangular 64× 64 1mm
LBVS multi-rectangular (three) 24 × 64 1mm

Gavab Dataset – The Gavab database [14] comprises 3D facial scans with
large pose and expression variations, and noisy acquisitions. It includes scans of
61 adult Caucasian individuals (45 males and 16 females). For each individual,
we consider the two frontal scans with neutral expression (N), and the frontal
scans in which the person smiles (S), laughs (L), or shows a random gesture (G).

Results – In a first set of experiments, we modeled the face recognition prob-
lem as a classification task, using a k-NN classifier with Euclidean and Manhat-
tan distance. Results are reported in Table 2. For each variant of the proposed
approach, we reported the number of coefficients that resulted in the best per-
formance. As for the UF-3D, it can be observed that the two solutions based on
bivariate splines (GBVS and LBVS) using Manhattan distance, and the global
Zernike polynomials (GCZP) achieve 100% recognition. The same result cannot
be achieved by the local annular Zernike polynomials (LAZP). Considering the
Gavab dataset, which also includes expressive scans (we report results for N and
S), the approaches based on bivariate splines outperform both the methods based
on Zernike polynomials. Interestingly, the proposed method is able of achieving
high accuracy with a very small number of coefficients. In this respect, Zernike
polynomials achieve a more compact representation than B-splines.

Table 2. Results obtained using the best setting on the UF-3D and Gavab datasets

database method #coef. #sel. coef. variations RR (%)/dist.

UF-3D

GCZP 48 24 N 100 / Euc.
LAZP 64 44 N 93.6 / Euc.
GBVS 4096 48 N 100 / Manh.
LBVS 4608 20 N 100 / Manh.

Gavab

GCZP 48 32 N,S 95.6 / Manh.
LAZP 96 36 N,S 95.6 / Manh.
GBVS 4096 250 N,S 100 / Manh.
LBVS 4608 1000 N,S 100 / Manh.

To compare our approach with existing state of the art solutions, we performed
a face recognition experiment on the Gavab dataset by including one of the
neutral scans per subject in the gallery, and using all the other scans (neutral
and expressive) as probes. The obtained rank-1 recognition rates are reported in
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Table 3, where the best settings of Table 2 are used for our approach. It can be
observed, the two variants based on B-splines (GBVS and LBVS) outperform
the state of the art solutions for both the case of expressive and neutral scans.
The GCZP solution (i.e., we do not report the LAZP since it shows the lowest
accuracy in Table 2) is still competitive, although at a lower extent, but with the
clear advantage of using less coefficients and thus a more compact representation.

Table 3. Comparative evaluation on the Gavab dataset. Rank-1 RR is reported (best
results for each case are marked in bold).

Ours
[8] [11] [3] GBVS LBVS GCZP

Neutral 96.7 95.0 100 100 100 96.7
Expressive 93.3 72.0 94.5 94.9 95.1 81.6
Neutral + Expressive 94.7 77.8 95.9 96.2 96.3 85.4

5 Conclusions

In this paper, an original 3D face recognition approach based on functional data
analysis has been proposed. The basic idea of our approach is to consider the
3D face as a surface defined on a 2D support, and to approximate the surface
by a basis functions set expansion in both a global and local approach. Results
show that the studied basis functions, B-Splines and Zernike polynomials, are
suitable options for modeling this type of data. Selecting the most discriminative
coefficients of the basis expansion resulted in a compact representation that
allows a fast and effective recognition. Experiments conducted on two datasets
show promising results, also in comparison with state of the art solutions.

As future work, we will experiment the proposed approach on larger datasets
(e.g., FRGC v2 and Bosphorus), and extend it to manage more challenging
scenarios (e.g., 3D face scans with pose variations and missing parts).

References

1. Ares, M., Royo, S., Caum, J., Pizarro, C.: Comparison of B-spline and Zernike
fitting techniques in complex wavefront surfaces. In: Optical Measurement Systems
for Industrial Inspection IV, Munich, Germany (2005)

2. Bagdanov, A.D., Del Bimbo, A., Masi, I.: The Florence 2D/3D hybrid face dataset.
In: Proc J-HGBU 2011, Arizona, USA, pp. 79–80 (2011)

3. Drira, H., Ben Amor, B., Srivastava, A., Daoudi, M., Slama, R.: 3D face recognition
under expressions, occlusions, and pose variations. IEEE Trans. Pattern Analysis
and Machine Intelligence 35(9), 2270–2283 (2013)

4. Ferraty, F., Vieu, P.: Nonparametric Functional Data Analysis Theory and Prac-
tice. Springer (2006)

5. Harol, A., Lai, C., Pekalska, E., Duin, R.: Pairwise feature evaluation for construct-
ing reduced representations. Pattern Analysis and Applications 10, 58 (2007)

6. Iskander, D.R., Collins, M.J., Davis, B.: Optimal modeling of corneal surfaces with
zernike polynomials. IEEE Trans. Biomed. Eng. 48, 87–95 (2001)



826 D. Porro-Muñoz et al.
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