
Hybrid Parallel Cascade Classifier Training

for Object Detection

Eanes Torres-Pereira, Herman Martins-Gomes,
Andrey Eĺısio Monteiro-Brito, and João Marques de Carvalho

Universidade Federal de Campina Grande, Department of Systems and Computing
Av. Apŕıgio Veloso 882, 58429-900 Campina Grande-PB, Brazil

{eanes,hmg,andrey}@computacao.ufcg.edu.br,
carvalho@dee.ufcg.du.br

Abstract. A drawback of the Viola and Jones framework for object
detection in digital images is the large amount of time needed to train
the underlying cascade classifiers. In this paper, we propose a novel hy-
brid approach for parallelizing that framework. The approach employs
message passing among computers and multi-threading in the processor
cores, hence its hybrid nature. In contrast to related works, which dealt
with only parts the original framework, in this paper we considered the
complete framework. Besides, the set of weak classifiers obtained by our
parallel approach is identical to the one of a serial version. An experi-
mental evaluation on face detection focused on speedup and scalability
measures and has shown the improvements of the proposed approach
over a serial implementation of the original framework.

Keywords: Adaboost, parallelization, face detection.

1 Introduction

The framework proposed by Viola and Jones [1][2] has become a landmark in
the area of face detection and the majority of subsequent works were inspired
by that approach [3]. The framework’s main techniques are: boosted cascade of
weak classifiers, integral image representation, Haar features, and bootstrapping.
Approaches for training a face detection classifier (e.g. [4], [5], and [6]) that were
inspired by the original work by Viola and Jones [1][2] used some variation of
those techniques.

This paper is concerned with the problem of reducing time complexity during
cascade classifier training and, therefore, it does not deal with speeding up face
detection after training as in the works of Cho et al [7], Hefenbrock et al. [8], and
Harvey [9]. Within this context, we report a novel approach to parallelize the
framework of cascade classifier training, including sample creation, features and
classifier evaluation after training, and the boosting of classifiers. As it will be
clear in the next section, the related work focused mostly on the parallelization
of the boosting algorithm, whereas our approach employs hybrid techniques to
parallelize the entire framework. The remainder of this paper is organized as

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 810–817, 2014.
c© Springer International Publishing Switzerland 2014



Hybrid Parallel Cascade Classifier Training for Object Detection 811

follows. After the review of related work, the proposed hybrid parallelization
approach is presented in Section 3. An experimental evaluation is presented and
discussed in Section 4. The final section contains the conclusions.

2 Related Work

One possibility for the parallelization of the boosting process is to perform train-
ings using disjoint sets, as it was proposed by Lazarevic and Obradovic [10].
Three boosting possibilities were presented: parallel learning, distributed learn-
ing on homogeneous bases, and distributed learning on heterogeneous bases. In
all cases, weak classifiers are trained in each processor using subsets of all avail-
able data. However, there is no guarantee that the classifiers generated by the
parallel approach will be equivalent to the ones generated by the original method,
since the classifiers are trained using different image sets in each computer when
a distributed approach is employed.

Merler et al. [11] designed a parallel version of Adaboost that did not use
bootstrapping. Their focus was to improve the weight update dynamics. At each
training step, Adaboost performs a weight update that relies on the results of the
previous step. To parallelize the current weight update step, the training process
is split in two phases: (1) the algorithm is sequentially executed until a given
number of training steps is reached; and (2) the frequency of the asymptotic dis-
tribution of the weights is estimated, which makes the current step independent
of the previous ones. Therefore, it is possible to train model instances in parallel
and aggregate them in the traditional way at the end of the process. However,
the experimental analysis of that work did not take into account the disk access
time, an important factor that is ignored by all of the reviewed work.

Galtier et al. [12] considered the master-workers approach. At each training
cycle, each worker trains its weak classifiers with all of the training set. The
master then gets the best classifiers from each worker and selects the one with
the lowest error. This strategy is focused on the division of the total set of
features among slave processes. However, all the workers must read the entire
non-face training samples. As it will be explained in the next section, the image
loading stage may be very time consuming and may surpass the training stage
itself. Galtier et al. [12] did not mention the impact of image loading tasks.

Huang and Shi [13] distributed the task of searching for the best feature for
each weak classifier. Each machine in the distributed system returns the best
feature for the root node and the best among them is used for training. The au-
thors performed experiments to measure the processing speed. However, besides
not presenting the classifier performance rates, the number of training samples
employed was very low for proper classifier training within a face detection prob-
lem. They used 5, 646 face images and 13, 030 non-face images, while Jones and
Viola [4], years before, used more than 100 million non-face images.

Zeng et al. [14] parallelized the Adaboost algorithm using MPI, OpenMP, and
STM (Transactional Memory), following the master-only model. Training a face
classifier cascade was modeled as a learning problem using the Adaboost method



812 E. Torres-Pereira et al.

in order to evaluate their approach. The number of non-face training samples
was not aligned with traditional work in the face detection area (e.g. [1], [2],
and [6]). Training was performed using 64, 328 images of faces and only 43, 712
images of non-faces. Their results indicated that using a hybrid master-only
approach yields higher processing speed due to the reduction of inter-process
communication.

Among all the reviewed papers, Zeng et al. [14] parallelized a complete cas-
cade of classifiers trained using boosting. The remaining papers in this review
addressed the parallelization of only parts of the cascade training, or only the
boosting algorithms. Zeng et al. [14] performed a graphical analysis of speedup,
but did not consider scalability and efficiency. The only reviewed paper that
evaluated scalability and speedup is the one by Galtier et al. [12]. However,
their time measures were computed regarding only the classifier combination
loop. The authors presented two speedup graphs: one for execution times versus
the number of used processors, and another one for speedup measures versus
the number of processors. The time of the first graph decays exponentially, but
the speedup in the second graph increases almost linearly. Huang and Shi [13]
also presented an evaluation based on speedup. They proposed a distributed
architecture in which the programmer itself is responsible for dividing the tasks
into sequential or parallel parts. They presented the speedups for 4 situations
resulting from the combination of the number of processors (2 or 4) and number
of features employed (32 or 64). When 4 processors were used, the speedup was
2.66. There was no scalability evaluation.

3 Proposed Approach

The approach by Viola and Jones [1][2] is mainly based on the techniques of
boosting weak classifiers, and bootstrapping. To create weak classifiers, decision
trees with only a single node are trained. The Viola and Jones method, illustrated
in Figure 1, is composed of four main steps that are amenable to parallelization:
(1) data loading and classification procedures, (2) decision tree training, (3)
classification after the addition of each new weak classifier, (4) the definition of
the stage threshold.

Fig. 1. Viola and Jones approach and indication of modules prone to parallelization



Hybrid Parallel Cascade Classifier Training for Object Detection 813

In Figure 1 there are two main classification steps. The first one, correspond-
ing to module number 1, uses all classifiers from all trained stages. The second
classification step, corresponding to module 3, uses only the classifiers for the
stage that is currently being trained. Another part of the Viola and Jones method
that may be easily parallelized is the stage threshold definition, marked as mod-
ule 4. That definition is performed by classifying the face images, then choosing
the decision three threshold that achieves the previously determined minimum
hit rate. Finally, decision tree training (module 2) may also be parallelized. In
this process, all features for all images must be evaluated, which requires the
processing of a (number of images) × (number of features) matrix.

In this work, image samples are cropped only when they are needed for train-
ing. A total of 4, 365 images with varying resolutions were used for non-face
sample cropping, which is much more feasible than having to save millions of
samples onto disk. There are five variables that must be kept in memory: the
coordinates of the upper left corner of the sample, the displacement step, the
width, the height, and the crop scale. The available images are divided among
the cluster computers. To perform an uniform distribution of non-face images,
each computer must have stored in its local hard disk at least the set of images
allocated to that computer. It was not necessary to use any type of distributed
or network file system to share the negative sample images. The algorithm uses
the identification number of the processor in order to divide the set of available
images among the working processes.

The next step is the decision tree training, which requires a matrix containing
the features extracted from all training image samples. That matrix must be
equally divided among the computers. Moreover, a further division is required
to feed the multiple processor cores. Decision tree training is the central part of
the proposed approach. Message passing is used for communication among the
various computers, whereas multithreading is used for communication among
the multiple processing cores of a given computer.

In the Viola and Jones [1] method for cascade classifier training there are two
processes in which classification occurs. In the first situation, during loading,
each training image is classified. Initially, in the first stage, all training images
(positives and negatives) are classified as positive. From the second stage on-
wards there will be a trained classifier. At every stage, the matrix of extracted
image features is updated. Only images incorrectly classified are used for feature
extraction, and those features are assigned to the matrix. This way, the harder
(more difficult for the classifier) images are used for feature extraction and are
assigned to the matrix.

As the loading of images is parallelized, subsequent classification also occurs in
the same computer where the image is being loaded. This implies that the weak
classifiers must be sent to all computers at the end of each stage training. After
training each weak classifier, the ensemble of weak classifiers must be evaluated,
this situation is explained next. In the proposed approach, all computers must
have copies of the weak classifiers.



814 E. Torres-Pereira et al.

The construction of decision trees starts by selecting an attribute to be the
root node. Then the set of values are split up into subsets. The next problem is:
how to select the attribute to be the root. A common approach is to measure
the purity of the attributes and to choose the purest one [15]. When training
decision trees with thousands of images and hundred of thousand of available
features, the purity computation may be very slow. Therefore, in the proposed
parallel approach we employed message passing and multiple threads to deal
with that computations.

For image samples with resolution of 21 × 21 pixels there are more than
hundred of thousands Haar-like features available. For each image sample, all
the Haar-like features must be evaluated in terms of purity. The first step in the
parallelization of the process of purity evaluation is to send to each computer
in the cluster a set of images for which the purity of Haar-like features will be
computed. At each computer, the set of images is further divided among the
available processing cores. At the end of the purity computation, each computer
sends to the master computer the evaluated purities. The master computer sorts
the purities and chooses the one with higher value. The value of the feature with
highest purity will be used as the core of a weak classifier. That weak classifier
is added to the set of weak classifiers of the stage being trained.

After training, decision trees are used to classify the positive training samples.
The decision trees composed of stump classifiers. The thresholds of each tree are
sorted by classification rate in order to determine the best threshold that achieves
the minimum hit rate set as a parameter. After choosing the threshold from the
classification of positive samples, the negative samples are then classified. In this
work, the two classification procedures are parallelized by message passing.

4 Experimental Evaluation

In this section two types of evaluation are presented: statistical, using boxplots
analysis; and using the traditional speedup and scalability measures. Initially,
we present the analysis of the processing times. Then, speedup and scalability
are evaluated.

Training of the classifier cascades is affected by the type of image, i.e., samples
cropped from images with cluttered background will be more difficult to train for
weak classifiers. Therefore, two sets of experiments were performed with ten con-
figurations each in order to evaluate speedup and scalability parallelization. Ex-
perimental configurations differ on how non-face images are cropped to generate
the training samples. To obtain variability in the experiments, two parameters
were systematically changed for cropping negative image samples: displacement
step (number of pixels used as measure to determine the coordinates of next
crop region), and resizing scale (factor used to determine the new crop size).
The displacement step ranges from 2 up to 6 pixels, and the scales were 1.1 and
1.2. Speedup and scalability were computed using the average processing times
from all configurations.

A total of 100 experiments were performed using the previously mentioned
configurations: 10 repetitions using different images for each configuration. From



Hybrid Parallel Cascade Classifier Training for Object Detection 815

those experiments, 50 were performed to evaluate speedup and 50 to evaluate
scalability. Each configuration was applied once for each number of used com-
puters, ranging from 1 to 5. Due to the large amount of data collected from those
experiments, boxplot diagrams are used to summarize those results, which are
presented in Figures 2(a) and 2(b).

Fig. 2. Boxplot diagrams using data collected for evaluating (a) speedup and (b) scal-
ability, and graph showing (c) maximum theoretical speedup estimates

Speedup evaluation experiments were performed using the same amount of
images regardless the number of computers (1, 000 face samples, and 2, 000 non-
face samples at each training stage). For scalability evaluation, the ratio between
the amount of images and the number of computers was kept constant. For in-
stance, the first experiment employed 1 computer and 3, 000 images (1, 000 face
samples, and 2, 000 non-face samples) and the fifth experiment employed 15, 000
images (5, 000 face samples, and 10, 000 non-face samples). In comparison with
the Viola and Jones [2] work (who reported training with 350 million non-face
image samples), the results presented in Table 1 considered approximately 6
billion samples. The number of processors, and the corresponding average pro-
cessing times, standard deviations and scalability are shown in Table 1. Scal-
ability has been obtained with a similar equation to the one used for speedup
(as discussed next), the difference being only the amount of images required for
different number of processors.

It may be observed in Figure 2(a) that as more computers are added the
median values of processing time decrease indicating an increase in processing
speed. Regarding processing time of scalability distributions, it is possible to
observe from Figure 2(b) that stabilization occurs from 3 computers onwards.

Table 1. A: speedup. B: scalability and efficiency. The measures are presented with
corresponding mean time and standard deviation for the different numbers of computers
used in the experiments.

A B
Number

of
Computers

Mean
Time
(Min.)

Standard
Deviation Speedup

Mean
Time
(Min.)

Standard
Deviation Scalability Efficiency

1 128.67 28.75 1.00 128.31 18.63 1.00 1.00
2 109.39 38.43 1.18 237.35 37.32 0.54 0.27
3 84.00 25.17 1.53 402.12 49.07 0.32 0.11
4 71.56 31.98 1.80 388.82 107.30 0.33 0.08
5 67.01 14.77 1.92 398.21 87.80 0.32 0.06



816 E. Torres-Pereira et al.

Speedup is a measure commonly used in parallel computing to determine how
much a parallel program is faster than a corresponding sequential one [16], which
is defined according to the ratio between the execution time Ts of the sequential
algorithm (running on a single processor, i.e., s = 1) and the execution time
Tp of the parallel algorithm executed by p processors. When Sp = p, linear
or ideal speedup is achieved, although higher speedups may be achieved which
are called superlinear speedups [17]. For example, if 100 seconds are necessary
for running an algorithm using 1 processor, ideally it should be necessary 50
seconds for running the same algorithm with the same processing load when
using 2 computers.

The data presented in Table 1 shows an increase in processing speed as more
processors are added. Amdahl’s Law [18] states that if the fraction of a program
that may be parallelized is P , then the maximum speedup using its parallelized
version running on N computers is defined according to Equation (1). The value
of P is estimated using Equation (2) [16], the term SU indicates the speedup
measured for N computers. Therefore, if the value of P is estimated using the
total speedup obtained by 5 processors, the result will be 0.60. From that value of
P , the estimated speedup curve for our parallelized approach, as a function of the
number of processors, is given in Figure 2(c). The efficiency of parallel processing
is given by the ratio between speedup (SU) and the number of processors (N)
used to obtain such speedup.

SU =
1

(1− P ) + P
N

. (1)

Pestimated =
1

SU − 1
1
N − 1

. (2)

The weak classifiers obtained by the parallel approach were compared with
weak classifiers obtained by the serial version for the same conditions of training
and same images, and it was concluded that they are identical.

5 Conclusion

In this paper, a novel hybrid approach to parallelize the Viola and Jones [1][2]
framework was presented. The approach explores both message passing and
multi-threading programming and may be used in different parallel computing
environments (small clusters of large machines or large clusters of small ma-
chines, as it is more common in cloud environments). In addition, the proposed
approach also implements a parallel technique for the generation of non-face im-
ages that addresses some practical issues (e.g., lengthy disk read phases, large
number of files). The proposed approach was evaluated by means of two metrics:
scalability, and speedup. For both metrics billions of non-face images were used in
the training phase. The parallel proposed approach achieved true positive rates
higher than 0.95 when trained with more than 2 billion non-face samples. More-
over, boxplot analysis (Figure 2) showed that speedup and scalability started to



Hybrid Parallel Cascade Classifier Training for Object Detection 817

be stable for number of used computers higher than 3. Finally, in contrast to
related works, which dealt with only parts of the Viola and Jones framework,
in this paper we addressed the problem of parallelizing their complete frame-
work, which included the cropping of new image samples and the evaluation of
previously trained classifier stages, and a realistic view of the expected results.

References

1. Viola, P., Jones, M.: Robust real-time object detection. In: Workshop on Statistical
and Computational Theories of Vision, pp. 1–25 (2001)

2. Viola, P., Jones, M.J.: Robust real-time face detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

3. Zhang, C., Zhang, Z.: A survey of recent advances in face detection. Technical
report, Microsoft Research, MSR-TR-2010-66 (2010)

4. Jones, M., Viola, P.: Fast multi-view face detection. Technical report, Mitsubishi
Electric Research Laboratories (2003)

5. Wu, B., Ai, H., Huang, C., Lao, S.: Fast rotation invariant multi-view face detec-
tion based on real adaboost. In: International Conference on Automatic Face and
Gesture Recognition, pp. 79–84 (2004)

6. Huang, C., Ai, H., Li, Y., Lao, S.: High-performance rotation invariant multiview
face detection. Transactions on Pattern Analysis and Machine Intelligence 29(4),
671–686 (2007)

7. Cho, J., Benson, B., Mirzaei, S., Kastner, R.: Parallelized architecture of multiple
classifiers for face detection. In: International Conference on Application-specific
Systems, Architectures and Processors, pp. 75–82 (2009)

8. Hefenbrock, D., Oberg, J., Thanh, N.T.N., Kastner, R., Baden, S.B.: Accelerating
viola-jones face detection to fpga-level using GPUs. In: International Symposium
on Field-Programmable Custom Computing Machines, pp. 11–18 (2010)

9. Harvey, J.P.: Gpu accelaration of object classification algorithms using nvidia cuda.
Master’s thesis, Department of Computer Engineering, Kate Gleason College of
Engineering, Rochester Institute of Technology (2009)

10. Lazarevic, A., Obradovic, Z.: Boosting algorithms for parallel and distributed learn-
ing. Distributed and Parallel Databases (11), 203–229 (2002)

11. Merler, S., Caprile, B., Furlanello, C.: Parallelizing adaboost by weights dynamics.
Computational Statistics & Data Analysis 51, 2487–2498 (2007)

12. Galtier, V., Pietquin, O., Vialle, S.: Adaboost parallelization on PC clusters with
virtual shared memory for fast feature selection. In: Signal Processing and Com-
munications, pp. 165–168 (2007)

13. Huang, Z., Shi, X.: A distributed parallel adaboost algorithm for face detection.
In: Intelligent Computing and Intelligent Systems, pp. 147–150 (2010)

14. Zeng, K., Tang, Y., Liu, F.: Parallization of adaboost algorithm through hybrid
mpi/openmp and transactional memory. In: International Eumicro Conference on
Parallel, Distributed and Network-Based Processing, pp. 94–100 (2011)

15. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Tech-
niques, 2nd edn. Elsevier Inc. (2005)

16. Shi, Y.: Reevaluating amdahls law and gustfsons law. Technical report, Temple
University (1996)

17. Akl, S.G.: Superlinear performance in real-time parallel computation. The Journal
of Supercomputing 29(1), 89–111 (2004)

18. Hill, M.D., Marty, M.R.: Amdahls law in the multicore era. Computer 41(7), 33–38
(2008)


	Hybrid Parallel Cascade Classifier Training
for Object Detection

	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Experimental Evaluation
	5 Conclusion
	References




