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Abstract. In this paper, we propose a new visual saliency detection method, 
which is effective regardless of unreliable disparity information, by using con-
trast and prior knowledge. Our proposed method consists of two phases. In the 
first phase, we used region based contrast information to compute the saliency 
of an input image. We consider not only global but also local contrast in color 
and disparity information to efficiently extract salient regions in a stereoscopic 
image. In addition, we introduce a confidence measure to handle unreliable dis-
parity information. In the second phase, we used region based prior knowledge 
existent in a stereoscopic image. The region based prior knowledge is con-
structed from low-level features such as color, frequency, location and disparity 
in the stereoscopic image. Finally, we integrate contrast-based and prior know-
ledge-based saliency to accurately detect saliency from input stereoscopic  
image. Experimental results show that our method efficiently detects salient 
contents in stereoscopic images. 
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1 Introduction 

Considerable research efforts have been devoted over the last few years to detect sa-
lient regions, because saliency analysis can be applied to many computer vision 
fields, such as object detection, object recognition, and image retrieval. Recently, 
various saliency detection methods from monoscopic image [1-5] and stereoscopic 
image and video [6-13] have been investigated. In previous researches, most saliency 
detection methods for stereoscopic images require an accurate disparity map to obtain 
reliable saliency detection. Even though a dense stereo matching method has been 
improved for the past few years, it remains a challenging problem. As a result, a sa-
liency detection method to effectively exploit unreliable disparity information is ne-
cessary to compute desirable saliency from complex stereoscopic images.  

In this paper, we focus on bottom-up data driven saliency detection using adaptive 
disparity cue depending on the quality of the disparity map. Our main contributions in 
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this paper are as follows. First, we introduce a confidence measure to handle reliabili-
ty issues of disparity maps in saliency analysis of stereoscopic images. If disparity 
quality is low, disparity related components are less well reflected in the confidence 
measure of the disparity map. Second, our contrast based analysis deals with global 
and local contrast in both the color and the disparity domains. Finally, we apply prior 
knowledge such as frequency, color, size, location and disparity to obtain accurate 
saliency for the given image. Prior knowledge helps us to detect saliency without the 
context information of the image.  

2 Stereoscopic Saliency Detection 

2.1 Region-Based Contrast from Stereoscopic Image 

Given one side (left image) of an input stereoscopic image, we first segment an image 
into regions, using graph based image segmentation method [14]. To reflect disparate 
qualities in the input stereoscopic image, we use the curvature of cost curve metric 
[15] as a disparity attribute confidence measure for each region  in the stereoscop-
ic images. The curvature of cost curve metric, , is defined as  
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where is the number of pixel in and  is a parameter. We set = 0.35. 

The contrast based global saliency value of a region is computed as follows.  
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where ),( ⋅⋅cD is the color distance, ),( ⋅⋅dD is the disparity distance metric between two 

regions, and 
Rλ is the confidence measure of region . 

The color distance between two regions, ),( ⋅⋅cD  is defined by the Bhattacharyya 

distance between the color distributions of two regions. 
Then, a region R in color space is defined by a color distribution as follows. 
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We compute the color distance between two regions using the Battacharyya dis-
tance between each color distribution of the two regions. 
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The disparity distance is defined in a similar way as the color distance. We used a 
disparity distribution to represent a region R . This region R in disparity space is 
represented by disparity distribution as follows, 
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The disparity distance ),( ⋅⋅dD  between two regions is computed using the Batta-

charyya distance between disparity distributions of two regions. 
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Since human visual systems tend to group similar or neighboring regions together, 
local contrast is also an important factor to determine the saliency of a region. Thus, 
we compute color and disparity saliencies between a region and its adjacent neigh-
bors. Therefore, the saliency value of the local contrast of a region is computed as 
follows. 
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where )( iN R  is the direct adjacent regions of 
iR . 

Finally, the contrast based saliency value for each region is computed by, 
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where  
1α  and 

2α  are weight factors for global and local contrast, respectively. We 

set 
1α =0.7 and 

2α  = 0.3. 

Fig.  1 shows our contrast based saliency detection results for a stereoscopic im-
age. Although the disparity map quality is not good, the saliency of each region is 
efficiently computed by our contrast based saliency detection method. 
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where 
areaσ is a parameter and )(⋅A is normalized area of a region.  We set 

areaσ = 

0.35. 

2.2.4   Location-Based Prior Knowledge 
Since, people have been found to pay more attention to objects located at the center of 
an image [17], we define the location-based prior saliency, )(RLS , as 
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where 
locσ is a parameter, and c is center of an image. We set 

locσ = 80. 

2.2.5   Disparity-Based Prior Knowledge 
People usually pay more attention to objects having large negative disparities. Thus, 
we define the disparity-based prior saliency, )(RDS , as, 
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ue at location in a region, and 
Rλ is confidence measure of region R ’s disparity.  

We set 
disσ = 0.25. 

2.3 Stereoscopic Saliency Detection 

The stereoscopic saliency of a region is computed from both contrast-based saliency 
and prior knowledge-based saliency. It is computed as follows: 
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Note that each 
ctS and 

pkS is remapped to [0, 1] by simple linear mapping. 

3 Experimental Results 

We compare our method with six state-of-the-art saliency detection methods, includ-
ing CA [19], GB [20], SR [21], FT [16], RC [3], HS [22] and SS [13] using  the Ste-
reo Saliency Benchmark Dataset introduced in [13]. The salient regions are detected 
in the stereoscopic image more accurately with our method than with the other me-
thods compared as shown Fig. 3.  
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where 
rP  is precision and 

cR is recall. We set 2β =0.3 in our experiments, similar to 

previous studies [16, 17]. Fig.  4-(b) shows a comparison of F-measure scores result-
ing from various saliency detection methods. 

4 Conclusion 

In this paper, we proposed a novel regional saliency detection method by combining 
contrast and prior knowledge data with confidence measure to handle unreliable dis-
parity information. We used not only global but also local contrast information while 
taking into account the Gestalt principle of human perception.  

However, our method depends on the quality of region segmentation. Although 
image segmentation has been studied for many years, it is still a challenging problem. 
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