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Abstract. This paper presents an overview of the current status of lat-
tice based dendritic computing. Roughly speaking, lattice based dendritic
computing refers to a biomimetic approach to artificial neural networks
whose computational aspects are based on lattice group operations. We
begin our presentation by discussing some important processes of bio-
logical neurons followed by a biomimetic model which implements these
processes. We discuss the reasons and rationale behind this approach
and illustrate the methodology with some examples. Global activities in
this field as well as some potential research issues are also part of this
discussion.

1 Introduction

The study of artificial neural networks (ANNs) was originally inspired by ad-
vances in neuroscience [1, 2]. However, early research in ANNs came almost
to a standstill in the 1970s. A widely published book [3] by Minsky and Pa-
pert showed the limitations of the highly touted neural network model known
as a perceptron. Probably as much as any other single factor, the efforts of
J.J. Hopfield during the early 1980’s brought about a profound change in the
perception of ANNs within the scientific community. As a well-known physicist
of the California Institute of Technology, Hopfield’s scientific credentials lent re-
newed credibility to the field of ANNs which had been badly tarnished by the
hype of the mid-1960’s. Several applications of Hopfield’s early papers include
associative or content-addressable memories [4–6]. Since these early days, ANNs
have become a major tool in machine learning and artificial intelligence. They
have been applied in such diverse areas as pattern recognition and pattern asso-
ciation, robotic control and image processing, speech processing and computer
vision, data storage and retrieval, expert systems and many others.

The various ANN models in current use are intimately associated with a par-
ticular learning algorithm or learning rule. Thus, we have multilayer perceptrons
(MLPs) and back propagation, kernel function based learning such as radial basis

� Corresponding author. G. Urcid thanks SNI-CONACYT for partial financial sup-
port, grant # 22036.

E. Bayro-Corrochano and E. Hancock (Eds.): CIARP 2014, LNCS 8827, pp. 730–744, 2014.
c© Springer International Publishing Switzerland 2014



Lattice Based Dendritic Computing: A Biomimetic Approach to ANNs 731

function (RBF) neural networks, support vector machines (SVMs), kernel Fisher
discriminants (KFDs), and various other hybrid models with similar approaches.
Consequently, the approach inspired by biology has been largely abandoned for a
more practical approach based on statistics, probability theory, and other math-
ematical signal processing methods. It is therefore safe to say that these ANNs
have very little in common with biological neural networks. It was this observa-
tion of the divergence of ANNs from their biological roots that inspired our goal
of reversing this trend and led to the creation of a biomimetic model of a neuron
[7]. In the next section we provide some basic information about biological neu-
rons and their processes. In Section 3 we present the biomimetic model based
on the neural processes discussed in Section 2 and also discuss the the reasons
and rationale for the basic computational processes. Section 4 provides an appli-
cation example and a brief discussion of some global studies and applications of
DLNNs. The section ends with five open research problems. In the concluding
section (Section 5) we appeal to the reader to join our efforts in advancing the
frontiers of biomimetic ANNs.

2 Biological Neurons and Their Processes

The term biomimetic refers to man-made systems of processes that imitate na-
ture. Thus, a biomimetic approach to ANNs refers to imitating or mimicking
biological neural networks. But in order to imitate biological neural structures
one has to first understand the morphology and function of the fundamental
component of the structure, namely the neuron. A neuron (or nerve cell) is a
cell in the animal kingdom and as such contains numerous components common
to all animal cells. These include a cell membrane, a cell nucleus, mitochondria,
Golgi apparatus, ribosomes, and so on. Just as there are many different type of
cells making up the overall structure of an animal, there are many different types
of nerve cells making up the nervous system of an animal. These different types
of neurons are classified according to their morphological differences such as
their dendritic structures as well as their functionality. Nevertheless, every neu-
ron consists of a cell body, called soma, and several processes. These processes
are of two kinds and are called, respectively, dendrites and axons. The dendrites,
which are usually multiple, conduct impulses toward the body of the cell; the
axon conducts from the cell body. Dendrites typically have many branches that
create large and complicated trees. Many (but not all) types of dendrites are
studded with large numbers of tiny branches called spines. Dendritic spines,
when present, are the major postsynaptic target for excitatory synaptic input.
The soma and the dendrites constitute the input surface of the neuron. When
a neuron fires, then all neurons receiving the fired signal are called the postsy-
naptic neurons while the firing neuron is called the presynaptic neuron. When
the voltage profile of a fired signal is recorded, it usually consists of a sequence -
better known as a train - of spikes. It has been conjectured that the number of
and distances between the spikes in a train represents the encoded information
that the neuron is transmitting to the recipient postsynaptic neuron [10]. The
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axon, which usually arises from the opposite pole of the cell at a point called the
axon hillock, consists of a long fiber whose branches form the axonal arborization
or axonal tree. For some neurons the axon may have branches at intervals along
its length in addition to its terminal arborization. The tips of the branches of
the axon are called nerve terminals or boutons or synaptic knobs. The axon is
the principal fiber branch of the neuron for the transmission of signals to other
neurons. Figure 1 shows an image and a typical schematic representation of a
biological neuron with its branching processes. An impulse traveling along an

Fig. 1. Merged color image of a biological neuron cell showing dendrites, dendritic
trees, soma, axon, and thin terminal branches [8], and schematic drawing of biological
neuron cells (pre- and postsynaptic) showing dendrites, dendritic trees, soma with
nucleus, axon, myelin sheath, synaptic cleft, and terminal branches with boutons [9]
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axon from the axon hillock propagates through the axonal tree all the way to
the nerve terminals. The terminals of the branches make contact with the soma
and the many dendrites of other neurons. The sites of contact are the synap-
tic sites where the synapses take place. The synapse is a specialized structure
whereby neurons communicate but there is no actual structural union of the
two neurons at the synaptic site. The synaptic knob is separated from the sur-
face of the dendrite or soma by an extremely narrow space called the synaptic
cleft. The exact mechanism of synaptic structures is fairly well understood and
there exist two kinds of synapses; excitatory synapses which tend to depolar-
ize the postsynaptic membrane and consequently exciting the postsynaptic cell
to fire impulses, and inhibitory synapses that try to prevent the neuron from
firing impulses in response to excitatory synapses. Inhibitory action affects the
postsynaptic membrane and lowers its potential [11, 12].

3 The Biomimetic Neuron and Neural Network Model

The number of synapses on a single neuron in the cerebral cortex ranges between
500 to 200, 000. Most of the synapses occur on the dendritic tree of the neuron,
and it is here where information is processed [12–15]. Dendrites make up the
largest component in both surface area and volume of the brain. Part of this is
due to the fact that pyramidal cell dendrites span all cortical layers in all regions
of the cerebral cortex [11, 14, 15]. Thus, when attempting to model artificial
brain networks that bear more than just a passing resemblance to biological
brain networks, one cannot ignore dendrites (and their associated spines) which
can make up more than 50% of the neuron’s membrane. This is especially true
in light of the fact that some brain researchers have proposed that dendrites and
not the neuron are the elementary computing devices of the brain. Neurons with
dendrites can function as many, almost independent, functional subunits with
each unit being able to implement a rich repertoire of logical operations [13–
17]. Possible mechanisms for dendritic computation of such logical functions as
XOR, AND, and NOT have been proposed by several researchers [13–15, 19–21].
For a more thorough background in dendritic computing, we refer the reader to
[11, 14, 22, 23].

It is for the above observations that a biomimetic model of a neuron needs to
include both dendrites and an axon with arborization. Also, the operations of
AND, OR, NOT, and XOR are operations common to lattice theory and can be
achieved in the dendrites starting at the synapses and accumulating in branches
of the dendritic tree. They are just as easy to implement on the gate array
level and therefore provide for fast computational results. Additionally, for ad-
ditive lattice groups the operation of multiplication is generally absent and thus
yields extremely fast convergence in lattice based learning algorithms. In light
of these observations, we constructed a biomimetic model of a neuron with a
dendritic process in which basic lattice operations occur after information trans-
fer at the synaptic sites. In order to describe this model in more detail, it is
necessary to briefly discuss the concept a lattice group and the associated lattice
computations.
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A partially ordered set L is often specified as a pair (L,≤), where ≤ denotes
the partial order. If for any two elements x, y ∈ L the greatest lower bound or
supremum sup{x, y} and least upper bound or infimum inf{x, y} exist, then L
is called a lattice. If L is a lattice, then it is also common to specify L as a
triple (L,∨,∧), where ∨ and ∧ denote the binary operation x ∨ y = sup{x, y}
and x ∧ y = inf{x, y}. By a lattice ordered group we mean a set L with an
associated algebraic structure (L,∨,∧,+), where (L,∨,∧) is a lattice and (L,+)
is a group with the property that every group translation is isotone; that is, if
x ≤ y, then a+x+b ≤ a+y+b ∀ a, b ∈ L. Given the set O = {∨,∧,+} of lattice
group operations, then the symbols ⊕, ⊗, and 	 will mean that ⊕,⊗,	 ∈ O
but are not explicitly specified operations. Similarly, symbols of the form

⊕
,
⊗

,
or

⊙
will denote generalized operations derived from ⊕, ⊗, and 	, respectively.

For example,
⊕n

i=1 ai = a1 ⊕ · · · ⊕ an. Hence, if ⊕ = ∨ and 	 = +, then⊕n
i=1 ai =

∨n
i=1 ai = a1 ∨ · · · ∨ an, and

⊙n
i=1 ai =

∑n
i=1 ai = a1 + · · ·+ an.

In the dendritic model of ANNs, a finite set of presynaptic neuronsN1, . . . , Nn

provides information through its axonal arborization to the dendritic trees of
some other finite set of postsynaptic neurons M1, . . . ,Mm. The dendritic tree of
a postsynaptic neuron Mj is assumed to consist of a finite number of branches
dj1, . . . , djKj which contain the synaptic sites upon which the axonal fibers of the
presynaptic neurons terminate. The strength of the synapse on the k-th dendritic
branch djk (k ∈ {1, . . . ,K(j)}) which serves as a synaptic site for a terminal
axonal branch fiber of Ni is denoted by w�

ijk and is also called its synaptic
weight. The superscript � is associated with the postsynaptic response that is
generated within and in close proximity of the synapse. Specifically, � = 0 and
� = 1 denote an inhibitory or excitatory postsynaptic response, respectively. It is
possible for several axonal fibers to synapse on the same or on different synaptic
sites on a given branch djk, with the former case implying that w�

ijk = w�
hjk.

The total response (or output) of djk to the received input at its synaptic sites
is given by

τ jk (x) = pjk
⊕

i∈I(k)

⊗

�∈L(i)

(−1)1−�l(xi + w�
ijk), (1)

where x = (x1, . . . , xn) ∈ Ln with Ln denoting the n-fold Cartesian product of
L, xi ∈ L denotes the information propagated by Ni via its axon and axonal
branches, L(i) ⊆ {0, 1} corresponds to the postsynaptic response generated at
the synaptic region to the input received from Ni, and I(k) ⊆ {1, . . . , n} cor-
responds to the set of all presynaptic neurons with terminal axonal fibers that
synapse on the k-th dendritic branch of Mj. The value pjk ∈ {−1, 1} marks the
final signal outflow from the k-th branch as inhibitory if pjk = −1 and excitatory

if pjk = 1. The value τ jk (x) is passed to the cell body of Mj and the state of Mj

is a function of the combined values received from its dendritic structure and is
computed as

τ j(x) = pj

Kj⊙

k=1

τ jk(x), (2)
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where Kj denotes the total number of dendritic branches of Mj and pj = ±1
denotes the response of the cell to the received input. Here again pj = −1 means
rejection (inhibition) and pj = 1 means acceptance (excitation) of the received
input. Figure 2 illustrates the neural pathways from the presynaptic neurons Ni

to the postsynaptic neuronMj . An open circle ◦ in Fig. 2 means that the synaptic
weight is inhibitory while a solid circle • indicates an excitatory synapse. The
value xi denotes the information transferred from neuron Ni to the synaptic
sites of neuron Mj.
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jjKd
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ij1w j
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1
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Fig. 2. Terminal branches of axonal fibers originating from the presynaptic neurons Ni

make contact with synaptic sites on dendritic branches ofMj . Excitatory and inhibitory
inputs are indicated, respectively, by solid (•) and open circles (◦).

Also, in the general lattice group case, the values ±1 denote the group identity
and its inverse and not necessarily the numbers one and minus one. The prime
example of a lattice ordered group is the set R of real numbers together with the
binary operations of the maximum (∨) and minimum (∧) of two numbers, and
the group operation of addition; it is denoted by (R,∨,∧,+) and is the lattice
employed in this paper. Thus, Eqs. (1) and (2) assume, respectively, the forms

τ jk (x) = pjk
∨

i∈I(k)

∧

�∈L(i)

(−1)1−�
(
xi + w�

ijk

)
and τ j(x) = pj

Kj∑

k=1

τ jk (x), (3)

where x = (x1, . . . , xn) ∈ R
n, xi ∈ R, and j = 1, . . . ,m. The value τ jk(x)

activates the neuron Mj via an activation function f . The activation function
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depends on the task assigned to this neuron and can be the identity function, a
hard-limiter function, a ramp function, or any other appropriate function. The
activated neuron will then fire and provide an output f [τ jk(x)] to postsynaptic
neurons of its receptive field.

Figure 3 shows one possible feed-forward structure of such interconnected
biomimetic neurons. The mimetic network consists of three layers, namely an
input layer N of neurons N1, . . . , Nn without dendrites but axonal arborization,
two hidden layers A and B consisting of neurons A1, . . . , Ap and B1, . . . , Bq,
respectively, and an output layer M consisting of m neurons M1, . . . ,Mm. Net-
works of this type are known as dendritic lattice neural networks (DLNNs).
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Fig. 3. One possible two-layer structure of a whole or part of a DLNN
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4 Examples, Observations, and Open Problems

Although DLNNs are still in their infancy, lattice based neural networks have
been around for a couple of decades and investigated as well as applied to various
problem domains around the globe [18, 28, 29, 32–45, 47–52]. These early lattice
based neural network led to a deeper understanding of how a variety of problems
could be solved using only lattice group operations. However, certain limitations
of these networks, a majority of which were matrix based correlation approaches,
also came to light. Many of these problems are easily removed when using the
dendritic approach. In particular problems in the area of associative memories
such as discussed in [40, 42, 44, 46, 49] were readily overcome using DLNNs
[59, 60, 63, 66].

To gain better insight in dendritic computing we consider a specific example.
Suppose we have a set X = {x1, . . . ,xK} ⊂ R

n of exemplar patterns. Then
given a vector x ∈ R

n, we would like to know whether x is “close” to some
xj ∈ X in terms of the L1 metric d1. To solve this problem with a DLNN we
know that we need n input neurons N1, . . . , Nn since inputs will be real valued
vectors of length n. Since the number of exemplars is K, K neurons A1, . . . , AK

are required in the first hidden layer, with each neuron Aj storing the structure
of pattern xj as synaptic weights at the synaptic sites in its dendritic branches.
More precisely, for a given input pattern x = (x1, . . . , xn) the i-th neuron Ni

will assume as its value the i-th coordinate xi of x and will propagate this value
through its axonal arborization to the dentrites of Aj for j = 1, . . . ,K. The
dendritic tree of each hidden neuron Aj has n single branches dj1, . . . , djn, and
each neuron Ni has two axonal fibers terminating on the synaptic sites located
on the corresponding branch dji of the hidden layer neuron Aj as depicted in
Fig. 3. Observe that in this formulation the dendritic branch counter k equals
i, making the extra counter k unnecessary. The two synaptic weights associated
with the two synaptic sites of dji are defined by a�ij = −xj

i for � = 0, 1. The

output of each dendritic branch is denoted by τ ji (x). Here we use the formula
given by Eq. 3 in order to compute this value. Setting pjk = −1 and using the
fact that I(k) = I(i) = {i}, Eq. 3 reduces to

τ ji (x) = −
1∧

�=0

(−1)1−�(xi + a�ij) = (xi − xj
i ) ∨ (xj

i − xi). (4)

It follows from Eq. 4 that τ ji (x) = 0 ⇔ xi = xj
i and τ ji (x) > 0 ⇔ xi �= xj

i . The

value τ ji (x) is passed to the cell body of Aj and its state is a function of the
combined values received from its dendritic structure. This state is computed
using Eq. 3 with pj = 1. Specifically, we have

τ jA(x) =
n∑

i=1

τ ji (x) =
n∑

i=1

[(xi − xj
i ) ∨ (xj

i − xi)] =
n∑

i=1

|xi − xj
i |. (5)

It follows that each neuron Aj in the A-layer computes the L1-distance between

the input pattern x and the j-th exemplar pattern xj , i.e., τ jA(x) = d1(x,x
j).
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A threshold for defining an activation function for the A-layer neurons can be
user defined or obtained during training, which depends on the specific problem
at hand. Employing the network just described as a first part of a two hidden
layer network similar to the one shown Fig. 3, we designed a DLNN based het-
eroassociative memory that proved to be extremely robust in the presence of
various types of noise [51, 63]. For example, five predator images each associated
with a specific prey are shown in Fig. 4.

Fig. 4. Five predators in the first row and corresponding preys in the second row

The predator exemplar features are stored as synaptic weights in the synap-
tic sites of the dendrites of the A-layer neurons while the features of the prey
exemplars, Y = {y1, . . . ,y5}, were stored as synaptic weights in the M -layer
neurons. For a given input x, the A-layer neurons compute the L1 distance be-
tween x and each exemplar xj . The output of the A-layer serves as input to
the B-layer neurons whose task is to find the minimum of the five distances
d1(x,x

j) where j = 1, . . . , 5. The minimum distance values are then forwarded
by the axons of the B-layer neurons to the dendrites of the output neurons of M .
The output of the M -layer will be xj such that d1(x,x

j) is minimal. It is note-
worthy to mention that the activation function for the A layer neurons is a ramp
function while the activation function for the B layer neuron is a hard limiter
function. These two functions correspond roughly to the measured excitatory
post-synaptic potential (EPSP) of cerebellar interneurons (ramp function) and
pyramidal neurons (hard limiter) [64, 65].

The inputs to the heteroassociative memory predator-prey DLNN were noisy
and corrupted versions of the predator images. We simulated noise pattern acqui-
sition by increasing and decreasing image contrast, approximating linear camera
motion, applying circular averaging filters, employing the morphological opera-
tions of dilation and erosion with different structuring elements, and by using
Gaussian as well as uniform noise. Figure 5 shows some of the tested image
corruption changes. Different types of noise corruption have been applied to dif-
ferent images. The first column presents motion blur, the 2nd shows Gaussian
noise, the 3rd displays the application of a circular averaging filter, the 4th il-
lustrates a morphological erosion with a line as structuring element, and the 5th
presents a morphological dilation with a structuring element of elliptical shape.
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Fig. 5. Top row displays the exemplar image patterns (predators), 2nd through the
4th column below a given predator show the increase in noise level or image corruption
of a predator and bottom row illustrates the DLNN recall performance of a prey when
presented with a noisy predator image above it

In many applications more accurate results can be obtained by using more
than one type of metric. Examples of pattern classification DLNNs that use
two lattice metrics are given in [69]. Various other DLNNs have been pro-
posed to solve a variety of problems in areas ranging from the early detection
of Alzheimer’s disease to the segmentation of blood vessels in retinal images
[58, 61, 62, 67, 68, 71]. An intriguing application a DLNN in the area of formal
concept analysis (FCA) was recently proposed by researchers at CINVESTAV-
Guadalajara [72]. A major aim of FCA is to support the rational communication
of humans by mathematically developing appropriate structures which can be
logically activated [73]. Applications of FCA are manifold and may be a key
technique in the storage, retrieval, and analysis of big data [74].

In spite of all the above mentioned research and applications of DLNNs, den-
dritic computing is not yet part of mainstream ANNs even though any Google
search on dendritic computing shows that there is a consensus among neurosci-
entists that basic information changes and calculations occur in the dendrites
and their synapses. However, this is good news for the researcher interested in
using some of these novel biological discoveries in order to create more powerful
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biomimetic mathematical models of neural networks. Since the theory of DLNNs
is still in its infancy, the field of research remains wide open for further explo-
ration and major breakthroughs. With this in mind, we conclude this section by
listing five important areas that are in need of further exploration.

1. Extension to fuzzy DLNNs. The fields of fuzzy set theory and lattice theory
are mathematically closely related [47, 48]. The idea of employing fuzzy
techniques in DLNNs was first discussed in [30, 70], but further exploration
of the utility of fuzzy set theory in DLNNs is still needed and have the
potential of new breakthroughs.

2. Multitasking DLNNs. This area has yet to be explored. Specifically, a DLNN
whose subunits solve different tasks and may have different sensory input
neurons (e.g., sound, visual, smell, etc.). In this setup the different subunits
interact in order to solve a task that depends on the outcome of the various
tasks solved by the subunits.

3. Research in the utility of FCA in DLNNs. An integral part of FCA is the
concept lattice of a context. This lattice provides a possible link to dendritic
lattice computing. Since this constitutes a new area of research, it presents
an excellent opportunity to obtain novel results fairly quickly.

4. Training and learning paradigms for DLNNs. Learning in DLNNs means the
generation of axonal fibers, dendritic branches, synaptic sites and synaptic
weights for these sites. Although several learning and training methods for
DLNNs have been proposed and implemented, they mostly rely on geometric
considerations and are collectively known as hyperbox approaches [53, 54,
56, 58]. Thus far, there do not exist dynamical systems approaches, strategies
relying on statistical methods, or some other innovative approaches. This is
a difficult and challenging problem, but the payoff would be very big for any
truly novel learning paradigm.

5. Exploring the utility of spike trains in DLNNs. Axonal spike trains are a com-
mon phenomenon of firing neurons. Recent research supports the idea that
the position of spikes, gaps, and spike bursts within a small time interval
�t (measured in milliseconds) is the key to understanding the coded lan-
guage by which neurons communicate. For this reason it is of great interest
to know the utility of incorporating the current theory of spike trains in the
biomimetic model. First attempts showed great promise [57] and we believe
that it is a worthwhile endeavor to further pursue this area of research.

5 Conclusions

We presented a brief overview of a biomimetic model for ANNs which included
reasons and rationale in support of this model as well as application examples.
Our presentation concluded with a list of five critically important open problem
areas. We hope that our discussion and list of problems will generate sufficient
interest to entice other researchers to join our efforts in advancing the frontiers
of biomimetic ANNs.
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