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Abstract. This paper investigates the perspective of exploiting pairwise
similarities to improve the performance of visual features for video genre
retrieval. We employ manifold learning based on the reciprocal neigh-
borhood and on the authority of ranked lists to improve the retrieval
of videos considering their genre. A comparative analysis of different
visual features is conducted and discussed. We experimentally show in
the dataset of 14,838 videos from the MediaEval benchmark that we
can achieve considerable improvements in results. In addition, we also
evaluate how the late fusion of different visual features using the same
manifold learning scheme can improve the retrieval results.
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1 Introduction

Recent advances in technology have increased the availability of video data. This
has spurred great interest in efficient systems for managing video material. The
main challenge of those systems is to identify and select only relevant information
according to user needs.

In the last years, visual content-based systems have emerged as an alternative
to overcome the limitations of traditional text-based systems. They rely on ex-
tracting low-level features from videos and determining similarity between them
by computing distances between feature vectors.

In spite of all the advances, the “semantic gap”1 is still an open problem. To
bridge this gap, various unsupervised strategies [6,7,12] can be employed. Once
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1 Videos with high feature similarities may be different in terms of user perception.
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videos (and other multimedia objects) live in a much lower-dimensional intrinsic
space than the feature vectors that represent them, capturing and exploiting the
intrinsic manifold structure therefore becomes a central problem in the vision
community [4]. Manifold learning approaches have been successfully used in sev-
eral scenarios [5,6,7]. Such approaches aim at computing new distances between
objects, exploring the dataset manifold [13] and the reciprocal neighborhood of
ranked lists.

The main purpose of this paper is to show improvements of genre-based video
retrieval using a manifold learning approach. We have used recently proposed
manifold learning approaches [6] in the dataset of MediaEval Genre Tagging
Task of 2012 [10]. The application of such approaches using a set of several
visual features extracted from the videos can improve the results considerably.

The remainder of this paper is organized as follows. Section 2 describes the
visual features used to represent the videos. Section 3 presents the unsupervised
manifold learning approaches. Section 4 shows the experiments and results and
Section 5 concludes the paper.

2 Visual Features

To encode video visual properties, we have used three main approaches. Two of
them are based on video frames and do not consider transitions between them:
bag of visual words and bag of scenes [8]. The other approach specifically encodes
motion information by using histogram of motion patterns [1].

2.1 Bag of Visual Words (BoVW)

Nowadays, bags of visual words are very popular in the computer vision litera-
ture [3]. They represent visual content by statistical information of local patterns,
encoding the occurrences of quantized local features. Local features, like SIFT
and SURF, tend to be very specific, therefore quantizing their feature space in-
creases the generality of descriptions making BoVW representations appropriate
for a variety of applications. The feature-space quantization creates the so-called
visual dictionary or visual codebook. The most important steps for computing
the BoVW representation after the dictionary creation are coding [11] and pool-
ing [3]. Hard and soft assignment are usually employed for coding, while average
and max are common operations for pooling features in the final BoVW vector.

In this paper, we extracted bags of visual words from videos by performing
pooling in two stages. Initially, we considered frames isolated and computed the
BoVW vector for each frame. Then, we performed another pooling operation
over the BoVW of all the frames of a given video. This second pooling operation
generated the BoVW for the video. To differentiate from the other features in this
paper, we called it as pooling over pooling (PoP). PoPsoft1+avg,max

1000 means that
a codebook of 1000 visual words was used for the local features, soft assignment
(σ = 1) and average pooling were used to compute the BoVW of each frame,
and max pooling was used to combine frame BoVWs.
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2.2 Bag of Scenes (BoS)

Bag of scenes is an approach for encoding video visual properties [8]. It is based
on a dictionary of scenes which is composed of a set of scenes of interest. Such
dictionary can be created similarly to dictionaries based on local features (e.g.,
SIFT). An important advantage of the bag-of-scenes model is that the dictio-
nary is composed of visual words carrying more semantic information than the
traditional dictionaries based on local descriptions. In the dictionary of scenes,
each visual word can be more clearly associated with a visual concept than a
local patch. As a consequence, the bag-of-scenes feature space has one dimension
for each semantic concept, making it easier to detect the presence or absence of
the concept in the video feature vector.

For creating the bag of scenes, several coding and pooling strategies used in the
BoVW representation can be used, like hard and soft assignment [11], average
and max pooling [3], for instance. In this paper, we use multiple configurations
for computing the BoS of a video, like varying the dictionary size, using hard or
soft assignment and average or max pooling. To differentiate them, we use the
following abbreviation BoSsoft2+avg

1000 , which says that soft assignment (σ = 2)
and average pooling were used to compute the bag of scenes of a video, using a
dictionary of 1000 scenes.

2.3 Histogram of Motion Patterns (HMP)

Besides encoding visual properties using visual dictionaries, we also adopted a
simple and fast algorithm to compare videos [1]. It consists of three main steps:
(1) partial decoding; (2) feature extraction; and (3) signature generation.

For each frame of an input video, motion features are extracted from the video
stream. For that, 2 × 2 ordinal matrices are obtained by ranking the intensity
values of the four luminance (Y) blocks of each macro block. This strategy
is employed for computing both the spatial feature of the 4-blocks of a macro
block and the temporal feature of corresponding blocks in three frames (previous,
current, and next). Each possible combination of the ordinal measures is treated
as an individual pattern of 16-bits (i.e., 2-bits for each element of the ordinal
matrices). Finally, the spatio-temporal pattern of all the macro blocks of the
video sequence are accumulated to form a normalized histogram.

3 Unsupervised Manifold Learning for Video Retrieval

The effectiveness of multimedia retrieval applications depends on different steps
of the retrieval process. Besides the visual features used, the distance measure
adopted plays an important role, directly affecting the quality of retrieved results.
In general, multimedia retrieval systems consider only pairwise analysis, that is,
compute similarity/distance measures considering only pairs of objects. Since
only pairwise distances are considered, information about the neighborhood of
the query is ignored.

On the other hand, the user perception considers the query specification and
responses in a given context. Therefore, an effective distance measure should
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consider the similarity among the query and retrieved objects in the context of
the whole collection [13,6]. In view of that, several approaches have been pro-
posed [5,13,7,4] aiming at replacing pairwise similarities by more global affinity
measures.

Manifold learning approaches can be used for learning global affinity mea-
sures. The main motivation of manifold learning consists in computing new dis-
tances between objects that correspond to geodesic distances on the dataset
manifold [13]. The new distances are estimated considering a walk along the
geometric structure of the dataset. In this paper, we use a recent proposed un-
supervised manifold learning approach [6] based on Reciprocal kNN Graphs,
described in next section. The main motivation consists in using the manifold
learning method for computing a new and more accurate distance among videos,
improving the effectiveness of video retrieval tasks.

3.1 Unsupervised Manifold Learning by Reciprocal kNN Graphs

The Unsupervised Manifold Learning by Reciprocal kNN Graphs [6] is based
on the information given by top-k positions of the ranked lists, which encode
relevant contextual information. Given a query video, the ranked lists define
relationships not only between pairs of videos (as distance functions), but also
among all the videos in the ranked list. The manifold learning algorithm [6]
analyzes the dataset structure by considering the reciprocal references among
objects at top positions of their ranked lists.

The Reciprocal kNN Graph method exploits the contextual information in
ranked lists using three main strategies [6]:

• Reciprocal Neighborhood: the k-reciprocal nearest neighborhood, is a
much stronger indicator of similarity than the unidirectional nearest neighbor-
hood [9], reducing the risk of false positives at top positions of ranked lists.

• Collaborative Ranking: aiming at computing a more global affinity, the
method employs a collaborative analysis. The motivation consists in the fact
that a ranked list can provide useful information for improving effectiveness of
other ranked lists [7].

• Authority of Ranked Lists: the manifold learning approach computes a
score for measuring the graph’s density that represents the reciprocal references
among objects at top positions of the ranked list. The score is used to estimate
the authority of a given ranked list for collaborating with other ranked lists.

At each iteration, the manifold learning method computes a new distance
among objects, considering the reciprocal neighborhood analysis. Based on new
distances, new ranked lists are computed repeating the process until convergence.
The method can also be used for distance fusion, aiming at combining distances
computed by different visual features.

4 Experimental Evaluation

This section presents the experimental evaluation conducted and discusses the
obtained results. Section 4.1 and 4.2 describe, respectively, the dataset and
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effectiveness measures used. Section 4.4 discusses the impact of parameters. Sec-
tion 4.3 presents the effectiveness results for all visual features and Section 4.5
discusses the results in combination tasks.

4.1 Dataset

In this work, we use a benchmarking dataset provided by the MediaEval 2012
organizers for the Genre Tagging Task [10]. The dataset is composed of 14,838
videos (3,288 hours) collected from the blip.tv2. Those videos are distributed
among 26 video genre categories assigned by the blip.tv media platform, namely
(the numbers in brackets are the total number of videos): art (530), autos and
vehicles (21), business (281), citizen journalism (401), comedy (515), confer-
ences and other events (247), documentary (353), educational (957), food and
drink (261), gaming (401), health (268), literature (222), movies and television
(868), music and entertainment (1148), personal or auto-biographical (165), pol-
itics (1107), religion (868), school and education (171), sports (672), technology
(1343), environment (188), mainstream media (324), travel (175), video blogging
(887), web development an (116) and default category (2349, comprises videos
that cannot be assigned to any of the previous categories). The main challenge
of this scenario is the high diversity of genres, as well as the high variety of visual
contents within each genre category.

4.2 Effectiveness Measures

The effectiveness of each approach was assessed using the metrics of Precision
and Recall [2]. Precision is the ratio of relevant videos in the retrieved set of
videos. Recall is the ratio of relevant videos retrieved in relation to the total
number of relevant videos in the database. There is a trade-off between Precision
and Recall, i.e., increasing Recall may decrease Precision and vice versa. For
this reason, we consider unique-value measurements in the validation: Mean
Average Precision (MAP), which is the mean of the precision scores obtained
at the ranks of each relevant video; and Precision at 10 (P@10), which is the
average precision after 10 videos are returned. MAP is a good indication of the
effectiveness considering all positions of obtained ranked lists. P@10, in turn,
focuses on the effectiveness of the methods considering only the first positions
of the ranked lists.

It is also important to mention the distance functions used to generate the
original rankings for each visual feature: Euclidean distance for PoP and BoS
and histogram intersection for HMP.

All experiments were conducted considering all the videos from the dataset
as queries. Results reported (for both MAP and P@10 measures) represent the
average of all the videos. Since our objective is to analyze the gains obtained by
the use of the manifold learning algorithm [6], we report the relative gain, which
is given by the absolute gain divided by the initial effectiveness score.

2 http://blip.tv (as of May, 2014).

http://blip.tv
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4.3 General Effectiveness Results

In this section, we aim at presenting and discussing the overall effectiveness
results obtained by the use of the manifold learning algorithm [6] considering all
the 12 visual features. In Figure 1, we compare the visual features with respect to
the MAP and P@10 measures, respectively. Notice that, the initial effectiveness
scores are low for both measures (MAP and P@10), which turns more challenging
the use of unsupervised approaches.
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Fig. 1. MAP and P@10 scores obtained by each of the visual features

Figure 2 presents the average relative gains for all the evaluated descriptors
and different values of k, considering the MAP and P@10 measures (blue lines).
The 95% confidence intervals are also reported, in green and red lines for upper
and lower boundaries, respectively. We can observe very significant average gains
for MAP, reaching +11.95%. For P@10, the average gains are lower, but still
significant, reaching +4.49%.
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Fig. 2. Average effectiveness gains considering all the visual features

Figure 3 presents the individual results obtained by the visual features for the
best choice of the parameter k considering the MAP and P@10 measures, respec-
tively. Notice the relative gains obtained for both measures, reaching +38.24%
for MAP and +16.80% for P@10. The significant gains obtained demonstrates
the usefulness of manifold learning even in this challenging scenario.
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Fig. 3. The best results obtained for each of the visual features

4.4 Analysis of Parameters

The manifold learning algorithm [6] requires two parameters: (i) k: number of
neighbors considered in the unsupervised learning process; and (ii) ε: a con-
vergence threshold parameter. We used the same threshold parameter value
(ε = 0.0125) used in [6]. In this section, we aim at evaluating the impact of
the parameter k on the video retrieval effectiveness. We evaluated the effective-
ness scores and the relative gain for different values of k. For that, we considered
only the HMP [1] descriptor as it presented the highest MAP and P@10 scores
before employing manifold learning.

In Figure 4, we show the relative gain of the MAP and P@10 measures using
the manifold learning as the parameter k increases. We can see that, as more
elements are analyzed in each ranked list (larger k), more improvement is ob-
tained, until reach a peak. This is an expected behavior, because increasing k
consists in analyzing a larger reciprocal neighborhood, which aggregates more
information. From a certain k, however, non-relevant results are considered and
the gain decreases.

We can also see that, although the best k is different depending on the measure
(MAP or P@10), the value is small for both measures. As MAP is related to the
quality of results when retrieving all the relevant videos from the dataset, it
benefits of learning from a larger k. On the other hand, as P@10 refers to the
quality of only the top results, a small set is enough.

4.5 Combination of Visual Features

The manifold learning algorithm [6] was also evaluated for distance fusion. For
that, we considered the visual features which have presented the best effective-
ness scores (HMP [1] and PoP [8]). We also considered the value of k (k = 31)
which presented the best results for the HMP [1] descriptor.

Table 1 presents the results for the combination and for each descriptor iso-
lated. The relative gain of the combination was computed over the best visual
feature (before manifold learning). We can observe that the combination achieved
the best effectiveness scores, for both MAP and P@10, reaching a relative gain
of +13.16% over the best feature.
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Table 1. Effectiveness results of manifold learning approach for feature combination

Algorithm Initial Manifold Relative Initial Manifold Relative
MAP Learning Gain P@10 Learning Gain

HMP [1] 3.85% 4.02% +4.42% 39.98% 40.22% +0.60%
PoP [8] 2.54% 2.87% +12.99% 31.34% 36.55% +16.62%

HMP [1]+PoP [8] - 4.33% +12.47% - 45.24% +13.16%

5 Conclusions

This paper presented an evaluation of manifold learning for video genre retrieval.
We employed manifold learning approaches over a set of visual features extracted
from the video dataset used in the MediaEval Genre Tagging Task of 2012, which
contains more than 14 thousand videos. This dataset is very challenging for visual
descriptors and the results obtained before manifold learning are quite low. Even
in this scenario of low precision values, the manifold learning approaches could
largely improve the results, in some cases having an accuracy gain of more than
35%. We also notice the successful use of manifold learning for distance fusion,
reaching gains of more than 13% over the best isolated feature in some cases.
Those results indicate the importance of considering the dataset structure for
reducing the semantic gap and for improving video retrieval. As future work, we
intend to evaluate the combination of other features.
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